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Preface 

Except for some small but significant amendments, the text and 

notes of my original translation of Galileo’s last and most impor- 

tant scientific book remain unchanged in the second edition. The 

Preface and Introduction have been entirely rewritten. Parts of the 

1974 introduction have been transferred to this preface, and other 

parts omitted, to make room for more information about Galileo 

as an experimental physicist than was known a decade ago. 

The only source of information about Galileo’s experimental 

work is volume 72 of the Galilean manuscripts at the National 

Central Library of Florence. Into that volume were bound, un- 

dated and in no comprehensible order, Galileo’s working papers 

on motion from 1602 to 1637, the eve of publication of Two New 

Sciences. He had saved those notes in labeled folders over many 

years, having intended ever since 1604 to compose a book on 

motion along lines similar to those seen in the Third Day of Two 

New Sciences. He had indeed made a fair start on this in 1609, 

shortly before he heard of the newly invented Dutch telescope, 

improved on it, and neglected physics in favor of astronomy for a 

long period. 

Nearly a century ago the working papers bearing theorems or 

problems were transcribed and printed in the definitive edition of 

Galileo’s works supervised by Antonio Favaro. Pages bearing 

only diagrams and calculations, without full sentences, were not 

included. Those turn out to have been the pages on which Galileo 

noted his chief measurements. From them it has been possible to 

determine the units he employed, the apparatus he used, and the 

procedures he followed in making his fundamental discoveries in 

‘physics, and also others which he never published. Arranged in 

their order of composition and considered together with theorems 

found on other pages or in the text of Two New Sciences, those 

notes tell a story of the origin of modern physical science. It is not 

the story on which historians of science were generally agreed in 

1974, nor did I then foresee the extent to which that would in time 

be modified by Galileo’s working papers. 

The purpose of my 1974 translation was to provide a readable 

and reliable version of the original text, including supplemental 

material from Galileo’s own hand that was omitted from the 1914 

version by Crew and De Salvio. Also, they had allowed intrusions 

of historical preconceptions, anachronistic technical terms, and 

some misleading translations. As one of the pivotal figures in the 
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history of science, Galileo should above all be represented accu- 

rately, whether what he wrote was correct or mistaken. 

As an example of inaccuracies which mar the excellently 

styled and attractively printed translation published in 1914, it had 

Galileo say: 

There is, in nature, perhaps nothing older than motion, concerning 
which books written by philosophers are neither few nor small; nev- 
ertheless I have discovered by experiment some properties of it 

which are worth knowing and which have not hitherto been either 

observed nor demonstrated. 

Alexandre Koyré, the outstanding 20th-century analyst of the 

Scientific Revolution, remonstrated long ago that the phrase “by 

experiment” was unjustifiably inserted, Galileo’s own word hav- 

ing been simply comperio, “I find.” The gratuitous phrase was 

found particularly offensive by Koyré because he held that 

Galileo had made no use of experiment in the modem sense. 

Koyré credited Galileo’s successes entirely to blind faith in math- 

ematics. 

Professor Crew replied in defense of his translation that 

Galileo’s “I find” implied experiment, for there was no other way 

in which he could have determined, for example, what law agreed 

with actual free fall. Galileo’s steps to the times-squared law, now 

completely recovered, have vindicated the physicist Crew. Of 

course that hardly justifies his treatment of comperio, because 

implications belong in glosses or notes, and not in the text of a 

modern translation. Readers deserve to know what Galileo said, 

as distinguished from what anyone else believes he meant. As 

remarked in my former preface, if Galileo’s role in the evolution 

of experimental physics had to be judged only from one isolated 

sentence of his, then nothing worth saying about it could ever be 

deduced; if not, then further information relating to Galileo’s ex- 

periments would remove any misapprehension arising in this way. 

Inaccuracies of that kind hardly afforded sufficient grounds for 

making a new translation. 

Other types of inaccuracy, however, are less easily brushed 

aside. One was the excessive use in translation of modern terms 

having technical meanings in physics. Near the beginning of the 

Fourth Day, the Crew translation reads: 

Imagine any particle projected along a horizontal plane.... The 

particle will move along this plane with a motion that is uniform and 
perpetual. 

The word “particle” has now a special sense in physics quite 

different from that of Galileo’s word mobile, a thing capable of 
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motion. Our modern physical particle is essentially weightless, 

whereas Galileo’s whole discussion at this place depended on the 

concept of heaviness. In this instance a modern technical term 

was used to replace a different and obsolete technicality. In other 

places, words like “velocity” and “gravity” were literally rendered 

from velocita and gravita, by which Galileo meant only “speed” 

and “heaviness,” not a vector quantity and a force. 

Even these sources of potential misunderstanding, however, 

did not seem to me to demand a whole new translation with all its 

attendant labor and trouble. What ultimately changed my opinion 

was detection of a seemingly trivial error, grammatically merely 

the adoption of singulars in place of Galileo’s plurals in one sen- 

tence. But that sentence was of crucial importance to proper un- 

derstanding of Galileo’s physics and also his mathematics. It 

contained his entire argument against the prevailing belief among 

natural philosophers that speeds during fall grow proportionally to 

the distances fallen from rest. Its mistranslation had long con- 

cealed the essential nature of Galileo’s reasoning and a novel 

mathematical insight—that of one-to-one correspondence be- 

tween members of two infinite sets. It made Galileo appear guilty 

of an elementary blunder in the subject of his greatest expertise 

-and longest years of careful study. 

Checking further, I found that this mistranslation occurred in 

modern French, German, Russian, and I believe all versions but 

one, a Spanish translation in 1945. Yet Galileo’s words had been 
faithfully translated into English in 1665 and 1730, as also into 

Latin by 1699. Evidently the distortion must have arisen from a 

misunderstanding of Galileo’s thought, after modern discoveries 

in medieval works on motion and the consequent attempts to link 

them with Galileo’s physics. That is a different kind of error in 

translation from the others. When theories of what Galileo should 

have said are allowed to alter his own words, it is time to call a 

halt. 

Detection of this modern and widespread mistake, simply by 

attending to Galileo’s exact words in 1638, shed new light on 

other aspects of his analysis of motion. As one might expect, 

related mistranslations in other passages also became apparent, 

some of them doubtless inadvertent and others induced by a wish 

to prove medieval influence on the pioneer modern physicist. In 

the 1914 translation the medieval concept of “mean speed” was 

substituted for Galileo’s clear “one-half the final speed” in his 

very first theorem on naturally accelerated motion. In his proof of 

that, the word totidem occurred twice but was untranslated in the 
English version. Koyré himself published a similarly careless 
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translation, while mistakes in handling totidem occur also in the 

French and German texts. Totidem meant “as many as,” which in 

a mathematical proof entails the idea “‘in precisely the same num- 

ber, whether known or not.” That was in fact the essential basis of 

Galileo’s proof, which signaled the pioneering use of one-to-one 

correspondence already mentioned. This concept is of the highest 

importance now in dealing with infinite aggregates—something 

that Euclid had banned from ancient mathematics by his axiom 

that the whole is greater than its part. 

Clearly no previous translation of Two New Sciences remains 

truly reliable for the purposes of serious historians of either phys- 

ics or mathematics. Galileo’s physics was of such seminal impor- 

tance that not only specialists, but all readers, deserve an accurate 

rendering of his book. Doubtless faults will be found in this one, 

for “Never hath book been printed but error hath affixed his sly 

imprimatur’—a motto of unknown origin which hung on the wall 

of the copy-editor who guided my first book into print a genera- 

tion ago. But at the least, some widespread and serious errors of 

translation have been avoided herein. 

The text of Two New Sciences here presented is essentially that 

of the first edition with one important addition, published posthu- 

mously in 1655, and one further dialogue intended for the first 

edition but then withheld by Galileo. Some of the other additions 

and corrections dictated by Galileo after he became blind are 

included in footnotes. A very serious mistake created by editorial 

meddling with the 1638 edition in 1655 has been corrected in the 

Third Day (note 45.) Minor textual variants duly noted in the 

definitive Italian edition are not included, but can be found in 

volume VIII of Favaro’s Opere di Galileo Galilei (Florence, 

1898), to which page references are supplied throughout this 

translation, in boldface type. 

To minimize footnotes, two principal devices have been 

adopted. First, much that would ordinarily go into notes has been 

placed in the Introduction and the Glossary of foreign and techni- 

cal terms. Second, liberal use of square brackets has been made 

within the text, as less distracting to the reader than are super- 

scripts and footnotes. Words or phrases given in Italian or Latin, 

alone or followed by their English equivalents, permit any reader 

to decide for himself on some genuine problems of meaning. 

Bracketed English words are glosses, phrasing certain ideas more 

completely than in the original. In general, bracketed material can 

be skipped over without disturbing the grammar of the text. 

Finally, I wish to say something about the form and printed 

title of the book, to put readers into the spirit in which it was 
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written. The dialogue form had appealed to Galileo at the outset 

of his career, and he returned to it in his last two books. His first 
manuscript on problems of motion, written probably at Siena in 

1586—7 and left unfinished when he returned to Florence, was in 

the form of a teacher-pupil dialogue. That permitted friendly dis- 
cussion in place of didactic expositions, with any formal theorems 

and proofs inserted only if necessary. Galileo’s first booklet, pub- 

lished under a pseudonym in 1605, was a dialogue between two 

peasants reasoning about a supernova that suddenly appeared late 

in 1604. It sardonically reflected actual debates of Galileo as pro- 

fessor of mathematics against a Paduan professor of philosophy 

who believed the new star to be below the moon. 

During the 1620s Galileo composed a book to which he always 

referred in letters as “my dialogue on the tides.” In 1630 he took it 

to Rome for licensing by Catholic censors. When they had ap- 

proved it, subject to some changes, the pope ordered that tides not 

appear as title and subject of the book, which was printed in 1632 

simply as Dialogue of Galileo Galilei. That is the book for which 

Galileo was tried and condemned as suspected of heresy. Since 

1744 it has always been called “Dialogue Concerning the Two 

Chief World Systems,” but that was never its true title. Church 
censors could not have approved such a title after 1616, when 

Catholic authorities ruled that motion of the earth was absurd and 

foolish. The apocryphal title now used has misled scholars to this 

day about Galileo’s intention when writing his Dialogue. 

Galileo was much annoyed by the title-page of the present 

book as printed at Leyden in 1638, which has been reproduced in 

facsimile here and literally translated. He had sent to Paris his 

own title for this book, which can be reconstructed roughly as 

follows, from a letter written by Galileo at the time: 

Dialogues [of Galileo Galilei] containing two whole sciences, all 

new and demonstrated from their first principles and elements so 

that, in the manner of other mathematical Elements, roads are opened 
to vast fields; [and discourses] filled with infinite admirable conclu- 

sions [by which] more remains to be seen in the world than has been 

seen up to the present time. 

The idea of progress, let alone indefinite progress foreseen by 

Galileo here, was most uncommon at his time. Physical science in 

particular was supposed to have been completed by Aristotle in 

antiquity. Galileo was aggrieved not only at omission from the 

title of his vista of future progress in science, but at its failure to 

caution readers that he claimed no more than his having provided 

a secure base for physics, as Euclid’s Elements had done for 

mathematics. 
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Introduction 

This, Galileo’s last and scientifically most enduring work, is a 
book on physics that opened the road for Newton’s immortal 

Mathematical Principles of Natural Philosophy half a century 

later, and for the new activity that Newton called “experimental 

philosophy”—a more appropriate phrase than our now customary 

(and somewhat redundant) “experimental science.” 

The word “physics” was coined by Aristotle from the Greek 

@volc , nature, to name the science of nature. At the basis of such 
a science he placed motion. In that, Galileo agreed with him. But 

Aristotle firmly declared that the method of physics could not be 

mathematical, and there Galileo vigorously disagreed. 

Two New Sciences marks the beginning of recognizably mod- 

em science in many ways, notably through its elementary mathe- 

matical physics—which seemed a contradiction in terms to 

Aristotelians who dominated the science taught in universities of 

the time. 

In his Metaphysics Aristotle gave his reason for excluding the 

method of mathematicians from his science of nature. The things 

mathematicians reason about are not material, he said, but every- 

thing in nature has matter. Besides, the precision of pure mathe- 

matics was not to be expected in nature. Galileo, who was no 
metaphysician, took a different view, writing in 1632: 

Just as the accountant who wants his calculations to deal with 
sugar, silk, and wool must discount the boxes, bales, and other pack- 
ings, so the mathematical scientist, when he wants to recognize in the 
concrete the effects he has proved in the abstract, must deduct any 

material hindrances; and if he is able to do that, I assure you that 

things are in no less agreement than are arithmetical computations. 
The trouble lies, then, not in abstractness or concreteness, but with 
the accountant who does not know how to balance his books. 

Long before, in his youthful dialogue on motion, Galileo had 

offered mathematical arguments that bodies of the same material 

fall with equal speeds through the same medium, regardless of 

weight. Falling, which (with Aristotle) Galileo called natural mo- 

tion, would not occur unless the bodies were of some material, but 

what that material was had no effect on the motion so long as it 

was the same material for both bodies, descending through the 

same material medium. Hence the purely logical grounds behind 

Aristotle’s objection against using the mathematical method need 

not apply against a science of natural motions, and Galileo was to 
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Galileo’s working papers, Mss. Galileiani, vol. 72, f. 116v. (See p. xxix.) 
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become extraordinarily skillful in the use of mathematics for ana- 

lyzing those phenomena. 

Two New Sciences includes Galileo’s “new science of motion” 

in mathematical form, set forth in Latin in the Third and Fourth 

“days” of Italian dialogue. Very little was said about the way in 

which he had arrived at his new science. An autobiographical 

passage in the First Day, however, accords with things recently 

learned from Galileo’s working papers about his work in 1602-04 

with pendulums and inclined planes. Light is thus shed on what 

Galileo knew at the start, not specified in his books. Living read- 

ers wished to know his discoveries and their proofs, not how 

Galileo was led to them. Historians long tried to reconstruct his 

probable approach by seeking clues not in Galileo’s papers, but in 

the writings of others before him, or in philosophies of science 

and nature. Since Galileo was not given to acceptance of author- 

ity, those sources remain purely speculative. His working notes 

surely provide a sounder basis for recovering his approach to the 

mathematical physics ultimately presented in Two New Sciences. 

Examination of Galileo’s working papers in 1972 revealed the 

presence of unpublished documents. One, f. 116v, bears Galileo’s 

experimental measurements of horizontal projections of a ball at 

different speeds, a kind of investigation that he was not then 

known to have undertaken.’ Other pages, less easy to interpret at 

the outset, seemed likely to throw light on the method he adopted 

in other discoveries in physics before his work on the parabolic 

trajectory (which Newton called “Galileo’s theorem.”) In 1975 I 

offered an explanation of measurements recorded on f. 107v, 

which seemed likely to have been the discovery document for the 

times-squared law of distances in free descent from rest.” Ten 

years more were spent in identifying and understanding all the 

entries on other related pages. Those have now revealed Galileo’s 

step-by-step progress, by measurements and calculations, in his 

discovery of the law of the pendulum, and then from that, almost 

at once, the law of fall, first rigorously proved in Two New Sci- 

1. Cf. “Galileo’s experimental confirmation of horizontal inertia,” 
Isis 64 (1973) 291-305, and “Galileo’s accuracy in measuring hori- 
zontal projections,” Annali dell’ Instituto e Museo di Storia della 

Scienza 10:1 (1985) 3-14. 

2. Cf. “The role of music in Galileo’s experiments,” Scientific Amer- 
ican 232 (June 1975) 98-104. 
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Galileo’s working papers, Mss. Galileiani, vol. 72, f. 107v. 
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ences but already firmly established by measurements early in 

1604. 

It is a curious fact that at the opening of Book II of his unpub- 

lished Pisan De motu, in 1590, Galileo had already stated the 

method he would follow, and had identified its source: 

The method that we shall follow in this treatise will be always to 

make what is [being] said depend on what was said before, and if 
possible, never to assume as true that which requires proof. My math- 
ematicians taught me this method. 

Galileo’s mathematicians were Euclid, Archimedes, and Ptol- 

emy. Archimedes had been the first to mathematicize physical 

thought, so it is natural to say (as many do) that Galileo simply 

adopted the method of Archimedes. But that is not quite exact, 

because Archimedes never appealed to actual measurement in any 

of his proofs, or even in confirmation of his theorems. Neither did 

Galileo in his Pisan days. But a dozen years later he began to 

make careful measurements of natural motions, and a new kind of 

mathematical physics soon emerged, truly Galilean and no longer 

properly Archimedean. It was inspired by Ptolemy’s example in 

astronomy, grounded in nothing but measurements of angles and 

times made as accurately as possible with the instruments that 

were available. Galileo grounded his physics in painstaking mea- 

surement of distances and times during purely gravitational mo- 

tions. His apparatus will be described in due course. 

The most surprising fact about Galileo’s discovery of the law 

of fall three decades before he was able to offer conclusive math- 

ematical proof for it was that the discovery, as historically made, 

had required prior discovery that pendulum periods are as the 

square roots of lengths. The law of fall could have emerged in the 

way suggested by f. 107v, without prior investigations of the pen- 

dulum. Indeed, the law of fall could have been discovered in such 

a way in antiquity, by Archimedes or any other Euclidean mathe- 

matician who interested himself in physical phenomena. But the 

law could not have been known to apply to the actual fall of 

heavy bodies near the earth’s surface without the carrying out of 

measurements, an activity neglected by physicists until the time 

of Galileo—and by Galileo himself during his early years—for 

reasons to be further explained below. 

1. Cf. S. Drake, “Galileo’s Constant,” Nuncius 2:2 (1987), 41-52. 

For the pre-Galilean background, see my History of Free Fall: Ar- 

istotle to Galileo (Toronto, 1989). 
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The most useful and interesting introduction to this book, I 

believe, especially for those who read Two New Sciences for the 

first time, will be one which provides readers with a fairly com- 

plete account of Galileo’s previously unknown activities as a 

mathematical and experimental physicist during the years 1602— 

09. That there was a far simpler way in which the law of fall 

might have been discovered, long before 1604, has merely misled 

those who sought to explain the historical discovery. 

The only measurements essential to discovery of the times- 

squared law of fall were measurements of distances from rest at 

the ends of some accumulating equal intervals of time. No times 

had to be formally measured; equalizing times, easily done by the 

use of musical beats, was enough. To hit upon the law of fall it 

would suffice to equalize times within, say, 125 second—and any- 

one can detect errors of that magnitude in regular beats of a 

half-second or so. Timing vertical free fall directly in such a way 

would be difficult, but the law is the same for sliding on an 

incline, or for roll of a ball down a smooth plane gently tilted. 

Speeds attained differ, but the ratios of speeds are the same as 

during fall. None of the means required for recognition of the 

times-squared law were lacking in antiquity, and the mathematics 

needed to prove that it governed straight natural descent from rest 

was available in Euclid’s Elements, Book V, with the exception of 

a single concept that eluded Galileo’s grasp for many years. 

What was lacking in physics, from the time that Aristotle 

coined that word to name the science of nature, was the idea that 

actual measurement could contribute anything of real value to any 

science. The object of science, as set by Aristotle, was to find out 

the hidden causes of events in nature. Measurement could not 

reveal underlying causes of the kind required by philosophers,’ so 

measurement had no place in physics. 

Of course it was not the abstract concept of “measure,” used 

by Euclid, that was absent from physics for two millennia; it was 

actual measurement of accelerated motions. In medieval times, 

mathematicians deduced quite a number of basic facts about uni- 

formly accelerated motion, by a rule now called the mean-speed 

or Merton rule, arbitrarily assigning a measure of speed for any 

uniformly accelerated motion from rest. But that speed was inca- 

pable of being directly measured, for they chose the speed during 

the middle instant of a completed motion from rest. No mathema- 

1. Those had to be occult qualities, hidden behind the measurable 
phenomena and detectable only by subtle verbal reasoning about the 
essences of things. 
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tician stated that fall exemplified uniformly accelerated motion. 

Medieval natural philosophers decided that it did not, and could 

not. Until about 1550, no one suggested it even as a possibility. 

Then Domingo De Soto asserted that fall was a case of uniformly 

accelerated motion, but he did not offer measurements in support 

of his innovation. He merely intended to furnish a simple example 

of “uniformly difform motion,” as it had been called by medieval 

mathematicians, and he may not have known why no one else had 

previously suggested the fall of heavy bodies. 

What had made it seem impossible that fall could properly 

exemplify truly uniform acceleration was medieval impetus the- 

ory. Natural philosophers, as physicists were then called, had 

given the cause of acceleration in fall as successive quantum- 

jumps of impetus, an occult quality (force) impressed in the fall- 

ing body at the end of each small motion from rest. The accepted 

medieval mathematical formulation of this implied that speeds in 

the first and second halves of a time from rest were as 1 : 2. But it 

had been shown that in uniform acceleration those speeds are as 1 

: 3. That is why for two centuries, while natural philosophers were 

debating nearly everything else about motion, none had raised the 

question whether fall might be uniformly accelerated motion. It 

was unthinkable to give up a cause once found—nor did De Soto 

name an alternative cause for uniformly difform motion in fall. 

Had Galileo got his idea of the law of fall from De Soto’s 

book, he would in all probability have tested it indirectly by mea- 

surements of the kind set forth below, which he made, but for a 

different purpose. His working papers do not suggest a test of the 

2:1 ratio.’ Nor did he find the law in the simple way that I 

supposed a dozen years ago, from f. 107v. Galileo worked “the 

hard way,” so to speak, using the pendulum law that he had first 

found from measurements. His pioneering calculation of a long 

distance fallen during a considerable time (3.04 seconds) was 

needlessly complicated by consideration of pendulums. Only 

when he perceived that some superfluous steps could be cancelled 

out from his lengthy series of calculations in ratios and propor- 

tions did Galileo recognize the law of fall in its simple times- 

1. On one page, f. 152r, begun at once after recognition of the times- 
squared law, Galileo attempted to fit impetus theory to it by assign- 
ing the square numbers 4 and 9 to times and triangular numbers 10 
and 15 to distances, in conventional units of hours and miles. Incon- 
sistent speed ratios emerged, and he abandoned impetus theory along 
with “impressed force.” See p. 159 for Galileo’s denial that any 
cause of acceleration was required in physics. 
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squared form. His calculated distance for fall in 3.04 seconds, in 

our units, was 45 4 meters—a fall that could not have been timed 

precisely in 1604; yet Galileo’s complex calculations brought him 

almost exactly to the modern result. 

We often laugh at people for doing things the hard way, but it 

does have the advantage that facts are learned in the process 

which might be missed along an easier path. Galileo proceeded 

step by step, without guessing, and learned much from steps that 

in the end were seen to have been theoretically unnecessary. 

Only a year or two before I commenced examining Galileo’s 

working papers on motion, I published my opinion about the most 

plausible path for him to have taken to the law of fall. He had 

long assumed that acceleration in fall is of brief duration only, 

which he could have tested by watching a ball on a gentle slope 

and noting how its speeds grew. This might be done simply by 

marking its places at regular counts of 1, 2,3,.... The distances 

between marks continue increasing, and using a string as long as 

the first distance, the lengths will measure 1, 3, 8 ee making the 

total distances 1, 4, 9,...—the squares of the times 1, 2, 3,.... In 

that procedure, even rather rough measurements could have led 

Galileo to the law of fall in the course of testing a mistaken 

assumption that had delayed for several years his understanding 

of natural motions. How different Galileo’s actual procedure was 

could be discovered only by studying his working papers. 

The problem that concerned Galileo when he wrote f. 107v 

arose from an impasse in work he was doing, by lack of a rule for 

increase of speed during natural (spontaneous) motions of heavy 

bodies. When most of the entries were made onf. 107v, he had no 

device yet for timing any one motion. Those entries show that he 

equalized eight times, within 4 second (the accuracy of a good 

amateur musician), while a ball rolled down a plane tilted 1.7°. 

For speeds in natural descent, he thus found the odd-number rule 

1, 3, 5, 7,.... Having found what he sought, he laid the page aside. 

Eight square numbers were added later, in different ink and a bit 

smeared. Just when and why those were noted on f. 107v will be 

seen in due course, for the whole story is logical and plausible 

when the documents are correctly ordered, each being then seen 

to have had a purpose in terms of those preceding it. 

Having found a simple rule by equalizing times, it occurred to 

Galileo that much more might be done if he could measure very 

1. Careful measurements made in any standard unit might well 
make the odd-number progression much less likely to be recognized; 
cf. my Galileo Studies (Ann Arbor 1970), n. 8, p. 238. 
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short times, individually. At the end of f. 107v he sketched a 
device for letting water flow during each motion, rather more 

elaborately than he later described it in the Third Day. There, 

Galileo goes on to say that he weighed the flows on a sensitive 

balance and took the weights as proportional to the times. His 
working papers bear this out and imply that he weighed the flows 

in grains (1/480 fluid ounce), flow being at 3 ounces per second. 

But each flow was not always weighed in its entirety. Flows were 

caught in a glass cylinder on which Galileo made marks as he 

went along, to be used volumetrically in subsequent weighings. 

Also, he weighed indirectly any water adhering to the collecting 

vessel when its contents were poured into the weighing vessel, by 

simply subtracting its dry from its damp weight. 

The first recorded timing appears on f. 154v' as 1,000 + 107 

+ 107 + 107 + 16 = 1,337, the timing in grains flow for fall 

through 4,000 punti of 0.94 mm. each in our units, or 3.76 meters, 

nearly 12 feet. The final 16 grains was for unweighed water on 

the sides of the vessel. Galileo marked the level where 320 grains 

stood before weighing, rounding from 3 x 107.” Next he timed the 

half-fall, 2,000 punti or about 6 feet, at 903 grains, marking that 

level before weighing the water. What he then did can be found 

from the number 1,590 on f. 151v, a page devoted mainly to some 

geometric models relating pendulum and fall. 

Galileo now sought the length of the pendulum which swings 

through a small arc to the vertical while a body falls 2,000 punti 

from rest. In modern theory, that length is 1,621, and not 1,590— 

a number that tells us a good deal about Galileo as an experimen- 

talist. It is exactly the length of pendulum which, at Padua, swings 

to the vertical through a small arc during flow of 903 grains 

1. All the documents were published in reduced facsimile, ordered 
and dated by years, in my monograph Galileo’s Notes on Motion 
(Florence 1978) with cross-indexing and descriptive notes. Some 
slight changes of ordering, within years, have been indicated by sub- 
sequent findings. 

2. This marking was used on f. 189v, the page on which Galileo was 
writing when he first recognized the times-squared law of fall and 
drew the mean-proportionality diagram that he used for all such cal- 
culations thereafter. 
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weight of water at 3 fluid ounces per second. Actual fall through 

2,000 punti at Padua takes 911 or 912 grains of flow instead of 

903. Galileo’s slight error in timing that fall (less than 0.01 sec- 
ond) resulted in a pendulum 31 punti or about 3 cm. shorter than 

would time fall of 2,000. There is only one way in which Galileo 

could have arrived at the length 1,590. 

Starting with a pendulum about 5 feet long, Galileo placed a 

block against the side of the bob while it hung plumb, and then 

patiently adjusted the length until flow of water during swing to 

the block filled the vessel to his 903-mark.’ That was a tedious 

procedure, but it was the only exact way of finding the pendulum 

for a given flow of water. To find the pendulum for 1,337 grains 

flow in the same way would be troublesome, as that would be 

some ten feet long and hard to adjust repeatedly. So instead, 

Galileo found the pendulum for 1.3374 = 66814 grains flow, get- 
ting its length as 870 punti. He then doubled this length and found 

942 grains flow to be the time of a pendulum of length 1,740 

punti. 

Length of pendulum Time to the vertical 

in punti in grains flow 

668 1/2 

: 

From these data alone, by successively doubling lengths and 

alternately doubling the times, Galileo could have made a simple 

tabulation of the kind in the table. Perhaps he did, on f. 90°, 

before most of that page was cut away and discarded in 1609. 

Instead of 27,840, the adjusted number 27,834 appears on the 

fragmentary page f. 90°v, together with words identifying it as a 

“diameter” (of the previous pendulum, 13920). That adjustment 

was used in establishing exact continued proportionality among 

1. The working papers leave no doubt that Galileo used the sound of 
the bob striking a fixed block for stopping flow of water. The same 
mode of judging times was employed by Marin Mersenne a few 
years later, who doubted that it had occurred to Galileo by reason of 
his statements about isochronism of pendulums in this book. 
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the data used by Galileo for his final calculations, and it is found 

again on f. 189vl, where 27,834 was crucial in Galileo’s first 

calculation of a long fall (mentioned earlier). 

To the numbers in the above table Galileo applied the theory of 

ratios among continuous magnitudes in Euclid, Book V. Numbers 

in the first column are, of course, in continued proportion, with 

the factor 2; those in the second are very nearly in continued 

proportion with the factor we write as V2, which to Euclid and to 

Galileo was the mean proportional between unity and 2. Thus the 

numbers in either column were connected vertically, so to speak, 

but not horizontally. All the numbers would be related if each 

time were made the mean proportional between 2 and the pendu- 

lum length. Galileo’s unit of time was completely arbitrary, so he 

now adjusted it to fulfill this new condition. The same result was 

very nearly attained simply by dividing each time in grains by 16, 

so he adopted a new unit of time, the tempo, as flow of 16 grains, 

or 140 ounce of water, for purposes of calculation. In our units, 

that is one gram of flow and 142 second of time. 

At this point Galileo had the pendulum law for successively 

doubled pendulums, and wondered whether it held for other ra- 

tios. If the law were perfectly general, then the pendulum whose 

length was the mean proportional of any two of the above would 

have its time equal to the mean proportional of the two times, 

stated in tempi. Onf. 154v Galileo found the mean proportional of 

118 and 167, the times in tempi for pendulums of 6,960 and 

13,920 punti (for 1.8886 = 118 and 2,676 = 167). On the other 

side of the page he wrote filo br[accia] 16, “the string is 16 

braccia,” an Italian measure equivalent to about 23 inches or 615-— 

620 punti. The mean proportional of 6,960 and 13,920 is 9,843 

punti, which would be 16 braccia, about 30 feet. Galileo’s calcu- 

lated mean proportional time was 140 tempi. What he had done 

was to hang a 16-braccio pendulum from a window over the 

courtyard of the University of Padua and time it, protected from 

wind. Modern calculation of its time to the vertical shows that to 

be 1.53 seconds, or 141 tempi, at the latitude of Padua. 

Only one more measurement was necessary in order for 

Galileo to calculate distance of fall in a given time from a known 

time and distance of fall, using its relation to pendulums. For the 

needed fixed ratio he chose that of two times: of vertical fall equal 

to the length of a pendulum whose time to the vertical was 

known. For this ratio Galileo timed fall through 1,740 punti and 

got 850 grains of flow, or 53 ¥ tempi. I call the ratio of the times 
for a pendulum and a fall having equal length “Galileo’s con- 

stant,” for it is the same everywhere, whatever the units and what- 
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ever the local gravitational acceleration. In modern theory the 

constant is mage 1.1107...; Galileo had 4250 = 1.1082. The 

square, 3 is the ratio of distance fallen to length of the pendulum 

timing the fall by swing to the vertical through a small arc. Al- 

though Galileo did not regard gravitation as a force and did not 

use a local constant of gravitation like our g, his equivalent to that 

was (1.1082)? = 1.228 punti per tempo’ . 

On f. 189v1 Galileo calculated the distance fallen in 280 tempi, 

double the time of the 30-foot pendulum by which he had con- 

firmed the generality of his pendulum law. His calculation was 

made in a series of steps via related pendulums. The final step is 

on f. 189v1; the rest were probably on the lost part of f. 90°, on 

which 27,840 was adjusted to 27,834 and proportions were made 

exact. Though Galileo did not use decimal fractions, we may 

adapt the previous tabulation as follows to represent his revision 

on f. 90°v (which would have been written with rational frac- 

tions): 

Length of pendulum Time to the vertical 

in punti in tempi 

869.81 41.71 

1,739.625 58.99 

3,479.25 83.42 

6,958.5 118.0 

13,917 166.8 

27,834 236.0 

That Galileo’s work on f. 90° is correctly represented above is 

corroborated by his final step, in which he did not calculate with 

1,337A6 = 83.5625, the time in tempi for fall of 4,000 punti as 

measured on f. 154v, but with 83.42 as found above. The pendu- 

lum of length 3,479 4 was regarded as that which would time fall 

through 4,000 punti, at this stage of the work; in fact it was too 

long, because of the error in the original timing of that fall on f. 

154v. Why that error did not affect the results obtained by Galileo 
will be seen in due course. 

Galileo’s final step on f. 189v1 is not the only clue to his 

procedure. On the same page, when it was still a blank sheet, he 
had entered these two calculations: 
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180 (131400) = 235.8 and 57 (13%00) = 75.24. 

The first result is recognizable as a time in tempi for the last 

pendulum above, while 75.24 is the time in tempi for fall through 

3,479 14 punti, the adjusted pendulum assigned to time of 1,337 

grains flow, timing fall through 4,000 punti by Galileo’s figures 

on f. 154v. The time 57 tempi from which this was calculated is 

time of fall through 2,000 punti, rounded up from 903/16 = 56.44. 

The second calculation using a similar ratio may be left for later 

discussion. 

Calling the ratio 1.314+ “Galileo’s ratio,” and denoting it by 

G, its counterpart in the modern theory of pendulum and fall is 

On)" 
2 

the time of fall through the length of pendulum timing double that 

fall. It will be convenient to symbolize “time of fall” by t and 

“time of pendulum to the vertical” by ¢p; thus 

14000 = 83.42 = tp3479.25 = tp[f4000], where p[f4000] denotes the 

pendulum timing fall of 4,000 punti, and 83.42 is in tempi. 

Galileo, if he had worked in symbols, might have written 

G=\% &)’, f being any distance of fall and p being the length of 

pendulum timing that fall by swing to the vertical through a small 

arc. In theory, Mp = (Yn)? = 1.621138..., a pure constant unaffected 

by the units of length and time chosen, or by the strength of the 

gravitational field. Galileo’s data did not give him 1.621..., but 
2 

1.628, and 2,000,628 = 1.2285, a bit under 1.2337... =55 g in 

exact “Galilean” units. As I have shown,’ the ratio 2,000) 62g can 
be factored out from the final step of Galileo’s first calculation of 

a distance of fall in punti from a given time in tempi, on f. 189v1. 

Alternatively, we could factor out the ratio G = 1.31 or 1.32, since 

that is 2 W%)” with f/f taken as 1.628 instead of 1.621. Because of 

the two surviving calculations using G, it is very likely that 

Galileo’s series of calculations involved G (and not /, as I sup- 

posed previously). 

It is a curious fact that in Galilean units, and only in those, the 

square of a time of fall from rest is the length of the pendulum 

which times double that fall by swing to the vertical through a 

. That ratio converts any given time of a fall (from rest) to 

1. “Galileo’s physical measurements,” American Journal of Physics 
54:4 (1986), p. 305. 
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small arc. Thus the square of 57 tempi is 3,249, and 3,249 punti is 
the length of pendulum timing fall of 4,000 punti. Galileo would 

not have recognized this at first, because his error in timing fall of 

4,000 punti led him to think the length would be 3,480. He may 

have noticed it after he used the law of fall to correct his wrong 

timing, but he never mentioned it because the relation obviously 

does not hold in other units than his own, which he did not pub- 

lish and no one else ever used. 

It should be clear from what has been said that once the pendu- 

lum law was known, Galileo could calculate from times and 

lengths of pendulums to times and distances of fall. The first time 

he did that was on f. 189v, and he saw at once that the steps 

involving pendulums could be cancelled out, leaving the law of 

fall in its mean-proportional form—mathematically identical with 

the times-squared form. Using this relation, he amended his tim- 

ing of fall 4,000 punti, the least accurate measurement recorded 

{about 1/30 second too high.) It had not affected his calculation, 

for it cancelled out with Galileo’s pendulum steps. That exempli- 

fies what can be learned by doing things step by step, in ratios and 

proportionalities without equations or any arbitrary constants de- 

pendent on the units adopted. 

Knowing the law of fall, Galileo wondered next if it applied 

also to descent along an inclined plane. On f. 107v he already had 

a set of very accurate measurements for such a descent. He now 

took up that page again, squeezing into its margin the first eight 

square numbers. Each, multiplied by the measured distance from 

rest in the first time, was seen to give almost exactly the corre- 

sponding measured distance. The times-squared law did apply to 

all straight descents in gravitational motion, and Galileo’s work- 

ing papers early in 1604 show a sudden burst of theorems and 

problems on natural motions. 

A second spurt of activity began late in 1607, when Galileo 

consolidated his theorems, completed unfinished proofs, and 

added some new findings. In the course of this he resolved a 

paradox that had puzzled him, recognizing that speeds acquired in 

natural descent are as the square roots of the vertical distances 

from rest—not, as he assumed in 1604, as the measured distances. 

This enabled him (on. 116v) to measure the distances of horizon- 

tal projection when a ball leaves a table at speeds whose ratios are 

known. Conservation of speed and the independent composition 

of horizontal and vertical motions thus established, speeds in fall 
were seen to be directly proportional to times from rest. Also the 

semiparabolic trajectory of horizontal projectiles was found, and 

extended (by symmetry) to low-speed projectiles fired at any ele- 
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vation of the gun. Several basic theorems presented in the Fourth 

Day were already established in 1609, when Galileo began to 

compose a book on his new science of motion but was diverted by 

the advent of the telescope. 

Reading Two New Sciences with this information about the 

work behind it three decades earlier, most of the puzzles vanish 

that have troubled historians. They arose from the belief that 

Galileo reached his mature physics not directly from phenomena 

of nature, but by brooding over speculative natural philosophy. At 

first he did the latter, but everything changed when he began 

carefully measuring actual motions. As he had his spokesman ask 

sarcastically in the 1605 peasant dialogue, “What has philosophy 

got to do with measuring anything?” In that activity, he wrote, it 

is only the mathematicians that one is obliged to trust.’ 

In Galileo’s working papers there are clues to the origin of the 

science of material strength presented in the Second Day, as well 

as to Galileo’s pendulum experiments mentioned in the First and 

Fourth days, but here the work on motion should suffice. It now 

remains to explain Galileo’s mathematical approach, different 

from ours because he did not use algebra. Galileo never wrote an 

equation in his life, whereas we tend to think of physics mainly in 

terms of physical equations. The physical constants that loom so 

large in our thinking simply cancel out in proportionalities of the 

kind that Galileo used exclusively in his physics. 

Galileo was able to deal rigorously with mathematically con- 

tinuous magnitudes, such as distances, times, and speeds, in a 

sense that many people today are not. Being trained in elementary 

algebra but not in the Euclidean theory of ratios and proportions 

among such magnitudes, we may remain unaware of some funda- 

mental assumptions that underlie algebraic manipulations of 

equations which we perform by rote and habit. In contrast, 

Galileo was constantly aware of the meaning of “same ratio” 

because (as will be seen in his text) he had to make use repeatedly 

of its exact Euclidean definition. That is not the case with us, and 

it was not the case with medieval writers on motion either. They 

had created an arithmetical theory of proportion because of de- 

fects in the text of Euclid, Book V, as transmitted by an Arabic 

version on which medieval Latin translators commented ineptly. 

Not until the mid—16th century was the authentic text properly 

understood. The essential difference between medieval and 

1. S. Drake, Galileo Against the Philosophers (Los Angeles 1976), 
p. 38. 
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Galilean physics is rooted in the impossibility of dealing with 

continuous change by arithmetic alone under Euclid’s definition 

of “number.” 

The price that Galileo paid for his adherence to Euclid’s rigor- 

ous proportion theory was a restriction of his mathematical phys- 

ics to comparisons of ratios between magnitudes of the same 

kind. This relational—and hence relativistic—feature of his laws 

of physics is now often overlooked at the cost of full understand- 

ing of his thought, especially in contrast with that of medieval 

natural philosophers. And just as Galileo completed his work, 

Descartes introduced algebra into geometry without any new defi- 

nition of “number,” so that mathematical physics swiftly became 

incommensurable with that of Galileo. An illustrative example 

may assist in clarifying the situation. 

Algebraically, speed is now represented by a “ratio” of the 

space traversed to the time elapsed. For Euclid and for Galileo, no 

proper ratio could exist except between two magnitudes of the 

same kind. Now, whatever space and time may be, they are not 

magnitudes of the same kind; or, if they are, that is thanks to 

Einstein, and it is not something which Galileo would have seen 

as capable of rigorous proof. We, no longer bound by Euclid’s 

definition of ratio, can write v=% as a definition of average 

speed, and we can give rules such as s= vet for uniform motion 

and s=k¢’ for uniformly accelerated motion. Such expressions 

entail a metaphysics in which we can calculate individual speeds 

from given times and distances, whereas Galileo could compare 

those things only in pairs alike in kind—with no metaphysics but 

only mathematics. Our rules imply for us compactly all the rela- 

tionships that it took Galileo many pages to state and prove, but 

they also imply much that he was far from stating, and would 

have viewed as based on rash assumptions. Equation-physics is 

not conceptually equivalent to proportionality-physics, because it 

asserts more (and sometimes asserts more than we know for cer- 

tain.) 

Modern algebraic notation provides no way of maintaining the 

classic Euclidean restrictions on ratios. The very essence of an 

equation is that any term can be transposed from one side to the 

other by operational rules. With proportionalities, no transfer was 

made unless all terms represented magnitudes of a single kind. 

The fact that numbers as such are all of a kind does not justify 

algebraic manipulation of physical equations unless we assume 

that each physical magnitude is commensurable with all others, or 

that a given physical magnitude can be precisely measured by our 

measuring some other kind of physical magnitude. That may be 
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true, and no doubt Platonists would assert it, but it is plainly 

evident that Galileo took great care never to assume this. Had 

Newton taken the same care, perhaps Einstein would not have had 

to overturn (or undermine) Newtonian physics. And when Ein- 

stein named inertial systems “Galilean,” he inadvertently did 

Galilean physics a disservice; Galileo never asserted any vis in- 

ertiae or “force of inertia” as Newton did. Galileo’s mature phys- 

ics was purely kinematic, as shown by his rejection Of the 

“impressed force” imputed to impetus in the 14th century. ' That 

was to him a gratuitous causal assumption on the part of philoso- 

phers, as “antiperistasis” had been to Aristotle. In his Dialogue, 

Galileo ridiculed them both in favor of simple conservation of 

motion: 

There must be something conserved in the stone, apart from any 

motion of the air.... When you throw it with your hand, what is it that 

Stays with it when it has left the hand, other than the motion received 

from your arm which is conserved in it? 

Newtonian inertia, a dynamic concept, was superfluous in ki- 

nematics and therefore it had no more place in Galileo’s mature 

physics than did any other asserted entity for which no definite 

measure was yet known. Newton first specified the criterion for 

existence of an “impressed force,” and how it was to be measured 

both as to magnitude and direction. Many blame Galileo for his 

inability to invent inertia—and then credit him with founding 

dynamics. That is surely an abuse of language. Some do this by 

imputing to Galileo a “circular inertia,” though all he said was 

that “keeping up with the earth” was a motion that was indelibly 

impressed in every body resting on its surface. Conservation of 

geocentric speed was a purely kinematic concept, measurable by 

Galileo. As he pointed out, birds flap their wings to move with 

respect to the earth, not to keep up with its daily rotation. 

Few historians of science accept the conclusions that have 

been roughly summarized above from my studies of Galileo’s 

notes on motion. But those conclusions give a framework for 

1. That was done in a historically very interesting discussion in the 
1632 Dialogue, the Aristotelian spokesman supposing in error that 
Galileo assumed an impressed force, and Galileo’s spokesman show- 
ing that conservation of motion sufficed. In my translation (Berkeley 
1953) this discussion occupies pp. 142-56. 
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Galileo’s activity in physics to which Two New Sciences con- 

forms remarkably well. It opens not in a university, but in the 

Venetian arsenal. Galileo’s interlocutors start by discussing a 

question arising not from philosophical speculations rooted in 
metaphysics, but from shipbuilding. From the casual answer of a 

workman, they pass on quickly to the role of proportionality in 

the strengths of material structures, hardly the sort of thing that 

interested natural philosophers. A few words about the speakers 

may help readers to feel at home among the Renaissance Italian 

heralds of modern science. 

The three interlocutors in Two New Sciences bear the same 

names as those in Galileo’s Dialogue. Two had been close friends 

of his, whose memory he thus perpetuated. Filippo Salviati was 

born at Florence in 1582 and died during a visit to Spain in 1614. 

In the Dialogue Salviati played the part of Galileo’s own spokes- 

man. Giovanni Francesco Sagredo, born in 1571, was a Venetian 

who studied with Galileo at Padua and remained his close friend 

from 1600 until he died in 1620. In the Dialogue he spoke for the 

intelligent layman curious to learn, playing the role of an uncom- 

mitted person for whose support the two others contended. 

Philosophical tradition was defended by Simplicio (Italian for 

a celebrated ancient commentator on Aristotle). Though not an 

actual living person like the others, he doubtless represented ac- 

tive critics of Galileo such as Cesare Cremonini at Padua and 
Lodovico delle Colombe at Florence. Though poorly versed in 

mathematics, both were masters of the brand of metaphysically 

based science prevalent in universities since their origin. 

The roles of these interlocutors are not quite the same in this 

book as in the Dialogue. There, Galileo’s views had always been 

attributed to a certain Academician known to the speakers, a prac- 

tice not exclusively followed here. It was important to the author 

that a long treatise on motion, read aloud by Salviati, be under- 

stood verbatim as Galileo’s, in the Latin then universally adopted 

among the learned throughout Europe. The Italian used in dis- 

cussing this presentation of Galileo’s new science of motion cre- 

ates a unique role for Salviati when he enters the debates, in that 

we have an aged Galileo commenting on work done thirty years 

before. In the Dialogue it was principally the work of another, 

Copernicus, that had been in question, and Salviati spoke for that 

against its rivals and critics. But in Two New Sciences he repre- 
sents a mellowing Galileo who, viewing his own completed work, 

is more willing to recognize merit in questions raised about it. 

Sometimes he comments paradoxically, as though much still re- 

mained to be resolved. 
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Other interlocutors also may be seen differently from before. 

Thus little remains in Simplicio of that stubborn loyalty to the 

current dogmas of Aristotelian professors which naturally marked 

his previous performance. The new sciences being introduced 

were not as fatal to traditional philosophy as the Copernican doc- 

trine was in the Dialogue. Simplicio even regrets his past neglect 

of mathematics. Here, even Simplicio may be seen as a spokes- 

man for Galileo—for the young Galileo, schooled in Aristotelian- 

ism and demanding to be shown that errors existed in the old 

physics. It is the young student Galileo who speaks when 

Simplicio rejects sarcastically the idea that regardless of weight, 

bodies fall with like speed, saying that one would have to expect 

birdshot to fall as fast as cannonballs. And indeed, how would 

Galileo have reacted on first hearing the new idea that had been 

inaugurated by G. B. Benedetti, a decade before Galileo was 

born? 

Sagredo still represents the intelligent layman, but not in an 

atmosphere of violent conflict between two rivals over the fixity 

or motion of the earth, as in the Dialogue. Sagredo raises ques- 

tions that had once puzzled Galileo, taking some positions on 

problems of local motion that are found in his early writings but 

that he later rejected. Sagredo speaks for Galileo during the years 

from his move to Padua to the maturity of his new sciences, a 

period nearly coinciding with Sagredo’s own active intellectual 
life. 

In the added “day” here appended, Simplicio was replaced by 

Paolo Aproino, a pupil of Galileo’s in 1608 who lived to see in 

manuscript a part of Two New Sciences, but died in the year that it 

was published. Aproino speaks not as an Aristotelian, no such 

interlocutor being needed in discussing the force of percussion. 

Neither does he speak for the young Galileo, as Simplicio had 

done. Aproino was introduced as one who had been present at 

some experiments by Galileo, which he described along with their 

often surprising results. Replacing Simplicio, Aproino speaks not 

for the student Galileo, but for Galileo’s students, the first ever to 

have been introduced to recognizably modern physics. 

Galileo’s mature position—that causal inquiries might be well 

abandoned in physics—had no immediate appeal to his contem- 

poraries, just as it had had no obvious source in earlier physics. It 

was pretty much ignored for a long time, except for occasional lip 

service. Thus Christiaan Huygens stated it in the preface to his 

Treatise on Light, but reverted to the mechanical philosophy early 

in the text. Finally it reappeared toward the end of the last century 
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when Heinrich Hertz wrote, in the introduction to his Principles 

of Mechanics: 

We form for ourselves images or symbols of external objects, and 
the form which we give them is such that the necessary consequents 

of the images in thought are always the images of the necessary 

consequents in nature of the things pictured. In order that the require- 
ment may be satisfied, there must be a certain conformity between 

nature and thought. Experience teaches us that the requirement can 

be satisfied, and hence that such a conformity does exist. 

All the above has been said for the purpose of suggesting 

certain frameworks within which the reader may consider what 

Galileo wrote, different from the ordinary framework of physics 

immediately before and again after Two New Sciences appeared. 

The glossary of physical terms will provide information concern- 

ing their handling in this translation. But the best efforts of a 

translator cannot prevent the intrusion of anachronistic ideas sug- 

gested by modern English words. All that can be done is to make 

this danger known, “as we erect a beacon to denote the presence 

of a shoal that we cannot remove,” in the striking metaphor of 

Alexander Bryan Johnson’s Treatise on Language (1836). 

Johnson’s advice to readers of his pioneering work is also appli- 

cable to readers of Galileo’s Two New Sciences, which was no 

less pioneering in character: 

As, however, the following sheets are the painful elaboration of 
many years, when my language or positions shall, in a casual perusal, 

seem absurd (and such cases may be frequent), I request the reader to 

seek some more creditable interpretation. The best which he can 

conceive should be assumed to be my intention; as on an escutcheon, 

when a figure resembles both an eagle and a buzzard, heraldry de- 

cides that the bird which is most creditable to the bearer shall be 
deemed to be the one intended by the blazon. 

This is a very good rule for reading any book worth reading at 

all, and especially a pioneering work. Not only does it assure a 

fair hearing to the author in return for his pains—and Galileo’s 

pains were plentiful, both those he took to make his ideas clear, 

and those he received for doing so—but it assures the reader the 

maximum reward for his trouble. For how can a reader gain more 

from another’s words than by forcing himself to arrive at the best 

which he can conceive? 



Ae ay, Prue Sanh RRS. ~ 

: torpibiep oe che gg 
‘ib en wy ‘a ' Ri - © Io ca mR ae | 

r 18 << - if Yai ues 5 mr v ee cue ep { 

CRP ety ¥ wey SRY imei ny 3 oe 4 aN 42s am 

_ ay Ure) es Gene Be [On >, a*e3 |; 

t 5 Pak eke, a a cd: ke Sep od aay eure 

* " ee eee ee S ojeilacw it eae vis: oe ge Dies ti bose 

- : 

Py 

yi Brag Venere | - 2h aOR ten ley Sere ooh 

e Fe ety! ae @PA eee “nw 4« 

— vaibesty tar © Dice otmigls ¥ =e 
| a ' wy SOE: Qh Ge, ide Coe AF Gay oa Gaede é . 7 - ~ P 

* a we Togs Ssusepa, pew soe “ ee res ; ri 
sais Mi Tues uth coat ee gate ee Bee 2 i Paes - = P « eal wa im ¢ “ ; ' ; Y <n - § Ne = hit i 4 2) Ape vs i) Vi oes > Vv o-s 

Oy SS ae west st Owe Se 2 eal cen” 
: y —_— _ ils - ' j 4 Dit ie awed qisniten sir ol eset ate iians 

© Seat. shh ear at S eRe wie ion baa: 1 
i he — a ederbey hy Pema ay 
eae» i te ae nb ayetinte! Vc) aga . 

Sei . £.0r%' oie ei owt me 
ae av j aye $44 th eS ot nat 7 Sows pve) , 

So wha ental Et ia 1A Ser ae en fusii TIE | _ 
: \% yrs taj wt} ; 2 Kevbert See 

| ‘Nba Ages ‘tile “Dar aan a ev ga eee Aa ae 
baw rovvewairy allt yy Tete ot Pod 6’ een Gs 
4: r me iy ay) Pe Hiigc > Be * na shai, 7 

~ ie fate) xd 

is niien's OI re: es “a 
Nek) crnite ate tld Se aivnin an dyit) Meal ower igh: Saba he 

berries ag Wi gdnehhaies mal omy Peart AO aie a 

EE Ss Waa RD pane \pealite wi Sac hati ne eae as ; 
ee en are SS ee os "a epgalanee wn KPa a a hi vt Lat oni . ye La Oh aes pane ny ae" : 

Pe res at | vb Wis wks, Wee we Daal a 2) Macias gat he eee i % othe rene ix ies 
: = tale? 

-_ 27m 

j = 
= 

As (ip 2 

’ : ea ae ie ‘ ; 
Rate eet LW sow Ap iu We 5 of ib re te nhs te: coe i von 

— m8 tle apa aig samen tidal :. BL: one sn a ee TTB Otel yl Pa , 

hoa woh a een iti ee : 

an wy Sr priate - specie DF st 
z 

* Ta 

“ah WATLEY)" pe. 
. ray a Mpivtiee Rahat cm 

Nae ae | * ‘ re iA eres “f 
a ee | Se Se Sra shanietce MM P i 

: is Wie % 
f ust an 1 

4 7 
Cae 

= ae 

~~ 7 ‘ 

0 a 
Py 



Glossary 

English terms used for 
Galileo’s mathematical expressions 

composition (of a ratio)}—the formation of one ratio from 

another by adding its terms and relating their sum to the 

second term; thus a:b becomes (a+b):b “by com- 

position.” 
compound(ed) ratio—the product of two ratios, in modern 

language, although multiplication of one ratio by another 

is not a Euclidean concept, and is not an easy one to 

define except for purely numerical ratios. To signal this 

special operation, the preposition “‘from”’ has been used 

before each component ratio. But where a magnitude 

(rather than a ratio) is said to be compounded from, or of, 

other magnitudes (as, for example, an impetus from or of 

two impetuses), then the preposition chosen by Galileo 
is usually retained. 

conversion (of a ratio)—taking, in place of a:b, the ratio 

a:(a—b). 

division (of a ratio)—the formation of one ratio from another 

by taking its first term in relation to the excess of that term 

over the second; thus a:b becomes (a—b):b “by 

division.” (Heath’s word is “separation,” but Galileo 

calls this operation divisio.) 

duplicate(d) ratio—the squared ratio, sometimes called 

‘doubled ratio,’’ and occasionally even ‘“‘double ratio,” 

though the latter normally means merely the ratio 2:1. 

The distinction in terminology (doubled vs. double) was 

not always duly observed even in antiquity. When a 

possibility of confusion occurs in Galileo’s text, the 
translation used here is ‘‘squared ratio” or “‘square of 

the ratio.” 

equal in the square—said of a magnitude whose square is 

equal to the sum of the squares of two other named 
magnitudes. Galileo’s phrases are potentia aequale, 

potentia aequipollet, eguale in potenza, and the like. What 
is meant is the rule of vector addition. The phrase derives 

from Euclid, Book X, with regard to magnitudes 

‘“commensurable [only] in the square.”’ Euclid’s word 
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dynamis (which became potentia in Latin) applied only 

to the square, and not to powers in general. Aristotle 
remarked that “It is by a change in meaning that a ‘power’ 

in geometry is so called” (Metaphysics 1019b. 33-34). 

Nevertheless, the idea that irrationals are “potentially” 
commensurable is not entirely unrelated to potentiality 

in its important philosophical sense in Aristotelian 

physics. 
equidistance of ratios—when two sets of magnitudes having 

the same number of terms are in the same proportion, 

the first and last terms of the first set are in the same ratio 
as the first and last terms of the second set; this equality 
of ratio is said to be proportionality “by equidistance of 

ratios.’ Thus, if A, B, C, D,...X are related to a, b, 

6, G, «0X in such away. that.a:b:34: Bbc: B-C, 

and so on, then a:x::A:X “by equidistance of ratios,” 

being equally separated in order. The old expression for 

this was proportionality ex aequali. 

inverse ratio—the reciprocal of the ratio referred to. (Heath’s 

expression for this is “alternate ratio.’’) 

inverse proportion(ality)}—If a:b::c:d, then a:b is said to 

be inversely proportional to d:c. The relationship is 

variously expressed by Galileo, usually by applying to 

the description of a proportionality the words “taken in 
inverse (or contrary) order,’ this phrase applying only 

to the second ratio named. The concept, perfectly 

familiar today, is not Euclidean, though it was used by 

Archimedes, Ptolemy, Pappus, and many early writers 

on mechanics, usually in clumsy expressions because the 

idea is as unnatural in geometry as it is convenient in 
physics. 

mean proportional—synonymous with geometric mean; as 
we think of it, the square root of the product of the 

extremes in a numerical proportionality. Galileo often 

writes simply “‘mean’’; in order to avoid confusion with 

the arithmetic mean (half the sum of two terms), the 

expression is completed here without square brackets. 
number—multitude of units. The “‘least’’ number for Aristotle 

and Euclid was two, since one is not a multitude. What we 
call “the number one’”’ was then often referred to as 
“unity.”” When Galileo suggested unity as in a sense “the 
infinite number,” he was neither contradicting any current 
notion, nor indulging in mysticism; he was in effect 
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suggesting a place in the number system for something 

that at the time was not included in it. 

permutation (of a proportionality)—interchange of mean 

terms, strictly permissible only when all four magnitudes 

are of the same kind. Not a Euclidean expression. 

(Heath uses the word “‘alternately” in Euclid V. 16, but 

no corresponding word occurs in the Greek text, and to 

me Heath’s choice would be appropriate only if we also 
used his choice for “inverse,” q.v.) 

perturbed equidistance of ratios—when two sets of three 

magnitudes each happen to be such that a:b::B:C 

and b:c::A:B, then a:c::A:C “by perturbed equi- 

distance”; cf. “‘equidistance of ratios,” above. 

ratio—a quantitative relationship between two magnitudes 

of the same kind, of which either can be made to exceed 

the other by multiplication. In Galileo’s day, a ratio was 

never confused with the numbers by which it is expressed, 

or with a fraction; still less, with any quantity or magni- 

tude. A ratio was strictly a relation of two magnitudes. 

We ignore the ancient distinctions because our concept 

of “number” (q.v.) is utterly different from Euclid’s; our 

real number system includes irrationals and transcen- 

dentals, though those are certainly not ‘“‘multitudes of 

units” any more than zero, or one, is a multitude of units. 

triplicate(d) ratio—the cube of the ratio named; cf. ‘“‘dupli- 

cate(d) ratio,” above. 

Galileo’s physical terms and their English translations 

braccio—a measure of length, here left untranslated. Pro- 

nounced brah-cho; plural braccia, brah-cha. Literally, 

an arm; the Florentine braccio of Galileo’s time was 

58.4 cm., or about an inch less than two feet. ‘“‘Foot”’ is 

used here for a half-braccio. Other measures are rendered 

in English by using familiar approximate equivalents. 

conficere—traverse. In classical Latin, this word of Galileo’s 
for moving through a distance did not have that sense, 

but rather the sense of ‘“‘make” or “complete” or (by 

transference) of ‘“‘diminish,”’ because the action of a thing 
often reduces or destroys it. Conficere was not incommon 

use for motion at Galileo’s time, though it is found in 

some of his earliest notes on motion. There, as in his 

published books, it alternates with peragere; conficere 
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seems to be relatively more frequent in his later fragments 

on motion. In order that the reader may know which term 

Galileo chose in each instance for the idea of traversing, 

peragere is translated as “run through,” having perhaps 
a slightly more active sense. Other words, in more 

common usage at the time, are transire and pertransire, 

though these are seldom found in the Two New Sciences. 

When they do occur, they are translated as “go through” 

and “‘pass through.” All the above words are associated 

with a distance or space; when the subject is motion 

itself, or time, Galileo’s usual word is absolvere, translated 

here as “finish, or, when related to space, “cover.” 

equabile—equable. This is synonymous with ‘“‘uniform,” the 

word commonly used by medieval as by modern physi- 

cists. For some reason Galileo seldom employed 

“uniform” except conjoined with, and as a further 
explanation of, ‘“equable.”” When ‘‘uniform”’ occurs in 

the text, it is literally translated here. 
gravita—heaviness. This means the tendency of a body having 

weight (peso) to move downwards. Heaviness, the 

tendency, was not regarded as identical with weight, the 

property, though it was measured thereby. Sometimes 

both words appear in the same sentence. Occasionally 

gravita, which persists during free fall, is distinguished 

from peso, which disappears during free fall, in some- 

what the way we new distinguish mass from weight, 

allowing for the fact that Galileo’s physics deals only 

with bodies near the earth’s surface. When the plural is 

used, gravita is translated “‘weights”’ for convenience of 

reading. It is translated “gravity” only when opposed to 

“levity,” a quality imputed by Aristotle (but rejected by 
Galileo) to things that seem to go naturally upward. 

impero—impetus. This word is usually treated by Galileo as 

freely interchangeable with momento, discussed below. In 

one instance Galileo speaks of the impetus of a weight 

that is merely laid on a stake, suggesting that impetus 

could be considered as existing in virtual as well as in 

actual motion. Impetus is sometimes treated as if synony- 

mous with “‘speed,’”’ but only when two motions of the 

same body are being compared, so that the weight 

component of momento is the same in both cases and can 

be neglected. In the earlier Dialogue, impetus was spoken 
of as “impressed force,” but Salviati refuses to endorse 
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this usage in the present book. Impetus here, like force, 
is more an effect than a cause of motion. It is usually not 

distinguished from the motion itself when the motion in 

question is that of a heavy body. 

infiniti—infinitely many. In a few instances, “‘infinitely great,” 

when the context refers to magnitude rather than quantity. 

latio—movement. This translation enables the reader to know 
when Galileo has departed from the much more usual 

motus, “motion,” which is synonymous. The word is 

uncommon in this sense, but occurs in the first published 

Latin translation (1544) of Archimedes’ On Spiral Lines, 

as pointed out to me by Dr. Winifred Wisan. 

mobile—moveable. This unattractive English noun, so spelled 
here in order to distinguish it from the adjective 
“movable” that also occurs sometimes, is in my opinion 

required because of technical and philosophical implica- 

tions that would be introduced by the free translation, 

“movable body.’ That term was used by Albertus 

Magnus, whose pupil Thomas Aquinas disputed its 

propriety and preferred “‘movable entity,” because the 
nature of body is not the proper subject of physics, but of 

metaphysics. It was Descartes, and not Galileo, who 

introduced the word body (cor(p)s, corpus) into modern 

physics. In earlier physics, the moveable (mobile) was 

always distinguished from the mover (movens, motor), 

and “moving body” as a translation of mobile might 
imply to the modern reader a body that causes another 

to move. Galileo’s ‘““moveable”’ is always to be thought of 

as a tangible heavy object near the earth’s surface. It 

is, moreover, a thing that is acted on rather than one that 

acts, unless the context shows it to be both. 

momento—moment (pl. moments) or momentum (pl. mo- 

menta.) The latter translation is used when the context 

implies motion. Static moment is conceived by Galileo 
as the effective downward tendency of a weight acting 

through a lever arm, and he treats it as the product of 

weight and distance, in that any change in one is exactly 

compensated by an inversely proportional change in 

the other. Momentum, on the other hand, is the com- 

bined tendency of weight and speed; near the earth, an 

equivalent to our normal concept of momentum ex- 

pressed as mv. Galileo also uses the phrase momento 

di..., translated “moment of” and meaning roughly 
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“effectiveness of” speed, or heaviness, or the like—an 

idea sometimes also conveyed by gradodi..., or 

“degree of.”’ 

mutatio—displacement. This term is infrequently used by 

Galileo, and seems not to have been meant as essentially 

different from /atio or motus. In Aristotle, it distinguished 

overall change between termini from actual motion 

through the intervening interval, whence a “mutation” 

could be truly instantaneous, whereas motion could not. 

The translation “‘displacement’’ enables the reader to 

tell when this word was used; “‘mutation’’ was avoided 

because of its ordinary English connotation of change of 

quality. 

parti non quante—unquantifiable parts. Cf. parti quante, 

below. Salusbury and Weston used the seemingly more 

logical term, ‘‘unquantified parts,’ but this creates 

confusion with a third classification that Galileo uses: 
“parts neither quantified nor unquantifiable, but cor- 

responding to any assigned number’—that is, not 

infinitely numerous, but indefinitely many. The essential 

characteristic of ‘“unquantifiable parts’’ is that they are 

uncountable and are devoid of size; they can exist only 

in infinite aggregates, which aggregates are necessarily 

of finite size, yet not of unique size. As individual parts, 

or in aggregates necessarily finite in number (if such a 
thing were conceivable), unquantifiable parts would have 

no size and would in every way be equivalent to mathe- 

matical points, except as to a physical distinction that 

Galileo occasionally makes between “‘filled’’ and ‘“‘void”’ 

points. 

parti quante—quantified parts. This is the expression adopted 

by both Salusbury and Weston. The concept is a technical 

one, and it deserves a recognizably technical term in 

translation. Quantified parts are capable of being 

counted ; hence they must have dimensions and cannot be 

mathematical points. Usually it is the idea of countability 

that is emphasized by Galileo, so that quante has chiefly 

the sense of ‘“‘so many.’ Sometimes, however, the idea 

of size is emphasized, and then quante has the sense of 

“so big.’ Quantified parts are always capable of being 

divided, and hence they are not in general to be identified 

with the minima naturalia so important in debates of 

medieval Aristotelians. Minima naturalia would make up 
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that special class of parti quante which happened to be 

incapable of division for physical, rather than for mathe- 

matical, reasons. Galileo appears to accept the existence 

in nature of such particles (atoms), incapable of physical 

division without transformation into something else 

(such as fire, or light); but he does not discuss this concept 

in detail in this book. 

resistente—resistent. This spelling distinguishes the noun from 
the adjective “‘resistant.”’ It is applied to the medium, or 

to some other body offering resistance to the motion of 

the moveable under discussion. 

vacuo—void. The translation “‘vacuum”’ would probably be 

misleading even in those passages in which the exclusion 

of air alone is meant, and even though Galileo does 

occasionally use the word voto, which means literally 

‘“‘void,”’ and is so translated. Likewise, vacuo when used 

adjectivally has been translated as “‘void”’ rather than as 

“empty,” because the question debated is always the 

possibility of void spaces in nature existing in the normal 

physical world, and not as the result of force or artifice. 

Two kinds of void were customarily debated, distin- 

guished by their sizes. Most writers felt less repugnance 

against interstitial voids than against macroscopic voids. 

Aristotle rejected both; but, as Galileo pointed out, 

Aristotle’s main argument had been directed against any 

void within which some motion was conceivable. For 

that reason, Galileo implied in at least one place that his 

dimensionless interstitial point-voids might not have been 

rejected even by Aristotle. 

velocita—speed. The scalar quantity, without regard to 

direction. In the Fourth Day, Galileo does give rules for 

vector addition, but there speaks of impeto rather than 

of velocita. 



hear 

POR eine as + tin nities it pie on a. Lay Hat § lwaie Ls 

parddew ert econ 6G epee af [; 
ee ah, 9 SL oy silboey epee 
hg F cs @ hime 

‘wes 7H oa A sieyy CEO nse URE, 
or oe Neus Py) iy ie wae 4 

an eriivran nie. sopecay hn ae 
Vy rhe: RM oa Le at ni omic i . 
Te pier er aia iel elie (kotiennetasnar iat te 

ee y Heats | ee hagbaapariad meinen spends " f ater ea OF eo ie ae a mo paw 

ni a) Foy end igo gible ma, | 
tite ET Guy hed — A? geal a 

<'<% At ro bitshivey ¢ = the CLARET A? 
jane ay d uu? A bela Se Srinery ue 

dyes reef hier 12 Gi htaol namd gilis clog Mapa) bial: 
at; Gaels ep tap ec: Hie a arenes are | 
ie Moni Saree fe tele Ty y Staaten Gk 
7 VAI. ts B54) ete ah Wire beg Mates Salve Layer 

a Serapalt, m . AS hl ee eae ie Thee “oes a agi me 
Sima 08 an vy ad a Sr “Per Vical'y 2 meek iate ow 
ace ri me Sei will sb vy Girton cars S 
hi ise say ores) Tektowe 1 ciictend iw Pablo? qmsstb 
WV tie irae COP 705) ted? Pare Wikip Diu) Ferdi 

Me 

ig 2 ay aan muinn 0 oT ‘tro “ni aw cake 4ave 
Ae Ty ¥ ay ’ we is AY oor awit rh ah (ehh ghee 7 

o>. hie te g br ehuteg iat deny heetgt Auiiecen  e 2 
Da oss ‘lene vit jie ietcsiowiay 

) FES? idoe ay ‘ease ont haere ole AN ath ES Shei NDS eT aia il olen alin ieee el fe he Bakhsh 4 Ae prod Ti Leen Sr he ee & Torr) CNY reli fe 
Conrady we Oe satis af ieee 

s ) Tus | per 1 i) Aiki Yar a ove Te 
és ; id Leys oH fe (he Ohae if nee PSY, 

4 a cod @y ei (Mat gapiar Mase Poy 
vib Wheat ut (OER, Fes elvan Fie = 

‘ foivAbliegl> GAs) (ee Via” ae | epepee. i Plinrdfind--parte ore algae, om twink m.. ort oh are wtay Rachie ; © ile bel a Te mia’ demreeeercapail> ot Gh satis acai tty aud yi C 



Short Titles Used in Footnotes 

Assayer 

Bodies in Water 

Dialogue 

Mechanics in Italy 

On Mechanics 

On Motion 

Opere 

Galileo, The Assayer, in S. Drake and 

C. D. O’Malley, The Controversy on the 

Comets of 1618. Philadelphia, 1960. 

Galileo, Discourse on Bodies in Water, 

tr. T. Salusbury. Urbana, 1960. 

Galileo, Dialogue Concerning the Two 

Chief World Systems, tr. S. Drake. 

Berkeley and Los Angeles, 1953 or 1967. 

S. Drake and I. E. Drabkin, Mechanics 

in Sixteenth-Century Italy. Madison, 

1969. 

I. E. Drabkin and S. Drake, Galileo: On 

Motion and On Mechanics. Madison, 

1960. 

Opere di Galileo Galilei, ed. A. Favaro. 

Edizione Nazionale. Florence, 1890-— 

1910, or reprint editions (see item 14, 

in Bibliography). Citations without vol- 

ume number refer to Vol. VIII, for 

which paginations are shown in the 
present volume. 
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Two New Sciences 
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Attenenti alla 

Mecanica &1 Movimenrmi Local), 

del Signor 

GAL ITE OG AD Leber Li echoes 

Filofofo e Matematico primario del Sereniffimo 

Grand Duca di Tofcana. 

Con una Appendice delcentrodigrauitad alcuni Solidi. 

IN LEID A, 
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Galileo Galilei 
Lincean Academician 

Chief Philosopher and Mathematician to the 

Most Serene Grand Duke of Tuscany 

Discourses 

& 

Mathematical Demonstrations 
Concerning 

Two New Sciences 

Pertaining to 
Mechanics & Local Motions 

With an Appendix 
On Centers of Gravity of Solids 

Leyden 

At the Elzevirs, 1638 

* * * 

To which is added a further dialogue 

On the Force of Percussion 
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To the very illustrious nobleman, 
my Lord the 

Count de Noailles 

Councilor to his Most Christian Majesty ; 

Knight of the Holy Ghost; 

Field Marshal of the Armies; Sensechal and 

Governor of Rovergue; His Majesty’s Lieutenant at 

Auvergne; my lord and supreme patron 

Most illustrious Sir: 

I recognize as resulting from your excellency’s magnanimity 

the disposition you have been pleased to make of this work of 

mine, notwithstanding the fact that I myself, as you know, 

being confused and dismayed by the ill fortune of my other 

works, had resolved not to put before the public any more of 

my labors. Yet in order that they might not remain completely 

buried, I was persuaded to leave a manuscript copy in some 

place, that it might be known at least to those who understand 
the subjects of which IJ treat. And thus having chosen, as the 

best and loftiest such place, to put this into your excellency’s 

hands, I felt certain that you, out of your special affection for 

me, would take to heart the preservation of my studies and 

labors. Hence, during your passage through this place on your 

return from your Roman embassy, when I was privileged to 

greet you in person (as I had so often greeted you before by 

letters), I had occasion to present to you the copy that I then 

had ready of these two works. You benignly showed yourself 

very much pleased to have them, to be willing to keep them 

securely, and by sharing them in France with any friend of 

yours who is apt in these sciences, to show that although I 

remain silent, I do not therefore pass my life in entire idleness. 

I was later preparing some other copies to send to Germany, 

Flanders, England, Spain, and perhaps also to some place in 

Italy, when I was notified by the Elzevirs that they had these 

works of mine in press, and that I must therefore decide about 

the dedication and send them promptly my thought on that 

subject. From this unexpected and astonishing news, | 

5 
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concluded that it had been your excellency’s wish to elevate 

and spread my name, by sharing various of my writings, that 

accounted for their having come into the hands of those 

printers who, being engaged in the publication of other works 

of mine, wished to honor me by bringing these also to light 

at their handsome and elaborate press. Thus these writings of 

mine are to be revived through their having had the good 

fortune to fall under the award of so great a judge. In that 

marvelous combination of many virtues that render your 

excellency admirable to all, with incomparable magnanimity 

and out of zeal for the public good, to which it seemed to you 

these writings of mine should contribute, you have desired to 

widen the limits and boundaries of their honor. 
Now that matters have arrived at this stage, it is certainly 

reasonable that, in some conspicuous way, I should show 

myself grateful by recognizing your excellency’s generous 

affection. For it is you who have thought to increase my fame 

by having these works spread their wings freely under an open 

sky, when it appeared to me that my reputation must surely 

remain confined within narrower spaces. Hence to your name, 

illustrious Lord, it is right that I dedicate and consecrate this 

offspring of mine. To this action I am impelled not only by the 

accumulation of my obligations, but by self-interest as well, 

for if I may be permitted to say so, you are now obliged to 

defend my reputation against anyone who attacks it, you 

having entered me in the lists against all adversaries. Where- 

fore, advancing under your banner and your protection, | 

humbly make obeisance to you, and wish you, as the reward of 

these graces, the summit of all happiness and greatness. From 
Arcetri, the sixth of March 1638. 

From your Excellency’s 

Most devoted servitor 

GALILEO GALILEI 



The Printer to the Reader 

Civil life being maintained through the mutual and growing 

aid of men to one another, and this end being served principally 

by the employment of arts and sciences, their inventors have 

always been held in great esteem and much revered by wise 

antiquity; and the more excellent or useful an invention has 

been, the greater the praise and honor given to its inventors, 

even to the point of deifying them, mankind having by 

common consent wished to perpetuate the memory of the 

authors of their well-being through that sign of supreme 

honor. Similarly, those are worthy of great praise and admira- 

tion who by the acuity of their minds have improved things 

previously discovered, revealing the fallacies and errors of 

many propositions put forth by distinguished men and re- 

ceived as truth for many ages. For such exposure is 

praiseworthy even if the discoverers themselves have but 

removed something false without introducing the truth, which 

is hard to acquire. Thus the prince of orators declares: ‘‘Oh, 

that we could get at truth as easily as we refute falsehood!’’! 

And indeed such praise has been earned by these last 

centuries of ours in which the arts and sciences discovered by 

the ancients, through the work of perspicacious talents and 

by many tests and proofs, have been brought to great and 

ever-increasing perfection. This is particularly evident in the 

mathematical sciences, in which (omitting many others who 

have worked in them with great success) our Signor Galileo 

Galilei, Lincean Academician, has earned the highest place 

rightly and beyond any doubt, and with the applause and 

approval of all experts, both by his having shown the in- 
conclusiveness of many arguments concerning various con- 

clusions, confirming this through sound demonstrations with 

which his previously published works are filled, and also 

through things discovered by means of the telescope—which 

device first appeared in these our lands, but was brought to 

much higher perfection by him. For he gave us news before 

anyone else of those four companions of Jupiter, of the true 

and certain nature of the Milky Way, of sunspots, of the rough 

surface and dark spots of the moon, of three-bodied Saturn, 

1. Cicero, De natura deorum 1.91. 

if 
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hornéd Venus, and of the nature and location of comets—all 

of these being things never known by ancient astronomers 

or philosophers, so that it may be said that he has restored 

astronomy and presented it to the world in a new light. 

Inasmuch as it is in the skies and heavenly bodies that the 

power, wisdom, and goodness of the supreme Creator appear 

more evidently and admirably than in the rest of created things, 

all this enhances the greatness and merit of a man who has 

opened up this knowledge and rendered such bodies distinctly 

visible despite their great and almost infinite distance from us. 

For it is commonly said that seeing teaches more in a single 

day, and with greater certainty, than can instruction however 

many times repeated. And as another says, intuitive know- 

ledge is on a level with definition. 

The grace conceded to this man by God and nature (though 

only through many labors and vigils) is still more evident in 

the present work, wherein he is seen to be the discoverer of two 

whole new sciences, which he has conclusively—that is, 

geometrically—demonstrated from their first principles and 

foundations. What renders this work even more remarkable 

is that one of these two sciences concerns an age-old subject, 

among the most important in nature, which has been the 

subject of speculation by all great philosophers, and upon 

which many volumes have been written. I speak of local 

motion, a matter containing an infinitude of wonderful 

properties, none of which has been previously discovered or 

demonstrated by anyone. The other science that he has 

demonstrated concerns the resistance which solid bodies 

make against separation by force, a subject of great utility, 

especially in the mechanical arts and sciences, and likewise 

full of phenomena and theorems not previously noticed. 

Of these two new sciences, full of propositions that will 

be boundlessly increased in the course of time by ingenious 

theorists, the outer gates are opened in this book, wherein 
with many demonstrated propositions the way and path is 
shown to an infinitude of others, as men of understanding 
will easily see and acknowledge. 



Table of the Principal Matters 
That Are Treated in the 

Present Work’ 

I 
First new science, concerning 

the resistance of solid bodies 

to separation. First Day, 

What may be the cause of 

cohesion. Second Day, 

I 
Second new science, of local 

motions. Third Day, 

Of uniform motions, page 148 

Of naturally accelerated 

motion, page 153 

IV 
Of violent motion, or of 

projectiles. Fourth Day, 

Vv 
Appendix of some propositions 

and demonstrations 

concerning the center of 

gravity of solids. 

[vi] 
[ Of the force of percussion.? Added Day, 

page 11 

page 109 

page 147 

page 217 

page 261 

page 281} 

1. This table of contents reversing the essential content of the two first 

days, was prepared by the Elzevirs. 
2. Sometimes called the Sixth Day, this incomplete dialogue was first 

published in 1718, as part of the second collected edition of Galileo’s works. 
A so-called Fifth Day, first published by Vincenzio Viviani (1622-1703) 
in 1674, does not belong to this book. 
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First Day 

Interlocutors: Salviati, Sagredo 
and Simplicio 

Salviati. Frequent experience of your famous arsenal, my 

Venetian friends, seems to me to open a large field to specu- 

lative minds for philosophizing, and particularly in that area 

which is called mechanics, inasmuch as every sort of 

instrument and machine is continually put in operation there. 

And among its great number of artisans there must be some 
who, through observations handed down by their predecessors 

as well as those which they attentively and continually make 

for themselves, are truly expert and whose reasoning is of 
the finest. 

Sagredo. You are quite right. And since I am by nature 

curious, I frequent the place for my own diversion and to 

watch the activity of those whom we call ‘“‘key men” [Proti] 

by reason of a certain preéminence that they have over the 

rest of the workmen. Talking with them has helped me many 

times in the investigation of the reason for effects that are 

not only remarkable, but also abstruse, and almost 

unthinkable. Indeed, I have sometimes been thrown into 

confusion and have despaired of understanding how some 

things can happen that are shown to be true by my own 
eyes, things remote from any conception of mine. Never- 

theless, what we were told a little while ago by that venerable 

workman is something commonly said and believed, despite 

which I hold it to be completely idle, as are many other 

things that come from the lips of persons of little learning, 

put forth, I believe, just to show they can say something 

concerning that which they don’t understand. 

Salv. You mean, perhaps, that last remark that he offered 

when we were trying to comprehend the reason why they 

make the sustaining apparatus, supports, blocks, and other 

strengthening devices so much larger around that huge 

galley that is about to be launched than around smaller 

vessels. He replied that this is done in order to avoid the 

peril of its splitting under the weight of its own vast bulk, 
a trouble to which smaller boats are not subject. 

I] 
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Sagr. | mean that, and particularly the finishing touch 

that he added, which I have always considered to be an idle 

notion of the common people. This is that in these and 

similar frameworks one cannot reason from the small to 

the large, because many mechanical devices succeed on a 

small scale that cannot exist in great size. Now, all reasonings 

about mechanics have their foundations in geometry, in 

which I do not see that largeness and smallness make large 

circles, triangles, cylinders, cones, or any other figures [or] 

solids subject to properties different from those of small 

ones; hence if the large scaffolding is built with every member 

proportional to its counterpart in the smaller one, and if 

the smaller is sound and stable under the use for which it is 

designed, I fail to see why the larger should not also be proof 

against adverse and destructive shocks that it may encounter. 

Salv. The common notion is indeed an idle one, so much so 

that with equal truth its contrary may be asserted; one may 

say that many machines can be made to work more perfectly 

on a large scale than on a small one. For example, take a 

clock that is both to show the hours and to strike; one of a 

certain size will run more accurately than any smaller one. 

The common idea is adopted on better grounds by some 

persons of good understanding when, to explain the occur- 

rence in large machines of effects not in agreement with 

pure and abstract geometrical demonstrations, they assign 

the cause of this to the imperfection of matter, which is 

subject to many variations and defects. 

Here I do not know whether I can declare, without risking 

reproach for arrogance, that even recourse to imperfections 

of matter, capable of contaminating the purest mathemat- 

ical demonstrations, still does not suffice to excuse the 

misbehavior of machines in the concrete as compared with 

their abstract ideal counterparts. Nevertheless I do say just 

that, and I affirm that abstracting all imperfections of matter, 

and assuming it to be quite perfect and inalterable and free 

from all accidental change, still the mere fact that it is material 

makes the larger framework, fabricated from the same 

material and in the same proportions as the smaller, corres- 

pond in every way to it except in strength and resistance 

against violent shocks [invasioni]; and the larger the structure 

is, the weaker in proportion it will be. And since I am 

assuming matter to be inalterable—that is, always the 

same—it is evident that for this [condition] as for any 
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other eternal and necessary property, purely mathematical 
demonstrations can be produced that are no less rigorous 
than any others. 

Therefore, Sagredo, give up this opinion you have held, 
perhaps along with many other people who have studied 
mechanics, that machines and structures composed of the 

same materials and having exactly the same proportions 

among their parts must be equally (or rather, proportionally) 

disposed to resist (or yield to) external forces and blows 

[impeti]. For it can be demonstrated geometrically that the 

larger ones are always proportionately less resistant than the 

smaller. And finally, not only artificial machines and struc- 

tures, but natural ones as well, have limits necessarily placed 

on them beyond which neither art nor nature can go while 

maintaining always the same proportions and the same 

material. 

Sagr. Already I feel my brain reeling, and like a cloud 

suddenly cleft by lightning, it is troubled. First a sudden and 

unfamiliar light beckons to me from afar, and then immedi- 

ately my mind becomes confused, and hides its strange and 

undigested fancies. 

From what you have said, it seems to me, must follow the 

impossibility of constructing two similar and unequal 

structures of the same material that would have proportionate 

resistance. But if that is so, it will be impossible even to find 

two sticks of the same wood that differ in size and are never- 

theless similar in strength and stability. 

Salv. So it is, Sagredo. And the better to make sure that 

we both have the same idea, I say that if we shape a wooden 

rod to a length and thickness that will fit into a wall at right 

angles, horizontally, and the rod is of the greatest length 

that can support itself, so that if it were a hairbreadth longer, 

it would break of its own weight, then that rod will be 

absolutely unique [in shape and size]. For example, if its 

length is one hundred times its thickness, then no different 

rod of the same material can be found which has, like this, 

a length one hundred times its thickness, and is just able to 
sustain its own weight and no more; for longer bars will 

break, and shorter ones will be able to sustain something 

more than their own weights. And what I have said about 

the state of self-support, assume to be said about any other 

constituents [constituzione]; thus if a scantling can bear the 

weight of ten like scantlings, a [geometrically] similar beam 
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will by no means be able to bear the weight of ten like beams. 

Here you and Simplicio must note how conclusions that 

are true may seem improbable at a first glance, and yet when 

only some small thing is pointed out, they cast off their 

concealing cloaks and, thus naked and simple, gladly show 

off their secrets. For who does not see that a horse falling 

from a height of three or four braccia will break its bones, 

while a dog falling from the same height, or a cat from eight 

or ten, or even more, will suffer no harm? Thus a cricket 

might fall without damage from a tower, or an ant from 

the moon. Small children remain unhurt in falls that would 

break the legs, or the heads, of their elders. And just as 

smaller animals are proportionately stronger or more robust 

than larger ones, so smaller plants will sustain themselves 

better. I think you both know that if an oak were two hundred 

feet high, it could not support branches spread out similarly 

to those of an oak of average size. Only by a miracle could 

nature form a horse the size of twenty horses, or a giant 

ten times the height of a man—unless she greatly altered 

the proportions of the members, especially those of the 

skeleton, thickening the bones far beyond their ordinary 

symmetry. 

Similarly, to believe that in artificial machines the large 

and small are equally practicable and durable is a manifest 

error. Thus, for example, small spires, little columns, and 

other solid shapes can be safely extended or heightened 

without risk of breaking them, whereas very large ones will 

go to pieces at any adverse accident, or for no more cause 

than that of their own weight. 

Here I must tell you of a case really worth hearing about, 

as are all events beyond expectation, especially when some 

precaution taken to prevent trouble turns out to be a powerful 

cause thereof. A very large column of marble was laid down, 

and its two ends were rested on sections of a beam. After 

some time had elapsed, it occurred to a mechanic that in 

order to insure against its breaking of its own weight in 

the middle, it would be wise to place a third similar support 

there as well. This suggestion seemed opportune to most 

people, but the result showed quite the contrary. Not many 

months passed before the column was found cracked and 

broken, directly over the new support at the center. 

Simp. A truly remarkable event, and most unexpected, if 

indeed this was due to the addition of the new support in 
the middle. 
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Salv. It surely did result from that, and to recognize the 

cause of the effect removes the marvel of it. For the two 
pieces of the column being placed flat on the ground, it 

was seen that the beam-section on which one end had been 

supported had rotted and settled over a long period of time, 

while the support at the middle remained solid and strong. 

This had caused one half of the column to remain suspended 

in the air; and, abandoned by the support at the other end, 
its excessive weight made it do what it would not have done 

had it been supported only on the two original [beams], 

for if one of them had settled, the column would simply 

have gone along with it. And doubtless no such accident 

would have happened to a small column of the same stone, 

if its length bore to its thickness the same ratio as that of 

the length to the thickness of the large column. 

Sagr. Thus far I am convinced of the truth of the effect, 

but stop short of the reason why any material, in becoming 

larger, should not by that very accumulation [of size] multiply 

its resistance and its strength. I am the more puzzled by 

seeing other cases in which there is a much greater increase 
in hardiness and resistance to rupture than there is in size of 

material. For example, if two nails are driven into a wall, and 

one is twice as thick as the other, it will hold not only twice 

the weight, but three or four times as much. 

Salv. Say eight times, and you will not be far from the 

truth. But this effect is not contrary to that other, although 

superficially it seems to be. 

Sagr. Then smooth out for us these rough spots, Salviati, 

and clear up these obscurities, if you have any way of doing 

so, for indeed I am beginning to think that this subject of 

resistance is a field full of beautiful and useful considerations. 

And if you are willing that it be made the subject of our 
discussions today, that will be most welcome to me, and | 

believe to Simplicio. 
Salv. | cannot refuse to be of service, provided that memory 

serves me in bringing back what I once learned from our 

Academician [Galileo] who made many speculations about 

this subject, all geometrically demonstrated, according to 

his custom, in such a way that not without reason this could 

be called a new science. For though some of the conclusions 

have been noted by others, and first of all by Aristotle, those 
are not the prettiest; and what is more important, they were 
not proved by necessary demonstrations from their primary 
and unquestionable foundations. 
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Since, as I say, I want to prove these to you demonstratively, 

and not just persuade you of them by probable arguments, 

I assume that you have that knowledge of the basic mechanical 

conclusions that have been treated by others up to the present 

which will be necessary for our purpose. 

First of all, we must consider what effect is at work in 

the breaking of a stick, or of some other solid whose parts 

are firmly attached together; for this is the primary concept, 

and it contains the first simple principle that must be assumed 

as known. To clarify this, let us draw the cylinder or prism 

AB, of wood or other solid and coherent material, fastened 

above at A, and hanging plumb; at the other end, B, let the 

weight C be attached. It is manifest that whatever may be 

the tenacity and mutual coherence of the parts of this solid, 

provided only that that is not infinite[ly strong], it can be 

overcome by the force of the pulling weight C, of which the 

heaviness [gravita] can be increased as much as we please, 

and that this solid will finally break, just like a rope. And 

just as we understand that the resistance of a rope is derived 

from the multitude of hempen fibers that compose it, so in 

wood there are seen fibers and filaments stretched out length- 

wise which render it even more resistant to breakage than 

hemp of the same length would be. In a stone or metal 

cylinder, the coherence of parts seems still greater, and depends 

on some other cement than that of filaments or fibers. Yet 

even these [cylinders] are broken by a sufficient pull. 

Simp. If this business proceeds as you say, I understand 

how the filaments in wood, which are as long as the wood 

itself, can render it strong and resistant to the great force 

that is applied to break it. But how can a rope, composed of 

threads of hemp no longer than two or three braccia each, 
be made one hundred braccia long and still remain so strong? 

i should also like to hear your opinion concerning that 

attachment between the parts of metals, stones, and other 

materials devoid of such filaments but nevertheless, if I am 

not mistaken, still more tenacious. 

Salv. It would be necessary to diverge to new speculations, 

not very relevant to our purpose, if we wanted to find the 

solutions of the difficulties mentioned. 

Sagr. If digressions can bring us knowledge of new truths, 

why should they trouble us? We are not committed to any 

closed and concise method, but meet only for our own plea- 
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sure. If we digress now, it is in order not to lose information; 

who knows, if we let this occasion pass, that we shall meet 

with it again some other time? In fact, how do we know that 

we Shall not discover curious things that are more interesting 

than the answers we originally sought? Hence I beg you to 
give Simplicio satisfaction; nor am I less curious about this 

than he is, or less desirous of knowing what that cement 

may be that so tenaciously holds together the parts of solids, 

which are nevertheless ultimately sundered. Moreover, this 

knowledge is necessary for an understanding of the coherence 

between the parts of those very filaments of which some 

solids are composed. 

Salv. I am here to be of service, so let it be as you please. 

The first difficulty is how the filaments of a rope one hundred 
braccia long, each of these extending no more than two or 

three braccia, can be so solidly connected together that 

great force [violenza] is needed to part them. Well, Simplicio, 

tell me: can you not hold one end of a single thread of hemp 

between your fingers to tightly that I, pulling at the other 

end, will break it before freeing it from your hand? Surely 

you can. Now, if the threads of hemp were not just held 

strongly at one end, but were tightly held throughout their 

lengths by the threads surrounding them, is it not evident 

that it would be much harder for a person who pulled them 

to tear them away from one another than to break them? 

But the very act of twisting [in making] rope binds the threads 

mutually in such a way that later, when the rope is pulled 

with great force, its filaments will break rather than separate 

from one another. This is manifestly known by seeing that 

the filaments at the broken ends are very short, and not one 

braccio or more in length, as would be seen if the parting of 

the rope were made not by a breaking of its filaments, but by 
their mere separation one from another, and their slipping. 

Sagr. In confirmation of this it may be added that some- 

times rope is broken not by pulling it lengthwise, but merely 

by excessive twisting of it. This seems to me to argue con- 

clusively that its threads have been mutually compressed 
among themselves in such a way that those pressing do not 

permit those pressed to move even that little bit that would 
allow the [outer] turns to stretch sufficiently to encircle the 

rope, which in being twisted is shortened and consequently 
somewhat thickened. 
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Salv. Right you are; and now see how one truth draws 

another in its train. That tightly held thread, which does not 

obey the person who pulls on it with some force and tries 

to draw it out from between the fingers, resists because it 

is retained by a double compression, for the upper finger 
presses against it no less than the lower, the one pressing 

against the other. Doubtless if those two pressures could be 

separated, one alone would produce one-half the resistance 

that depends on the two conjoined. But since we cannot, 

by raising the upper finger for example, take away its pressure 

without also removing the rest, we need some new device 

to preserve [just] one pressure, finding a way in which the 

thread shall press itself against the finger or some other 

solid body on which it is situated. We have to arrange things 

so that the same force, pulling to free the filament, presses 
it only the harder, the more strongly it pulls; and this is 

done by winding the thread spirally around the solid. 

For better understanding, I shall draw a diagram. Let AB 

and CD be two cylinders, between which is the thread EF, 

which for greater clarity we shall draw as a small cord. 

There is no doubt that if the two cylinders are pressed strongly 

one against the other, the cord FE, pulled at end F, will 

withstand considerable force before it will move between 

the two pressing solids, though if we remove one of these 

while the cord continues to touch the other, it will not be 

kept by that [single] contact from running freely. But if 

we hold it lightly against the top of cylinder A and wind 

it round in the spiral AFLOTR, then when we pull this by 

the end R, it will obviously begin to bind on the cylinder. 

If the turns of the spiral are numerous, and we pull hard, 

the cord will be always more compressed against the cylinder; 

and if the contact is extended by multiplying the [turns of 

the] spiral, it will be less capable of being overcome, and it 

will be harder and harder to move the cord in compliance 

with the pulling force. Now who does not see that such is 

the resistance of those filaments which, together with thou- 

sands of like windings, make up the thick rope? Indeed, 

such binding by twisting cements things so tenaciously that 

from a few rushes, and not very long ones, woven with but 

few turns, very strong cord is made that I believe is called 
pack twine. 

Sagr. As a result of your train of reasoning, my mind 
pauses at the marvels of two effects for which the reasons 
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were never before well understood by me. One is the effect 

of two or three turns of hemp around the drum of a winch; 
this will not only hold firmly, but will not give way to slipping 

even though pulled with immense force by a weight it sustains. 

Moreover, the winch being turned, its drum can lift and draw 

up great stones with successive revolutions, merely by the 

contact of the rope that binds the drum; and the arms of 

a mere boy can hold that rope and draw in the slack. 

The other effect is that of a simple but clever device invented 

by a young kinsman of mine, to enable him to descend from 

a window by means of a rope without cruelly cutting the 

palms of his hands, as had happened a short time before to 

his considerable injury. For easy understanding I shall 

make a little sketch. Around a wooden cylinder AB, as 

thick as a cane and four inches long, he carved a spiral channel 

of one and one-half turns, no more, just wide enough to 

fit the cord he wished to use; this entered the channel at 

A and emerged at B. Then he enclosed the cylinder and cord 

with a tube of wood or sheet metal, slit lengthwise and hinged 

so that it could be freely opened and closed. Holding this 

tube and pressing with both hands, the cord having been 

tied to a fixed object above, he hung by his arms, and with 

pressure on the cord between tube and cylinder he could 

at will hold himself without dropping, by pressing his hands 

strongly, or by relaxing his grip somewhat, drop slowly 

at his pleasure. 

Salv. Truly an ingenious invention, though for a complete 

explanation of its nature I can already see dimly that some 
additional theory needs to be added. But I do not wish now 

to digress on this subject, especially since you want to hear 

my thoughts about resistance to breakage on the part of 

other bodies, whose texture is not of filaments, as is that of 

ropes and most kinds of wood, but whose parts cohere by 

reason of other causes. These, in my opinion, may be reduced 

to two kinds, one of which is the celebrated repugnance 

that nature has against allowing a void to exist. The other, 

when this of the void is deemed insufficient, requires the 

introduction of some sticky, viscous, or gluey substance 

that shall tenaciously connect the particles of which the body 
is composed. 

I shall speak first of the void, showing by clear experiences 
the nature and extent of its force. To begin with, we may see 

whenever we wish that two slabs of marble, metal, or glass, 
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exquisitely smoothed, cleaned, and polished and placed one 

on the other, move effortlessly by sliding, a sure argument 

that nothing gluey joins them. But if we want to separate 

them while keeping them parallel, we meet with resistance; 

for the upper slab in being raised draws the other with it, 

and holds it permanently even if it is large and heavy. This 

clearly shows nature’s horror at being forced to allow, even 

for a brief time, the void space that must exist between the 

slabs before the running together of parts of the surrounding 

air shall occupy and fill that space. It is also observed that 

if the two surfaces are not perfectly clean, so that their contact 

is not everywhere perfect, and we want to separate them 

slowly, the only resistance we feel is that of the heaviness 

[of the upper slab], whereas in rapid separation the lower 

stone is also lifted and immediately falls back, following 

the upper one only during the brief time that suffices for the 

expansion [distrazzione] of the small amount of air between 

the imperfectly fitting surfaces, and for entrance of sur- 

rounding air. Doubtless the resistance that is so sensibly 

perceived between the two surfaces likewise resides between 

the parts of a solid, and enters into their attachment at least 

to some extent, and as a concomitant cause. 

Sagr. Please pause here, and allow me to mention a certain 

idea that has just now come to mind. Seeing the lower slab 

follow the upper when that is lifted with swift motion assures 

us that motion in the void would not be instantaneous 

despite the opinion of many philosophers, and perhaps of 

Aristotle himself.1 For if it were, the two surfaces would 

be separated without any resistance whatever, the same 

instant of time sufficing for their separation and for the 

running together of the surrounding air to fill the void that 

might [otherwise] remain between them. Thus, from the 

following of the upper slab by the lower, it is deduced that 

motion in a void would not be instantaneous. It is then further 
deduced that some void indeed does remain between the 
surfaces, at least for a very brief time; that is, for as long as 
the time consumed by the ambient air in running to fill this 
void. For if no void existed there, neither would there be 
any need on the part of the ambient air of running together, 

1. Aristotle had argued against the existence of a void by a reductio ad 
absurdum which invoked speed of motion and the principle that there can 

be no ratio between the finite and the non-existent or the infinite. Cf. Physica, 
215a.24—216a.26, and see note 26, below. ; 
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or of any other motion. Hence we must say that by force 
(or contrary to nature) a void is sometimes to be admitted— 

though in my opinion nothing is contrary to nature save the 

impossible, and that never happens. 

But here another difficulty arises, and this is that although 

experience assures me of the truth of the conclusion, my 

mind is still not entirely satisfied about the cause to which 

the effect is to be attributed. For the effect of separating 

the two surfaces occurs prior to the [existence of this] void, 

which consequently follows the separation. Now, it seems 

to me that the cause should precede the effect, in time at 

least, if not in physical existence [natura]; also, that for a 

positive effect, there should be a positive cause. Hence I 

cannot see how the cause of adherence of the two slabs and 

their repugnance to being separated—effects that are actual— 

can be a void that does not exist [first], but which must follow. 

And there can be no action by things that do not exist, 

according to the definite statement of the Philosopher.’ 

Simp. Since you concede this axiom to Aristotle, I don’t 

think you will ignore another that is elegant and true; namely, 

that nature does not undertake to do that which refuses 

[repugna] to be done; from this pronouncement it seems to 

me that there follows a solution of your problem.? Since 

void space is self-refusing, nature prohibits any action in 

consequence of which a void would follow, and such is the 
separation of the two surfaces. 

Sagr. Well, assuming that what Simplicio adduces is an 
adequate resolution of my doubt, it seems to me that this 

same refusal of a void should be sufficient to hold together 

the parts of a stone or metal solid, or of things [even] more 

firmly joined and resistant to division, should any exist. 

If for one effect there is only one cause, as I have always 

understood and believed (or if many are assigned, they are 

reducible to one), then why won’t this one of the void, which 

surely does exist, suffice also for all resistances [to separation]? 

Salv. 1 do not wish at present to enter into a contest as 

to whether the void is in itself enough, without any other 

retainer, to hold united the separable parts of coherent 

2. Cf. Physica 225a.25—26; De anima 217a.17 

3. Cf. De caelo 311b.33: see also Dialogue, p. 19 (Opere, VII, 56), where the 

axiom ascribed by Galileo to Aristotle is the same, but does not exactly 
agree with the reference cited above. In this sentence, the 1638 edition reads 
“our problem.”’ Favaro adopted the better reading of the Pieroni MS. 
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[consistenti] bodies. But I will say that the void which fights 

and is vanquished between two plates is not in itself enough 

reason for the firm bonding [collegamento] of the parts of 

a solid marble or metal cylinder which, strained [violentate] 

by strong forces pulling them directly, are finally separated 

and divided. Now, if I can find a way to distinguish this 

known resistance, that depends on the void, from any other 

resistance, whatever it may be, that joins with this in 

strengthening the attachment, and if I make you see that the 

former one alone is far from sufficient for the whole effect, 

will you not then grant me that another [resistance] must 

be introduced? Help him, Simplicio, since he is hesitating 

about what to reply. 

Simp. Sagredo’s hesitation must be for some other reason, 

there being no room for doubt about such a clear and necessary 

consequence. 
Sagr. You guess right, Simplicio. I was wondering whether, 

since it takes more than a million in Spanish gold every year 

to pay the army, something besides small coins must be 

provided for the soldiers’ pay.* But go on, Salviati; assume 

that I grant your argument, and show us how to separate 

the operation of the void from all other [actions]; then, 

measuring this, make us see that it is inadequate for the 
effect we are discussing. 

Salv. Your daemon is guiding you. I shall tell you first 

how to separate the force of the void from other [forces], 

and then how to measure it. To separate it, let us take some 

continuous material whose parts lack any resistance to 

separation other than that of the void. Water has been 

demonstrated at length, in a certain treatise of our 

Academician, to be such a material.> Thus when a cylinder 

of water is displaced [within a tube], and in drawing it, a 

resistance is felt against the detachment of its parts, no 

other cause can be recognized for this than repugnance to 

4. Sagredo means to hint that the other (much greater) resistance may 

turn out in the end to be made up of a myriad of small resistances not differing 
in kind from that of the void, just as the million of gold is made up of small 
coins; see further at p. 66 and note 7, below. (References in bold face type 
are to pagination of Vol. VIII of the Opere, given in the margins and running 
heads of the present text.) 

5. Galileo had argued in a previous book that no internal resistance to 
separation existed in water, as shown by the settling of fine dust from cloudy 
water. For this and other arguments, see Bodies in Water, pp. 40 ff. (Opere, 
IV, 103-8). 
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a void. In order to make the experiment, I have imagined 
an artifice which I can better explain by a diagram than by 

mere words. Consider CABD here to be the profile of a 
cylinder of metal, or better of glass, empty within and very 

accurately turned, into the hollow of which there enters, 

with the smoothest contact, a wooden cylinder which can 
be driven up and down, of profile EGFH. This is drilled 
through the center so that through the hole there passes an 

iron wire, hooked at end K, while the other end, J, is 

broadened out in the shape of a conical screwhead. Things 

are so arranged that the upper part of the hole through the 

wood is indented in the form of a conical surface, shaped 

exactly to receive the conical extremity / of the iron [wire] 

IK when pulled down in the direction of K. Insert the wood, 

which we may call the piston [zaffo, a stopper] EH, in the 

cylinder-hole AD, not so as to reach the upper surface of 

the cylinder, but to remain two or three inches away. This 

space is first filled with water, poured in while the vessel 

is held with its mouth CD upward, the piston EH then being 

replaced while the screwhead / is kept a little way from the 

indentation in the wood in order to allow the escape of air 

pressing against the piston, which will get out through the 

hole in the wood, this having been drilled a little larger than 

the stem of the iron /K. All the air having escaped, the wire 

is drawn back again, sealing the piston with its screwhead 

I, and the whole vessel is rotated to bring it with the mouth 

[CD] down. 

A container is now attached to the hook K, into which 

sand or some other heavy material is put, loading it until 

finally the upper surface EF of the piston is detached from 

the lower surface of the water, to which nothing held it joined 

except repugnance to the void. Then, by weighing the piston 

together with the iron, the container, and whatever it contains, 

we shall have the amount of the force of the void. 

Next, to a marble or glass cylinder of the same size as 

the cylinder of water we attach a weight which, together 

with the weight of the marble or glass itself, balances the 

weight of all the things weighed before. If this breaks the 

cylinder, we can unquestionably affirm that the void alone 
is cause enough to hold the parts of the marble or crystal 

together. But if it is not sufficient, and in order to break 

[the cylinder] we must add four times the above weight again, 

then we must say that the void offers one-fifth of the resis- 
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tance, while the other [resistance] is four times that of the void. 

Simp. It cannot be denied that the invention is ingenious; 

yet I consider it to be subject to many difficulties that leave 

me in doubt. For who will assure us that air may not penetrate 

between the glass and the piston, even though this is well 

packed with tow or some other yielding material? And in 

order that the cone / be well fitted to the hole, it may not be 

enough to treat the latter with wax or turpentine. Besides, 

why might not the parts of water expand or rarefy? Why 

should not air, or exhalations, or other more subtle substances, 

penetrate through porosities of the wood, or even of the glass 

itself? 

Salv. Simplicio very cleverly arrays his difficulties against 

us, and in part, as to the penetration of air through the wood 

or between the wood and the glass, he administers remedies. 

Beyond this, I note, we can discover for ourselves whether 

the difficulties advanced are valid, and at the same time 

acquire new knowledge. First, if it is the nature of water to 

suffer expansion, though [only] by force, as happens with air, 

then the piston will be seen to drop. Next, if in the upper 

part of the glass we make a small protruding indentation, as 

at V, then air or any more tenuous and spiritous material, 

penetrating through the substance or the porosity of glass or 

wood, will be seen to collect in the indentation V, the water 

giving way to it. But if those things are not observed, we may 

be assured that the experiment has been tried with all the 

proper precautions, and we shall know that water is not 

expansible, nor glass penetrable by any material however 
subtle. 

Sagr. Thanks to this reasoning, I find the cause of an effect 

that has for a long time kept my mind full of marvel and 

empty of understanding. I once observed a cistern in which a 

pump had been installed to draw water, perhaps by someone 

who vainly believed that more water can be drawn [thus], or 

as much with less labor, than by means of an ordinary bucket. 

This pump had its piston and valve up above, so that the 

water was pumped by suction and not by impulsion, as in 

pumps that have the apparatus down below. As long as the 

water was up to a certain height in the cistern, this [pump] 

drew it admirably; but when the water went down below a 
certain mark, the pump would no longer work. The first time 
I noticed this event, I thought that the apparatus was worn 
out; but when I found a master [mechanic] to repair it, he 
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told me that there was nothing at all wrong except the water 
[level] which, having gone down too far, did not allow itself 

to be lifted to such a height. He added that neither with pumps 

nor with any other device that lift water by suction is it 

possible to make this rise a hairbreadth more than eighteen 

braccia; whether pumps are [of] large [bore] or small, that is 
the measure of this absolutely limited height.° 

Well, up to now I have been so dull-witted that although I 

understood that a rope, a wooden staff, or an iron rod can be 

lengthened until its own weight breaks it when attached from 

above, it never occurred to me that the same thing will happen, 

and much more easily, with a rope or rod of water. And that 

which is drawn up in a pump is nothing else than a cylinder 

of water which, having its attachment above and being 

lengthened more and more, finally arrives at that boundary 

beyond which it breaks, just as if it were a rope. 

Salv. That is exactly how the matter goes, and since the 

same height of eighteen braccia is the predetermined limit 

of height to which any quantity of water can be sustained, 

whether the [cylinder of the] pump is wide, or narrow, or 

thin as a straw, then if we weigh the water contained in 

eighteen braccia of tube, whether broad or narrow, we shall 

have the value of the resistance of the void for cylinders of 

any solid material as large as the hollows of those tubes. 

Having said this, let us show how one may easily find, for 

all metals, stones, wood, glass, etc., the lengths up to which 

cylinders, threads, or rods of any thickness may be brought, 

and beyond which they cannot sustain themselves but will 

break of their own weight. 

Take, for example, a copper wire of any thickness and 

length, fix one of its ends on high, and to the other end add 

greater and greater weight until it finally breaks. Let the 

maximum weight that it can sustain be, for example, fifty 

pounds. It is obvious that fifty pounds of copper, over and 

above the weight of this wire, say one-eighth of an ounce, 

drawn into a wire of the same thickness, would be the maxi- 

mum length of wire that could maintain itself. Next, measure 

the length of the wire that broke, and let this be one braccio; 

since this weighed one-eighth of an ounce and sustained 

itself plus fifty pounds, which is 4,800 times one-eighth of 

6. Galileo did not accept the suggestion made to him in 1630 by G. B. 

Baliani (1582-1666) that failure of siphons and suction pumps above thirty 
feet should be ascribed to atmospheric pressure; cf. Opere, XIV, 158-60. 
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an ounce, we shall say that all copper wires, of whatever 

thickness, can sustain themselves up to a length of 4,801 

braccia, and no more. A copper rod that is able to sustain 

itself up to a length of 4,801 braccia encounters a resistance 

dependent on the void that, in comparison with its other 

resistances, is as much as the weight of a rod of water eighteen 

braccia long and as thick as the copper; and if we find, for 

example, that copper is nine times as heavy as water, then 

the resistance to breakage of any copper rod, so far as the 

void is concerned, will be as the weight of two braccia of the 

same rod. By similar reasoning and procedures we can find 

the maximum lengths of wires or rods of all solid materials 

that can sustain themselves, as well as the part played by the 

void in their resistance. 

Sagr. It remains now for you to tell us what it is that the 

balance of this resistance consists in; that is, what that gluey 

or viscous thing is that holds the parts of solids attached, in 
addition to the resistance which derives from the void. I 

cannot imagine any cement that cannot be burned and con- 

sumed in a very hot furnace over a period of two, three, or 

four months, let alone in ten, or a hundred. Yet silver, gold, 

or liquefied glass may remain in a furnace that long, and when 

taken out again and cooled, the parts of these become re- 

united and attached together as before. Moreover, the 

difficulty that I feel about the attachment between the parts 

of the glass, I shall feel about that of the parts of the cement; 

that is, what it can be that holds them so firmly joined. 

Salv. A little while ago I told you that your daemon was 

guiding you; now I find myself in the same straits. Seeing 

clearly that a repugnance to the void is undoubtedly what 

prevents the separation of two slabs except by great force, 

and that still more force is required to separate the two parts 

of the marble or bronze column, I cannot see why this 

[repugnance to the void] must not likewise exist and be the 

cause of coherence between smaller parts, right on down to 

the minimum ultimate [particles] of the same material. And 

since for any effect there is one unique and true and most 

potent cause, if I can find no other glue, why should I not 

try to see whether this cause, the void, already found, 
may suffice? 

Simp. If you have already demonstrated that in the 

separation of two large pieces of a solid, the resistance of 

the large void is very small in comparison with that which 
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holds together the minimum particles, then why do you not 

wish to admit it as certain that the latter [resistance] has a 

cause quite different from that of the former? 

Saly. To this, Sagredo replies that every individual soldier 
was paid with pennies and farthings collected by general 

levies, although a million in gold was not enough to pay the 

whole army.’ Who knows that there are not other tiny voids 

operating on the most minute particles, so that the same 

coinage as that with which the parts are joined is used 

throughout? I shall tell you what has sometimes passed 

through my mind on this; I do this not as the true solution, 

but rather as a kind of fantasy full of undigested things that 

I subject to your higher reflections. Take what you will 

from it, and judge the rest as suits you best. 

Sometimes, in considering how heat [fuoco, fire] goes 

snaking among the minimum particles of this or that metal, 

so firmly joined together, and finally separates and disunites 

them; and how then, the heat departing, they return to reunite 

with the same tenacity as before, without the quantity of 

gold being diminished at all, and that of other metals very 

little, even though these remain disunited for a long time, I 

have thought that this may come about because of very 

subtle fire-particles. Penetrating through the tiny pores of 

the metal, between which (on account of their tightness) the 

minimum [particles] of air and other fluids could not pass, 

these [fire-particles] might, by filling the minimum voids 

distributed between these minimum particles [of metal],® 

free them from that force with which those voids attract 

one [particle] against another, forbidding their separation. 

And being thus able to move freely, their mass [massa] would 

become fluid, and remain so until the fire-particles between 

them depart. But when these go, leaving the pristine voids, 

the usual attraction returns, and consequently the attachment 

of the parts. 
And to Simplicio’s objection it seems to me that one may 

reply that although such voids are very tiny, and as a result 

7. This completes Sagredo’s metaphorical remark on p. 61; cf. note 4, 

above. 
8. The coherence of material atoms is here ascribed to the presence of 

interstitial void points (or perhaps very minute spaces) rather than to any 
property inherent in material atoms as such. In this way nature’s horror of 
the void (an Aristotelian principle) is preserved, but only for points (or 
vanishingly small intervals). See further, pp. 93 ff., and notes 10, 32, and 37, 

below. 
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each one is easily overpowered, still the innumerable multitude 

of them multiplies the resistances innumerably, so to speak. 

The character and extent of the force resulting from an 

immense number of very weak momenta conjoined may be 

most evidently argued from our seeing a weight of millions 

of pounds, sustained by very thick ropes, ultimately yield 

and allow itself to be lifted by the assault of innumerable 

atoms of water, which, driven by the south wind or extended 

in a thin fog, go moving through the air to be driven between 

the fibers of the ropes; the immense force of the hanging 

weight being unable to prevent their entrance, they penetrate 

through narrow pores into the ropes, swelling and hence 

shortening them, by which means the enormous bulk is 

raised.” 
Sagr. There is no doubt that as long as a resistance is not 

infinite, it can be overcome by the sheer multitude of minimal 

forces. Thus a number of ants might bring to land a ship 

loaded with grain, for our eyes daily show us that an ant can 

readily transport a grain, and it is clear that in the ship there 

are not infinitely many grains, but some limited number. 

We can take a number several times as great, and put that 

number of ants to work; and they will bring to land not only 
the grain, but the ship along with it. It is true that the number 

would have to be large, but in my opinion so is that of the 

voids that hold together the minimum particles of a metal. 

Salv. But if an infinitude were required, you would perhaps 

hold this to be impossible? 

Sagr. No, not if the metal were infinite in bulk, [but] 

otherwise . . .'° 
Salv. Otherwise, what? Well, since paradoxes are at hand, 

let us see how it might be demonstrated that_in_a finite cop- 

tinu uous extension it is not impossible forinfintely many-veids _ 
to be found At the same time we shall see, if nothing else, at 

9. A popular story at the time was that during the raising of the Vatican 
Obelisk in 1586, stretching of the ropes at a crucial moment was countered 
by pouring water on them. 

10. No dots are present in the 1638 edition to indicate that Sagredo has 
paused here, at a loss to go on. Viviani added in his copy the words ‘ 

if they were infinitely many, they could have no size; but a while ago they 
were given size.” What had actually been said (p. 66) was that fire-particles 
could fill them, but not specifically that such particles had dimensions; 
cf. note 8, above. What Sagredo had in mind when he paused was more 
probably “*.. . there could be no room for infinitely many voids,” as seen 
from the ensuing discussion. 
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least a solution of the most admirable problem put by Aristotle 

among those that he himself called admirable; I mean among 

his Mechanical Questions. And its solution may perhaps be 

no less enlightening and conclusive than that which he him- 

self alleges, and yet different from that which the learned 

Monsignor di Guevara very acutely considers. !! 
But first it is necessary to explain a proposition not touched 

on by others, upon which the solution of this question 

depends; and if I am not mistaken, this [proposition]_will_ 
later entail other new and admirable things. To understand 

thisTerus draw the diagram with attention. We are to think 
of an equilateral and equiangular polygon of any number of 

sides described around the center G. For the present, let this 

be a hexagon ABCDEF, similar to and concentric with which 

we shall draw a smaller hexagon marked HIKLMN, and 

extend one side of the larger, AB, indefinitely in the direction 

S. The corresponding side of the smaller, H/, is extended in 

the same direction by line HT parallel to AS, and through 

the center we draw GV parallel to both these. 

This done, we suppose the larger polygon to rotate along 

the line AS, carrying with it the smaller polygon. It is clear 

that the point B, one end of side AB, remains fixed. When 

revolution begins, the corner A rises and the point C drops, 

describing the arc CQ, so that side BC fits the equal line BQ. 
In this revolution, the corner_J of the smaller pol S 

lifted above line /7, because /B is oblique to AS; and point / 

does not return to the paralle until point C gets to Q, 

when point J will have dropped to O after describing arc /O, 

outside the line HT, the side /K having then_passed to OP 

During all this time, the sc hise-arf IAA VR ESE SOE 

along outside the line GV, to which it does not return until 
it has described the entire arc GC. 

This first step having been taken, the larger polygon is 

11. Giovanni di Guevara (1561-1641), Bishop of Teano, had discussed 

this problem with Galileo but took a different approach in his In Aristote- 
lis Mechanicas comentarii (Rome, 1627). 
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now situated with its side BC on line BQ; side /K of the smaller 

one is on line OP, having jumped over the part JO without 

touching it; and the center G has come to C, tracing its whole 

path outside the parallel GV. The entire figure is again at a 

place similar to its first position. Commencing the second 

turn and coming to the second place, side DC of the larger 

polygon will fit on the part QX; KL of the smaller, having 

first skipped the arc PY, falls on YZ; and the center, still 

moving outside GV, falls on it only at R after the big jump 

CR. And eventually, when one entire revolution has been 

made, the larger polygon will have touched, along AS, six 

lines equal [in all] to its perimeter, with nothing interposed 

[between them]; the smaller polygon will likewise have 

impressed six lines equal to its circumference but interrupted 

[discontinuate] by the interposition of five arcs, under which 

there are stretches which are parts of HT not touched by 

this polygon; and the center G has never met the parallel GV 

except at six points. From this, it is understood that the space 

passed over by the smaller polygon is-etmest equal to that 

assed by the larger one; that is, line HT [nearly equals] AS, 

SEE alle ea spmerchor of one of these arcs, if we 

understand line HT to include the spaces of the five [skipped ] 

ares! 

Now, what I have here set forth and explained by the 

example of these hexagons, I wish to be understood as 

happening with all other polygons, of as many sides as you 

please, provided that they are similar, concentric, and joined 

so that the turning of the larger governs that of the smaller, 

no matter how much smaller it may be. Understand, I say, 

that the lines passed over by these are approximately equal, 

when we count as space passed over by the smaller those 

intervals under the little arcs, which are not touched by any 

12. Whether there are exactly five skipped spaces, or something more 
than that, is crucial to the paradox. This difficulty does not really vanish 
when Galileo passes to the circle “at one fell swoop” (pp. 92-93), any more 
than n ever becomes n+1 or some intermediate quantity; see also notes 13 
and 14, below. 
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part of the perimeter of this smaller polygon. Therefore a 

larger polygon having a thousand sides passes over and 

measures a straight line equal to its perimeter, while at the 
same time the smaller one passes an approximately equal 
line, but one interruptedly composed of a thousand little 

particles equal to its thousand sides with a thousand void 

spaces interposed—for we may call these “‘void”’ in relati 

#0 the Husand ings omc bythe ides e-plion. 
nd what has been said thus far presents no difficulty or 

question. 
But now tell me: if around some center, say this point A, 

we describe two concentric, joined circles, and from the points 

C and B on their radii we draw the tangents CE and BF, with 

the parallel AD to these [passing] through the center 4; 

and if we suppose the greater circle to be turned on the line 

BF, equal to its circumference as are likewise lines CE and 

AD; then, when the greater circle has completed one revolu- 

tion, what will the smaller circle have done, and the center? 

The center will certainly have run over and touched the whole 

line AD; and the circumference of the smaller [circle] will 

with its contact have measured the whole of CE, behaving 

like the polygons considered above. The only difference is 

that there, the line HT was not touched in all its parts by the 

perimeter of the smaller polygon, for it left untouched, by 

the interposition of the voids skipped over, as many parts 

as those touched by the sides.'* But here, in the circles, the 

circumference of the smaller circle is never separated from 

the line CE in such a way that any part of CE is not touched; 

nor is that in this circumference which touches ever less than 

that which is touched in the straight line [CE]. How then, 

without skipping, can the smaller circle run through a line 
so much longer than its circumference? 

Sagr. | was wondering whether one might say that just as 

the center of the circle, all alone, being but a single point 

13. Here Galileo says that for the hexagon there would be not five, but 

six skipped spaces; cf. note 12, above. 
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drawn along on AD, touches the whole of that line, so the 

points of the smaller circumference, driven by the larger 

circumference, might be dragged through some particles of 

the line CE. 
Salv. This cannot be, for two reasons. First, because there 

would be no more reason that some of the contacts analogous 

to C, rather than others, should be dragged along some parts 

of the line CE. If this were the case, and such contacts being 

infinitely many by reason of their being points, the draggings 

along CE would be infinitely many; and being quantified 

[quanti], these would form an infinite line; but CE is finite. 

The second reason is that since the larger circle in its revolution 

continually changes its [point of] contact, the smaller circle 

cannot avoid likewise [continually] changing its contact, as 

it is only through the point B that a line can be drawn to the 

center A and still pass through the point C. So whenever the 

larger circle changes contact, the smaller does also; nor does 

any point of the smaller [circle] touch more than one point 

of the straight line CE. 

Besides, even in the revolution of the polygons, no point 

of the perimeter of the smaller is fitted to more than one 

point of the line that is measured by that same perimeter. 

This may easily be understood by considering the line /K as 

parallel to BC, so that until BC falls on BQ, IK remains 

lifted above /P, nor does it fall [flat] before that very instant 

in which BC is united with BQ. But at that instant JK as a 

whole unites with OP, and later on it is just as suddenly lifted 

above it. 

Sagr. This business is truly very intricate, and no solution 

at all occurs to me; so tell us what occurs to you. 

Salv. I return to the consideration of the polygons discussed 

earlier, the effect of which is intelligible and already under- 
stood. I say that in polygons of one hundred thousand sides, 
the line passed over and measured by the perimeter of the 
larger—that is, by the hundred thousand sides extended 
[straight and] continuously—is equal to that measured by 
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the hundred thousand sides of the smaller, but with the inter- 

position [among these] of one hundred thousand void 

spaces.'* And just so, I shall say, in the circles (which are 

polygons of infinitely many sides), the line passed over by 

the infinitely many sides of the large circle, arranged con- 
tinuously [in a straight line], is equal in length to the line 

passed over by the infinitely many sides of the smaller, but 

in the latter case with the interposition of as many voids 

between them. And just as the “sides” [of circles] are not 

quantified, but are infinitely many, so the interposed voids 

are not quantified, but are infinitely many; that is, for the 

former [line touched by the larger circle there are] infinitely 

many points, all filled [tutti pieni], and for the latter [line 

touched by the smaller circle], infinitely many points, part 

of them filled points and part voids. 

Here I want you to note how, if a line is resolved and divided 

into parts that are quantified and consequently numbered 

[numerate], we cannot then arrange these into a greater 

extension than that which they occupied when they were 

continuous and joined, without the interposition of as many 

void [finite] spaces. But imagining the line resolved into 

unquantifiable parts—that is, into its infinitely many in- 

divisibles—we can conceive_it_i nsel : without 

the interposition of any quantified void spaces, though not 

without infinitely many indivisible voids. 

What is ft rdf of simple lines is to be understood also 

of surfaces and of solid bodies, considering those as composed 

of infinitely many unquantifiable atoms; for when we wish 

to divide them into quantifiable parts, doubtless we cannot 

arrange those in a larger space than that originally occupied 

by the solid unless quantified voids are interposed—void, 

I mean, at least of the material of the solid. But if we take the 

highest and ultimate resolution [of surfaces and bodies] into 

the prime components, unquantifiable and infinitely many, 

then we can conceive such components as being expanded 

into immense space without the interposition of any quantified 

void spaces, but only of infinitely many unquantifiable voids. 

In this way there would be no contradiction in expanding, 

for instance, a little globe of gold into a very great space 

without introducing quantifiable void spaces—provided, 

14. Strictly speaking, it is necessary to add “. . . of which 99,999 are each 
equal to a side of the smaller polygon, while one is the excess over that of 

a side of the larger polygon.” 
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however, that gold is assumed to be composed of infinitely 

many indivisibles.'° 
Simp. It seems to me that you are traveling along the 

road of those voids scattered around by a certain ancient 

philosopher. ’® 
Salv. At least you do not add, ‘who denied Divine 

Providence,” as in a similar instance a certain antagonist of 

our Academician very inappropriately did add.*’ 

Simp. Indeed I perceived, not without disgust, the hatred 

in that malicious opponent; yet I shall not touch on that, 

not only by reason of the bounds of good taste, but because 

I know how far such ideas are from the temperate and orderly 

mind of such a man as you, who are not only religious and 

pious, but Catholic and devout. 

Getting back to the point, I feel many difficulties that are 

born of the reasoning just heard; doubts from which I really 

don’t know how to free myself. For one, I advance this: if 

the circumferences of the two circles are equal to the two 

straight lines CE and BF, the latter taken as continuous and 

the former with the interposition of infinitely many void 

points, how can AD, described by a center that is one point 

only, be called equal to this point, of which [entities] it contains 

infinitely many? Also, this composing the line of points, the 

divisible of indivisibles, the quantified of unquantifiables— 

these reefs seem to me to be hard to pass. And not absent 

from my difficulties is the necessity of assuming the void, so 

conclusively refuted by Aristotle. 

Salv. There are these [difficulties] indeed, and others; 

but let us remember that we are among infinites and in- 

divisibles, the former incomprehensibleto-our finite under- 

standing by reason of their largeness, and the latter by their. 

smallness, Yet we see that human reason does not want to 

abstain from giddying itself about them. Taking some liberties 
on that account, I am going to produce a fantastic idea of 

15. Cf. note 10, above; the reference here seems to be to point-atoms of 

gold, since minima naturalia, indivisible physically but divisible mathe- 
matically, could not be infinitely many in a finite bulk. 

16. The reference is probably to Epicurus (341-270 B.c.) as expounded 

by Lucretius (98-55 B.c.), since the scattered voids are interstitial, as well 
as for reasons implied in note 17, below. 

17. Orazio Grassi (1583-1654), in his Ratio ponderum librae et simbellae 
(Paris, 1626), which was an attack on Galileo’s J] Saggiatore of 1623. Cf. 
Opere, V1, 475—76, where it is the Epicureans that are named though Demo- 
critus (460-357 B.c.), is usually considered as the chief atomist of antiquity. 
Cf. note 16, above. 
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mipe which, if it concludes nothing necessarily, will at least 
by its novelty occasion some wonder. Or perhaps it will 

seem to you inopportune to digress at length from the road 

that we started on, and hence will be distasteful. 

Sagr. Please let us enjoy the benefit and privilege that 

comes from speaking with the living and among friends, 

about things of our own choice and not by necessity, which 
is very different from dealing with dead books that excite a 

thousand doubts and resolve none of them. So make us 

partners in whatever reflections suggest themselves to you in 

the course of our discussions. We do not lack time to continue 

and resolve the other matters we have undertaken, thanks to 

our present freedom from necessary occupations. In particular, 

the doubts raised by Simplicio are by no means to be skipped 

over. 

Salv. Be it so, since that is the way you wish it. Let us 

begin from the NS gpl ecrermr erence a 

stood to _be equal to 4 line. The most that can be done at 

present is for me to try to put at rest, or at any rate to 

moderate, this improbability with an equal or greater one, 

as a marvel is sometimes put to rest by a miracle. I shall do 

this by showing you two equal surfaces, and two les; 

also equal, with the sai ‘ hei es. These will 

all] go continuaily and equally diminishing during the same 

time, their remaining parts always being equal, until finally 

the surfaces and the solids terminate their preceding perpetual 

equality by one solid and one surface becoming a very long 

line, while the other solid and the other surface become a 

single point; that is, the latter two become a single point, 

and the former two, infinitely many points. 

Sagr. This seems to me a truly remarkable proposal; let 

me hear its explanation and demonstration. 

Salv. We must draw a diagram for it, since the proof is 

purel etrical.'® Take the semicircle AFB whose center 
is C, and around it the rectangular parallelogram ADEB; 

from the center to points D and E, draw the straight lines 

CD and CE. Next imagine the whole figure rotated around 

18. The ensuing paradox had been hinted at in the Dialogue, p. 247 (Opere, 
VII, 271-72). Galileo had previously sent it to Buonaventura Cavalieri 

(1598?-1647) to caution him regarding the perils of the “method of in- 
divisibles” in geometry. The paradox has a double purpose here: to illustrate 
the nature of mathematical definitions, and to show the pitfalls of analogy 
in transferring the word ‘equal’ from entities of dimensions to their 
supposed counterparts of n—1 dimensions. Cf. notes 19 and 22, below. 
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the fixed radius CF, perpendicular to the straight lines AB 

and DE. It is manifest that a cylinder will be described by the 

rectangle ADEB, a hemisphere by the semicircle AFB, and 

a cone by the triangle CDE. We now suppose the hemisphere 

removed, leaving [intact] the cone and those remains of the 

cylinder which in shape resemble a soupdish, for which 

reason we shall call it by that name. 

First, we shall prove this soupdish to be equal [in volume] 

to the cone. Then, drawing a plane parallel to the circle at 

the base of the soupdish, of diameter DE and with center F, 

we shall prove that this plane, passing—for example through 

the line GN, and cutting the soupdish at points oT Oand N. 

and the cone a i and 1, leaves (0) cone 

CHL always equal to the part of the soupdish whose cross 

section is represented by the “triangles” GA/J and BON. 

Moreover, we shall prove that any base of the cone, say the 

circle whose diameter is HL, is equal to that circular surface 

which is the base for that part of the soupdish; this is, as it 

were, a washer [nastro, ribbon] of breadth G/. 

Note here what sort of things mathematical definitions 

are; that is, the mere imposition of names, or we might say 

abbreviations of speech, arranged and introduced in order 

to remove the tedious drudgery that you and I felt before we 

agreed to call one surface the ‘“‘washer,”’ and presently feel 
until we call the [upper section of the] soupdish the ‘‘cylin- 

ical razor. Ww, call these what you will, it suffices to 

understand that the plane at any level, provided that it is 

parallel to the base, or circle of diameter DE, always makes 

the two solids equal; that is, the part of the cone CHL, and 

the upper part of the soupdish [i.e., the cylindrical razor]. 

Likewise it makes equal the two surfaces that are the bases 

of those solids; that is, the washer and the circle HL. 

From this follows the marvel previously mentioned; 

namely, that if we understand the cutting plane to be gradually 

raised toward the line AB, the parts of the solids it cuts are 

always equal, as likewise are the surfaces that form their 

bases. Lifting it more and more, the two always-equal solids, 

as well as their always-equal bases, finally vanish—the one 

pair in the circumference of a circle, and the other pair in a 

single point, such being the upper rim of the soupdish and the 

summit of the cone. Now, during the diminution of the two 

solids, their equality was maintained right up to the end; 

hence it seems consistent to say that the highest and last 
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boundaries of the reductions are still equal, rather than that 
one is infinitely greater than the other, and so it appears 

that the circumference of an immense circle may be called 

equal to a single point! 

What happens in the solids likewise happens in the surfaces 

that are their bases. These also maintain equality throughout 

the diminution in which they share; and at the end, in the 

instant of their ultimate diminution, the washer reaches its 

limit in the circumference of a circle, and the base of the cone 

in a single point. Now, why should these not be called equal, 

if they are the last remnants and vestiges left by equal 
magnitudes??? 

Note next that if these vessels were as large as the immense 

celestial hemispheres, and the ultimate edges and the points 

of the contained cones always preserved their equality, those 

edges would terminate in circumferences equal to great circles 
of the celestial orbs, and the cones [would terminate] in 

single points. Hence, along the line in which such speculations 

lead us, the circumferences of all circles, however unequal 

[in size], may be called equal to one another, and each of 

them [may be called] equal to a single point! 

Sagr. The speculation appears to me so delicate and wonder- 

ful that I should not oppose it even if I could. To me it would 

seem a sort of sacrilege to mar so fine a structure, trampling 

on it with some pedantic attack. Still, for our full satisfaction, 

let us have that proof, which you call geometrical, of the 

constant maintenance of equality between those solids, and 

between their bases. I think this must be very clever, since 

the philosophical meditation stemming from this conclusion 

is so subtle. 

Salv. The demonstration is also brief and easy. In the 

diagram drawn, angle /PC being a right angle, the square of 

the radius JC is equal to the two squares of the sides /P and 

PC. But the radius JC is equal to AC, and this to GP; and 

is.equal to PH. Therefore the square of the line GP is equal 

to the two squares on /P and PH, and four times the former 

equals four times the sum of the latter; that is, the square 

19. Use of the word “‘equal”’ in this way violates Berkeley’s axiom that 
conclusions reached from the behavior of given entities and dependent on 
their existence cannot be rigorously applied to other entities deprived of 

them when they vanish. Sagredo’s reply bears out the view of Abraham 

Kastner (1719-1800) and Bernard Bolzano (1781-1848) that Galileo in- 
serted this paradox not as a conclusion to be accepted, but solely to stimulate 
careful thought. 
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of the diameter GN is equal to the two squares JO and AL. 

And since circles are to each other as the squares of their 

diameters, the circle of diameter GN will be equal to the two 

circles of diameters JO and HL; hence removing the common 

circle whose diameter is JO, the remaining circle GN will be 

equal to the circle whose diameter is HL. 

So much for the first part [areas]. As to the other part 

[volumes], let us skip that proof for the present; if we wish 

to see it, we shall find it in the twelfth proposition of the 

second book of De centro gravitatis solidorum by Signor 

Luca Valerio, the new Archimedes of our age, who makes 

use of it for another proposition of his.?° [We omit the proof] 
also because in our case it is enough to have seen how the two 

surfaces described are always equal, and that in diminishing 

always equally, they tend to end, the one in a single point, 

and the other in the circumference of a circle of any size 

whatever; for our marvel turns on this consequence alone. 
Sagr. The proof is as ingenious as the reflection based on 

it is remarkable. Now let us hear something about the second 

difficulty advanced by Simplicio, if you have anything new 

to say about it, which I believe may not be the case, since the 

controversy has been so widely agitated. 

Salv. I shall give you my own special thought on it, first 

repeating what I said a while ago; that is, that the infinite 

is inherently incomprehensible to us, as indivisibles are like- 

wise; so just think what they will be when taken together! 

If we want to compose a line of indivisible points, we shall 

have to make these infinitely many, and so it is necessary 

[here] to understand simultaneously the infinite and the 

indivisible. Many indeed are the things I have on many 

occasions turned over in my mind on this matter. Some of 

them, perhaps the most important, I may not recall offhand; 

but_in the progress of the argu happen to awaken 

Eee, gr ees carer ee 

stimulus would remain asleep in my imagination. So, with 

our customary freedom, let it be agreed that we bring in our 

human caprices, as we may well call them in contrast with 

those theological [sopranaturale] doctrines that are the only 

20. Luca Valerio (1552-1618) met Galileo at Pisa about 1590 and later 

corresponded with him at Padua. The book cited was first published at Rome 
in 1603/04; Bk. II, Prop. XII, includes a denonstration from which Galileo 
derived the foregoing paradox. 
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true and sure judges of our controversies and the unerring 

guides through sis obscure and dubious, or rather labyrin- 

thine, opinions.” 

One of the first objections usually produced against those 

who compound the continuum out of indivisibles is that one 

indivisible joined to another indivisible does not produce a 

divisible thing, since if it did, it would follow that even the 

indivisible was divisible; because if two indivisibles, say two 

points, made a quantity when joined, which would be a 

divisible line, then this would be even better composed of 

three, or five, or seven, or some other odd number 

[of indivisibles]. But these lines would then be capable of 

bisection, making the middle indivisible capable of being 

cut. In this, and other objections of the kind, satisfaction is 

given to its partisans by telling them that not only two 

indivisibles, but ten, or a hundred, or a thousand do not 

compose a divisible a quantifiable magnitude; ee an 

finitely many may do so.’ 

is immediately arises a doubt that seems to 

me atresolvable: It is that we certainly do find lines of which 

one may say that one is greater than another; whence, if 

both contained infinitely many points, there would have to 

be admitted to be found in the same category a thing greater 

than an infinite, since the infinitude of points of the greater 

line will exceed the infinitude of points of the lesser. Now, 

the occurrence of an infinite greater than the infinite seems 

to me a concept not to be understood in any sense. 

Salv. These are some of those difficulties that derive from 

21. The ensuing argument required very tactful treatment, since the 
proposition that a line might be composed of indivisibles, strongly opposed 
by Aristotle, had been condemned as heretical in 1415 by the Council of 

Constance. John Wyclif was exhumed and his body burned for this and other 

Epicurean doctrines. Cf. note 17, above, and see Aristotle, Physica, Bk. VI; 

De caelo, 299a.10 ff., as well as the pseudo-Aristotelian treatise On Indivisible 

Lines. 
22. The meaning here is not that the adversaries are literally satisfied, 

but that this is the proper reply to them. Galileo’s position is quite unrelated 
to the older discussions cited in note 21, above, or to that of Thomas Brad- 
wardine (12907-1349) in his De continuo, all of which debates concerned 
“indivisibles” that differed only in size from whatever they were supposed to 
compose. Galileo speaks here of elements having one less dimension than 
the aggregates in which they are supposed to exist; it was of such “‘indivisibles”’ 
that Cavalieri (note 18, above) made use in his geometry. In evaluating the 
role of Cavalieri’s work in the development of the calculus, his “‘indivisibles”’ 
have frequently been confused by historians with infinitesimal magnitudes 
having the same dimensionality as the continuum to be analyzed, an approach 
studiously avoided by Cavalieri himself. 
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reasoning about infinites with our finite understanding, giving 

to them those attributes that we give to finite and bounded 

things. This, I think, is inconsistent, for I consider that the 

attributes of greater, lesser, and equal do not suit infinities, 

of which it cannot be said that one is greater, or less than, 

or equal to, another.** In proof of this a certain argument 
once occurred to me, which for clearer explanation I shall 

propound by interrogating Simplicio, who raised the difficulty. 

I assume that you know quite well which are square numbers, 

and which are not squares. 

Simp. 1 know well enough that a square number is that 

which comes from the multiplication of a number into itself; 

thus four and nine and so on are square numbers, the first 

arising from two, and the second from three, each multiplied 

by itself. 

Salv. Very good. And you must also know that just as 

these products are called squares, those which thus produce 

them (that is, those which are multiplied) are called sides, 

or roots. And other [numbers] that do not arise from numbers 

multiplied by themselves are not squares at all. Whence if 

I say that all numbers, including squares and non-squares, 

are more [numerous] than the squares alone, I shall be 

saying a perfectly true proposition; is that not so? 

Simp. One cannot say otherwise. 

Salv. Next, I ask how many are the square numbers; and 

it may be truly answered that they are just as many as are 

their own roots, since every square has its root, and every 

root its square; nor is there any square that has more than 

just one root, or any root that has more than just one square.** 

Simp. Precisely so. 

Salv. But if I were to ask how many roots there are, it 

could not be denied that those are as numerous as all the 

numbers, because there is no number that is not the root of 

some square. That being the case, it must be said that square 

numbers are as numerous as all numbers, because they are 

as many as their roots, and all numbers are roots. Yet at the 

23. Having previously warned against the dangers in applying the word 
“equal” to infinites in the same sense as to finite magnitudes (notes 18 and 
19, above), Galileo next turns to the positive integers to introduce the idea 

of one-to-one correspondence. His conclusions are valid and consistent, 
though by a much later extension of the concept of number we are 
now permitted to speak of different orders of infinite aggregates. 

24. Negative roots were excluded under the Euclidean definition of number; 
see Glossary of mathematical terms. 
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outset we said that all the numbers were many more than all 

the squares, the majority being non-squares. Indeed, the 

multitude of squares diminishes in ever-greater ratio as one 
moves on to greater numbers, for up to one hundred there are 

ten squares, which is to say that one-tenth are squares; in 

ten thousand, only one one-hundredth part are squares; in 

one million, only one one-thousandth. Yet in the infinite 

number, if one can conceive that, it must be said that there 

are as many squares as all numbers together. 

Sagr. Well then, what must be decided about this matter? 

Salv. I don’t see how any other decision can be reached 

than to say that all the numbers are infinitely many; all 

squares infinitely many; all their roots infinitely many; that 

the multitude of squares is not less than that of all numbers, 

nor is the latter greater than the former. And in final con- 

clusion, the attributes of equal, greater, and less have no 

place in infinite, but only in bounded quantities. So when 
Simplicio proposes to me several unequal lines, and asks me 

how it can be that there are not more points in the greater 

than in the lesser, I reply to him that there are neither more, 

nor less, nor the same number [altrettanti, just as many ], 

but in each there are infinitely many. Or truly, might I not 

reply to him that the points in one are as many as the square 

numbers; in another and greater line, as many as all numbers; 

and in some tiny hittle [line], only as many as the cube 

numbers—in that way giving him satisfaction by putting 

more of them in one than in another, and yet infinitely many 

in each??° So much for the first difficulty. 
Sagr. Hold on a minute, and allow me to add to what has 

been said a thought that has just struck me. If matters stand 

as has been said up to this point, it seems to me that not 

only may one infinite not be said to be greater than another 
infinite, but it may not even be said that an infinite is greater 

than a finite. For if the infinite number is greater than one 

million, say, it would follow that in passing from one million 

to other continually larger numbers, one would be traveling 

toward the infinite [number], which is not so; rather, the 

opposite is so, and the larger the numbers to which we pass, 

the farther we get from the infinite number. For with numbers, 

25. The word ‘‘more” should be read as if placed in quotation marks. 
Galileo had already shown that the word had no meaning in this context, 
but offered this ingenious rationalization to anyone who might still think 
differently. 
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the larger they are taken, the scarcer become the square 

numbers contained within these, whereas in the infinite 

number, the squares cannot be less than all the numbers, 

as was just now concluded. Hence to go to ever and ever 

larger numbers is to move away from the infinite number. 

Salv. And so, from your ingenious reasoning, it is concluded 

that the attributes of greater, less, or equal are out of place 

not only between infinites, but even between infinites and 

finites.*° 
Now let us pass to another consideration, which is that 

the line, and every continuum, being divisible into ever- 

divisibles, I do not see How to escape their composition 

from infinitely many indivisibles; for division and sub- 

division that can be carried on forever assumes that the parts 

are infinitely many. Otherwise the subdivision would come 

to an end. And the existence of infinitely many parts has as 

a consequence their being unquantifiable, since infinitely 

many quantified [parts] make up an infinite extension. And 

thus we have the continuum composed of infinitely many 

indivisibles. 

Simp. But if we can continue forever the division into 

quantified parts, what need have we, in this respect, to 

introduce the unquantifiable? 

Salv. The very ability to continue forever division into 

quantifiable parts implies the necessity of composition from 

infinitely many unquantifiables. For, getting down to the 

real trouble, I ask you to tell me boldly whether in your 

opinion the quantified parts of the continuum are finite, or 

infinitely many? 

Simp. | reply to you that they are both infinitely many 

and finite; infinitely many potentially [in potenze]; and finite 

actually [in atto]; that is, potentially infinitely many before 

division, but actually finite [in number] after they are divided. 

For parts are not understood to be actually in their whole 

until after [they are] divided, or at least marked. Otherwise 
they are said to be potentially there.*’ 

26. Acardinal principle of Aristotle’s was that there can be no ratio between 
finite and infinite; cf. note 1, above, and De caelo 274a.10; 274b.12. The 
principle is probably put into Sagredo’s mouth because the mature Galileo 
neither entirely rejected nor fully accepted it. 

27. Aristotle’s distinction of potentiality and actuality was fundamental 
to his physics, since it entered into his very definition of motion; see Physica 
201a.10. With respect to potentiality and the infinite, see Physica 206a.15— 
206b.25. Here Galileo proceeds to show that the distinction is meaningless 
mathematically unless it affects quantity or magnitude. 
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Salv. So that a line twenty spans long, for instance, is not 
said to contain twenty lines of one span each, actually, until 

after its division into twenty equal parts. Before this, it is 

said to contain these only potentially. Well, have this as you 

please, and tell me whether, the actual division of such parts 

having been made, that original whole has increased, 

diminished, or remains still of the same magnitude? 

Simp. It neither increases nor diminishes. 

Salv. So I think, too. Therefore the quantified parts in the 
continuum, whether potentially or actually there, do not 

make its quantity greater or less. But it is clear that quantified 

parts actually contained in their Whote, if they aréinfinit tely 

many, make it of infinite magnitude; agny 
quantified parts c t_be contained even potentially except 

suet fed paris cannot be contained ven potently e many 
quantified parts cannot be contained either actually or 
potentially. 

Sagr. Then how can it be true that the continuum may be 

unceasingly divided into parts always capable of new division? 

Salv. That distinction between act and potency seems to 

make feasible in one way what would be impossible in 

another, but I expect to balance the accounts better by 

different bookkeeping. To the question which asks whether 

the quantified parts in the bounded continuum are finite or 

infinitely many, I shall reply exactly the opposite of what 

Simplicio has replied; that is, [I shall say] “neither finite 

nor infinite.” 
Simp. | could never have said that, not believing that any 

middle ground [termine mezzano, mean term] is to be found 

between the finite and the infinite, as if the dichotomy or 

distinction that makes a thing finite or else infinite were 

somehow wanting and defective. 

Saly. It seems to me to be so. Speaking of discrete quantity, 

it appears to me that between the finite and the infinite there 
is a third, or middle, term; it is that of answering to every 

[ogni] designated number. Thus in the present case, if asked 

whether the quantified parts in the continuum are finite or 

infinitely many, the most suitable reply is to say “neither 

finite nor infinitely many, but so many as to correspond to 

every specified number.” To do that, it is necessary that 
these be not included within a limited number, because then 

they would not answer to a greater [number]; yet it is not 

necessary that they be infinitely many, since no specified 

number is infinite. And thus at the choice of the questioner 
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we may cut a given line into a hundred quantified parts, into 

a thousand, and into a hundred thousand, according to 

whatever number he likes, but not into infinitely many 

[quantified parts]. So I concede to the distinguished philos- 

sophers that the continuum contains as many quantified 

parts as they please; and I grant that it contains them actually 

or potentially at the pleasure and to the satisfaction of those 

gentlemen. But I then tell them further that in whichever 

way there are contained in a ten-fathom line ten lines of one 

fathom each, and forty of one braccio each, and eighty of 

one-half braccio, and so on, then in that same way it contains 

infinitely many points. You may call this “actually” or 

‘‘notentially” as you choose, Simplicio, for on this particular 

I submit myself to your choice and judgment. 

Simp. | cannot but praise your reasoning, yet I greatly fear 

that this parity between containing points and [containing] 
quantified parts does not quite work, and that it will not be 

so easy for you to divide a given line into infinitely many 

points as it is for those philosophers [to divide it] into ten 

fathoms or forty braccia. In fact I hold it to be quite 

impossible to put your division into practice, whence it will 

remain one of those potentialities [potenze] that are never 

reduced to act. 

Salv. That a thing can be done only with labor and care, 

or over a long period of time, does not make it impossible. 

I think that you likewise cannot easily escape from labor 

and care in a division that is to be made of a line into a 

thousand parts, and still less if you have to divide it into 937, 

or some other large prime number [of parts]. But as to that 

division which you perhaps deem impossible, if I can make 

this as easy for you as it would be for someone else to cut 

the line into forty [equal parts], will you be content to admit 

this into our conversation more tranquilly? 

Simp. I enjoy your way of sometimes dealing with things 

so pleasantly. To your question I reply that it seems to me 

more than sufficient if the case of resolution into points 

shall be no more laborious than its division into a thousand 
parts. 

Salv. Here I want to say something that will perhaps 

astonish you concerning the possibility of resolving a line 

into its infinitely many [points] by following the procedure 

that others use in dividing into forty, sixty, or a hundred 
parts; that is, by dividing it into two, and then four, and so 
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on. Pursuing that method, anyone who believes he can find 

its infinitely many points is badly mistaken, for with such 

a procedure he will never achieve the division of the line 

into all its quantified parts, even if he goes on forever; and 
as to its indivisibles, he would be so far from arriving at the 

desired end by that path that instead, he would be traveling 

away from it. If anyone thinks that by continuing division 

and by increasing the multitude of parts he is approaching 

infinity, I believe that he is always receding farther from that. 

My reason is this. In our discussion a little while ago, 

we concluded that in the infinite number, there must be as 

many squares or cubes as all the numbers, because both 

[squares and cubes] are as numerous as their roots, and all 

numbers are roots. Next we saw that the larger the numbers 

taken, the scarcer became the squares to be found among 

them, and still rarer, the cubes. Hence it is manifest that to 

the extent that we go to greater numbers, by that much and 

more do we depart from the infinite number. From this it 

follows that turning back (since our direction took us always 

farther from our desired goal), if any number may be called 

infinite, it is unity. And truly, in unity are those conditions 

and necessary requisites of the infinite number. I refer to 

those [conditions] of containing in itself as many squares 

as cubes, and as many as all the numbers [contained ]. 

Simp. 1 don’t quite see how this business should be under- 

stood. 

Salv. The business has in it no room for doubt, because 

unity is a square, and a cube, and a fourth power, and all the 

other powers. There is no essential property belonging to 

squares, cubes, and so on that does not belong to [the number] 

one. For instance, a property of two square numbers is that of 

having between them a number [that is their] mean propor- 

tional. Take as one extreme any square number, and as the 

other, unity; there will always be found a numerical mean 

proportional; thus let the two square numbers be 9 and 4; 

between 9 and | the mean proportional is 3, and between 4 

and | it is 2; between the two squares 9 and 4 we find 6, the 

middle [term in geometric proportion]. A property of cubes 

is that between them there are necessarily two mean pro- 
portionals; given 8 and 27, between them lie the [geometric] 

means 12 and 18; between | and 8 are 2 and 4; and between 

1 and 27 are 3 and 9. Thus we conclude that there is no 

infinite number other than unity. 
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These are among the marvels that surpass the bounds of 

our imagination, and that must warn us how gravely one 

errs in trying to reason about infinites by using the same 

attributes that we apply to finites; for the natures of these 

have no necessary relation [convenienza] between them. 

Apropos of this, I do not wish to pass by in silence a remark- 

able event that just now occurs to me, illuminating the 

infinite difference and even the repugnance and contrariety 

of nature encountered by a bounded quantity in passing over 

to the infinite. Let us take this straight line AB, of any length 

whatever, and in it take some point C that divides it into 

unequal parts. I say that pairs of lines leaving from the points 

A and B, and preserving between themselves the same ratio 

as that of the parts AC and BC, will intersect in points that 

all fall on the circumference of the same circle. For example, 

AL and BL, coming from points A and B and having the same 

ratio as parts AC and BC, meet in a point L; with the same 

ratio, another pair AK and BK meet in K; others [are] AJ 

and BI, AH and HB, AG and GB, AF and FB, AE and EB. 

I say that the meeting-points L, K, J, H, G, F, and E all fall 

on the circumference of the same circle. Thus_if we imagine _ 

the_point_C movin inuously, under the rule that the 

lines produced from it to the fixed limits A and B shall maintain 

always the same ratio as that of the original parts AC and CB, 

then that point C will describe the circumference of a circle, 

as I shall next prove. And the circle described in this way 

will be ever greater, infinitely, according as the point C is 

taken closer to the midpoint O [of AB], while the circle will 

be smaller [which is] described by a point closer to the end B. 

Thus, following the above rule, circles will be described by 

motion of the infinitely many points that can be taken in 

the line OB, and the circles are of every size—less than the 

pupil of a flea’s eye, or greater than the equator of the celestial 

sphere [primo mobile}. 

Now, if a circle is described by any point lying between 

the limits O and B, and immense circles by moving points 

close to O, then by moving the point O itself and continuing 

to do so in observance of the same law (that is, so that lines 

produced from O to the ends A and B shall keep the ratio 

of the original lines AO and OB), what line will point O 

trace? It will trace the circumference of a circle, but that of 

a circle greater than any other great circle, and therefore of 

an infinite circle. But [in fact] it traces a straight line per- 
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pendicular to BA, rising from point O and extending in 

infinitum without ever returning to join its last end with its 

first, as all the others do return. For that [which was] traced 

by the limited motion of point C, after marking the upper 

semicircle CHE, went on to trace the lower, EMC, rejoining 

its extreme ends at point C. But (because points taken in the 

other part of OA also describe circles, the points near O the 
greatest ones) point O, being moved like all the others of 

line AB, in tracing its circle so that it will be made greatest 

of all, and consequently infinite, can never return to its 

original extreme; and in brief, it describes an infinite straight 

line as circumference of its infinite circle.?° 
Consider, then, what a difference there is [in moving] 

from a finite to an infinite circle. The latter changes its being 

so completely as to lose its existence and its possibility of 

being [a circle]. For we understand well that there cannot 

be an infinite circle, from which it follows as a consequence 

that still less can a sphere be infinite; nor can any other 

solid or surface having a shape be infinite. What shall we say 

of this metamorphosis in passing from finite to infinite? 

And why must we feel greater repugnance when, seeking the 

infinite in numbers, we come to conclude that it is in [the 

number] one? We break a solid into many parts, and go on 

to reduce it to very fine powder; if it were resolved into its 

infinitely many atoms, no longer divisible, why should we 

not say that it had returned to a single continuum, fluid 

perhaps, like water or mercury, or the original metal lique- 

fied? Do we not see stones liquefied into glass, and glass 

under great heat made more liquid than water? 

Sagr. Must we therefore believe that fluids are what they 

are because they are resolved into indivisibles, infinitely 

many, [as] their prime components? 

Salv. I cannot find any better expedient for solving some 

of the sensible appearances, among which is this. When I 

take a hard body of stone or metal, and with hammer or file 

I proceed to divide it as finely as possible into impalpable 

powder, clearly its minimum [particles], though impercep- 

tible individually to sight and touch, are still quantified, have 

shape, and are countable. That is why they support themselves 

cumulatively in a heap, a dent in this, up to a certain point, 
remaining a dent, without the surrounding parts rushing 

28. Cf. Dialogue, p. 377 (Opere, VII, 404). 
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in to fill it. Agitated and stirred, these particles stop as soon 

as the external mover abandons them. All these effects happen 

also in all aggregates of larger corpuscles of every shape, even 

spherical, as we see in mounds of flour, grain, lead shot, 

and other materials. But if we seek these phenomena in water, 

none are to be found. When raised, water immediately 

smooths flat unless sustained by a vessel or other external 

restraint; dented, it immediately runs to fill the cavity; 

agitated, it goes on fluctuating for a long time, and its waves 

extend through great distances. 

From this, I think it is reasonable to argue that the minimum 

[particles] into which water seems to be resolved, since it 

has less consistency than the finest powder (or rather, has- 

no consistency at all), are quite different from quantified 

and divisible minimum [particles], and I cannot find any 

other difference here besides that of their being indivisible. 

It also seems to me that their perfect transparency strengthens 

this conjecture. If we take the most transparent crystal 

that exists and begin to pound and break it, it loses its tran- 

sparency when reduced to powder, and the more so the more 

finely it is broken. But water, which is broken to the highest 

degree, is yet diaphanous to the highest degree. Gold and 

silver, pulverized by aqua fortis more finely than by any file, 

still remain in powder and do not become fluid; nor do they 

liquefy until the indivisibles of fire or of the sun’s rays dissolve 

them (as I think) into their first and highest components, 

infinitely many, and _ indivisible. 

Sagr. What you have said of [the sun’s] light, I have often 

observed with wonder. I have seen lead instantly liquefied 

by a concave mirror three spans in diameter, and am of 

the opinion that if the mirror were very large, smooth, and 

of parabolic shape, it would liquefy any metal in short time. 

For we see that a spherically concave mirror, neither very 

large nor well polished, liquefies lead with great power 

and burns every combustible material—effects that give 

credibility to the wonders of the mirrors of Archimedes.?? 
Salv. As to Archimedes and the effects of his mirrors, 

all the miracles that are read in other authors are rendered 
credible to me by reading the books of Archimedes himself, 

29. The story that Archimedes burned enemy ships by means of powerful 
mirrors is not found before the twelfth century. It probably grew out of 
accounts of the burning of enemy ships in the defence of Syracuse which 
failed to mention the catapulting of incendiary material as the means. 
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long ago studied by me with infinite astonishment. And 

if any doubt lingered, the book lately published about the 

burning glass [Specchio ustorio] by Father Buonaventura 

Cavalieri, which I read with admiration, is enough to put 

a stop to all difficulties for me.*° 
Sagr. I also saw that treatise and read it with pleasure 

and wonder; I was already acquainted with the author, 

and this confirmed the idea that I had formed of him—that 

he would turn out to be one of the chief mathematicians of 
our age. But returning to the remarkable effect of the sun’s 

rays in liquefying metals, should we believe that so vehement 

an operation takes place without motion, or that it does so 

with the most rapid motion? 

Salv. We see other fires and dissolutions to be made with 

motion, and very swift motion; behold the operations of 

lightning, and of gunpowder in mines and bombs. We see 

how much the use of bellows speeds the flames of coals mixed 

with gross and impure vapors, increasing their power to 

liquefy metals. So I cannot believe that the action of light, 

however pure, can be without motion, and indeed the swiftest. 

Sagr. But what and how great should we take the speed 

of light to be? Is it instantaneous perhaps, and momentary? 

Or does it require time, like other movements? Could we 
assure ourselves by experiment which it may be? 

Simp. Daily experience shows the expansion of light to 
be instantaneous. When we see artillery fired far away, 

the brightness of the flames reaches our eyes without lapse 

of time, but the sound comes to our ears only after a notice- 

able interval of time. 
Sagr. What? From this well-known experience, Simplicio, 

no more can be deduced than that the sound is conducted to 

our hearing in a time less brief than that in which the light is 

conducted to us. It does not assure me whether the light is 

instantaneous, or time-consuming but very rapid. Your 

observation is no more conclusive than it would be to say: 

‘Immediately on the sun’s reaching the horizon, its splendor 

reaches our eyes.”’ For who will assure me that the rays did 

30. The book mentioned was published by Cavalieri at Bologna in 1632; 
it included a derivation of the parabolic trajectory of projectiles, which 
Galileo had discovered late in 1608 but had not yet published; cf. note 5 

to Fourth Day. He was indignant on first hearing of this publication, but when 
he saw the book with its acknowledgment to him and learned that Cavalieri 
believed him to have published it earlier, he was appeased. Cavalieri’s 
teacher had been Galileo’s pupil, Benedetto Castelli (1578-1643). 
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not reach the horizon before [reaching] our vision? 

Salv. The inconclusiveness of these and like observations 

caused me once to think of some way in which we could 

determine without error whether illumination (that is, the 

expansion of light) is really instantaneous.** The rapid motion 
of sound assures us that that of light must be very swift indeed, 

and the experiment that occurred to me was this. I would have 

two men each take one light, inside a dark lantern or other 

covering, which each could conceal and reveal by interposing 

his hand, directing this toward the vision of the other. Facing 

each other at a distance of a few braccia, they could practice 

revealing and concealing the light from each other’s view, so 

that when either man saw a light from the other, he would at 

once uncover his own. After some mutual exchanges, this 

signaling would become so adjusted that without any sensible 

variation, either would immediately reply to the other’s signal, 

so that when one man uncovered his light he would instantly 

see the other man’s light. 

This practice having been perfected at a short distance, the 

same two companions could place themselves with similar 

lights at a distance of two or three miles and resume the 

experiment at night, observing carefully whether the replies 

to their showings and hidings followed in the same manner 

as near at hand. If so, they could surely conclude that the 

expansion of light is instantaneous, for if light required any 

time at a distance of three miles, which amounts to six miles 

for the going of one light and the coming of the other, the 
interval ought to be quite noticeable. And if it were desired 

to make such observations at yet greater distances, of eight or 

ten miles, we could make use of the telescope, focusing one 

for each observer at the places where the lights were to be put 

into use at night. Lights easy to cover and uncover are not 

very large, and hence are hardly visible to the naked eye at 

such distance, but by the aid of telescopes previously fixed 

and focused they could be comfortably seen. 

Sagr. The experiment seems to me both sure and ingenious. 
But tell us what you concluded from its trial. 

Saly. Actually, I have not tried it except at a small distance, 
less than one mile, from which [trial] I was unable to make sure 

whether the facing light appeared instantaneously. But if not 

31. In JI Saggiatore (1623), Galileo had spoken of light as propagated 
instantaneously by the ultimate subdivision of matter into its true indivisibles; 
cf. Assayer, p. 313 (Opere, VI, 352). 
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instantaneous, light is very swift and, I may say, momentary; 

at present I should liken it to that motion made by the 

brightness of lightning seen between clouds eight or ten miles 

away. In this, we distinguish the beginning and fountainhead 

of light at a particular place among the clouds, followed 
immediately by its very wide expansion through surrounding 

clouds. This seems to me to be an argument that the stroke 

of lightning takes some little time, because if the illumination 

were made all together and not by parts, it appears that we 

should not be able to distinguish its place of origin and its 

center from its extreme streamers and dilatations. 

But in what seas are we inadvertently engulfing ourselves, bit 

by bit? Among voids, infinites, indivisibles, and instantaneous 

movements, shall we ever be able to reach harbor even after 

a thousand discussions? 

Sagr. These things are truly quite ill-adapted to our purpose. 

The infinite, sought among numbers, seems to end at unity; 

from indivisibles is born the ever-divisible; the void seems to 

exist only by being indivisibly mixed into the plenum; in a 

word, the nature of each of these things alters from our 

common understanding of it, until the circumference of a circle 

is replaced by a straight line. If I recall correctly, Salviati, 

that is the proposition that you were to make clear to us by 

geometrical demonstration. So it will be good if, without 

further digression, you will produce it. 

Salv. 1 am at your service; and for complete understanding, 

I shall demonstrate the following problem: 

Given a straight line divided into unequal parts in any 

ratio, to describe a circle such that to any point of its 

circumference, two straight lines being drawn from the 

ends of the given line, [these lines] will retain the same 

ratio as that of the said parts of the given line, so that 

all [pairs] leaving from the same extremities will be 

homologous. 
Let the given line be AB, divided in any way into unequal 

parts at the point C; it is required to describe the circle such 

that at any point on its circumference, two lines drawn from 

A and B will meet, and will have between them the same 

ratio as that of the parts AC and BC, making homologous 

those which leave from the same endpoints [A and B]. Draw 

a circle with center C and radius equal to the smaller part CB, 

to which line AD will be tangent, this being indefinitely 
prolonged in the direction of E from point A, the point of 
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tangency being D. Join C and D; [CD] will be perpendicular 

to AE, and BA will be perpendicular to BE, which produced 

will meet AE, since angle A is acute. From this intersection E, 

drop a line perpendicular to AE, which produced will meet AB, 

indefinitely prolonged, at F. 

I say first that the two lines FE and FC are equal, since if 

EC is drawn, we have in the two triangles DEC and BEC two 

sides of one, DE and EC, equal to two sides of the other, BE 

and EC. And DE and EB being tangent to the [dotted] circle 

DB, the bases DC and CB are equal, whence angles DEC and 

BEC are equal. Since angles BCE and CEB are complementary, 

as are angles CEF and CED, angles FCE and FEC are equal; 

hence also sides FE and FC. Now taking point Fas center, with 

radius FE describe a circle CEG passing through point C. 

I say that this is the circle sought, at any point of the 

circumference of which, every pair of lines intersecting and 

passing through the extremities A and B will have the same 

ratio as that of the two parts AC and BC, which are joined 

at the point C. This is obvious of the two lines AE and BE 

that meet at point F, for the angle EF of triangle AEB being 

bisected by CE, whatever ratio AC has to CB will be that of 

AE to BE. We prove the same of AG and BG, meeting at 

point G. By the similarity of triangles AFE and EFB, as AF 

is to FE, so EF is to FB, that is, as AF is to FC, so CF is to FB: 

and by division, as AC is to CF (that is, to FG), so CB 1s to BF, 

and the whole AB is to the whole BG as the part CB is to the 

part BF. And by composition, as AG is to GB, so CF is to FB, 

that is, as EF to FB, that is, AE to EB, and AC to CB, which 

was to be proved. 

Now take any point H in the circumference, at which the 

two lines AH and BH meet. I say that as AC is to CB, so 

AH is to HB. Extend HB to the circumference at /, and join 

J and F; since (as seen before) CB is to BF as AB is to BG, the 

rectangle AB-BF is equal to the rectangle CB—BG, that is, 

IB—BH. Hence as AB is to BH, so /B is to BF, and the angles 

at B are equal; therefore AH is to HB as IF (that is, EF) is 

to FB, and AE to EB. 

Besides this, I say that it is quite impossible for lines in this 

ratio and passing through ends A and B to meet at any point 

outside or inside the circle CEG. For if possible, let two 

lines AL and BL meet at L, outside [the circle]. Extend LB 

to the circumference at M, and draw MF. Then if AL is to 

BL as AC is to BC (that is, as MF to FB), we have two triangles 
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ALB and MFB which have their sides proportional around 
the angles ALB and MFB, while the angles at the apex B 

are equal, and the two remaining angles FMB and LAB are 

less than a right angle, because the right angle at point M 

has for its base the whole diameter CG and not just the part BF, 

while the angle at point A is acute, since line AL, homologous 

to AC, is greater than BL, homologous to BC. Therefore 

triangles ABL and MBF are similar, and as AB is to BL, 

MB is to BF, whence rectangle AB—BF will be equal to 

rectangle MB-—BL. But rectangle AB-—BF has been shown 

equal to CB—BG; therefore rectangle MB-—BL is equal to 

rectangle CB—BG, which is impossible; hence the intersection 

[L] cannot fall outside the circle. In the same way it may be 

demonstrated that it cannot fall inside, wherefore all inter- 

sections fall on the circumference itself. 

But it is time now to give satisfaction to Simplicio by 

showing him that it is not impossible to resolve a line into 

its infinitely many points, and not only that, but that this 

presents no greater difficulty than to distinguish its quantified 

parts. First, one assumption; I do not think, Simplicio, that 

you will deny this to me. I assume that you do not require 

me to separate the points from one another and show them 

to you distinctly one by one on this paper. In return, I shall 

be content if without your detaching four or six parts of a 

line one from another, you show me these divisions marked, 

or even just bent at angles so as to form a square or a hexagon. 

I am persuaded that you, too, will call such [parts] sufficiently 

distinguished and actualized. 

Simp. Of course. 

Salv. Now, if bending of a line at angles, forming now a 

square, now an octagon, now a polygon of forty or one 

hundred or one thousand angles, is sufficent change 

[mutazione] to reduce to act those four, eight, forty, one 

hundred or one thousand parts that were previously in the 

line “potentially,” as you put it, then when I form of this 

line a polygon of infinitely many sides—that is, when I bend 
it into the circumference of a circle—may I not, with the same 

license, say that I have reduced to act its infinitely many parts, 

since you conceded that while it was straight, these were 

said to be contained in it potentially? That such a resolution 

[of a line] is made into its infinitely many points cannot be 

denied, any more than that [a resolution was made] into its 

four parts in forming a square, or into its thousand [parts] in 
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forming a milligon, inasmuch as none of the conditions are 

lacking here that are found in the polygon of one thousand 

or one hundred thousand sides. This latter, applied to a 

straight line and placed thereon, touches it with one of its 

sides, that is, with one one-hundred-thousandth part of it. 

The circle, which is a polygon of infinitely many sides, touches 

the straight line with one of its sides, which is a single point, 

different from all its neighbors, and therefore divided and 

distinguished from them no less than is one side of the polygon 

from its adjacent [sides]. And as the polygon, rotated on a 

plane, stamps out with the successive contacts of its sides a 

straight line equal to its perimeter, so does the circle, when 

rolled on a plane, describe with its infinitely many successive 

contacts a straight line equal to its circumference. 

I don’t know, Simplicio, whether the learned Peripatetics, 
to whom I grant as quite true the concept that the continuum 

is divisible into ever-divisibles in such a way that in continuing 

such division and subdivision one would never reach an end, 

will be willing to concede to me that none of their divisions 

is the last—as indeed none is, since there always remains 

another—and yet that there indeed exists a last and highest, 

and it is that which resolves the line into infinitely many 

indivisibles. I admit that one will never arrive at this by 

successively dividing [the line] into a greater and greater 

multitude of parts. But ut by employing the 

fell men ee 

believe that they should be satisfied, and should allow this 

composition of the continuum out of absolutely indivisible 

atoms. Especially since this is a road that is perhaps more 

direct than any other in extricating ourselves from many 

intricate labyrinths. One such, in addition to that already 

mentioned of the [problem of the] coherence of the parts of 

solids, is the understanding of rarefaction and condensation, 

without our stumbling into the inconsistency of being forced 

by the former [rarefaction] to admit void spaces**, and by 

the latter (condensation, to admit] the [inter]penetration of 

32. Empty spaces of finite dimensions would create physical problems, 
since in Galileo’s view natural effects would continually destroy them (nature's 
horror of a void.) Empty points in the mathematical sense raised no physical 
problem; hence Galileo employed them to attract physically adjacent 
particles and to keep them joined up to the limit of resistance to fracture. 
Cf. notes 8 and 10 above. 
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bodies, both these involving contradictions that seem to me 

to be cleverly avoided by assuming the said composition of 
indivisibles. 

Simp. 1 don’t know what the Peripatetics would say, 
inasmuch as the considerations you have set forth would 

strike them, I believe, for the most part as novelties, and as 

such they would need to be examined. It may be that the 

Peripatetics would find replies and solutions capable of 

untying those knots that I, from the shortness of time and 

the frailty of my intellect, cannot at present resolve. So 

leaving aside for now that [Peripatetic] faction, I should 

indeed like to hear how the introduction of these indivisibles 

facilitates the comprehension of condensation and rarefaction, 

while at the same time it circumvents [both] the void and the 

[inter]penetration of bodies. 

Sagr. I too will hear this with pleasure, as it is still obscure 

to my mind. Provided, that is, that I shall not be defrauded 

of hearing, in accordance with what you said to Simplicio 

a short time ago, the reasonings of Aristotle in refuting the 

void, and then the solutions thereof at which you arrive, as 

is only fitting if you assume that which he denies. 

Salv. Both shall be done. As to the first, it is necessary that 

just as we shall make use, in regard to rarefaction, of the line 

described by the smaller circle when that is driven by the 

revolution of the larger, which line is longer than its own 

circumference; so, for an understanding of condensation, 

we must show how the larger [circle, driven] by the revolution 

of the lesser, describes a straight line shorter than its own 

circumference. For a clear explanation of this, let us consider 

what happens with the polygons. 

In a diagram similar to the previous one, let there be two 

hexagons, ABC and H/K, around the common center L, 

and the parallel lines HOM and ABc on which they must 
be revolved. Let the corner / of the smaller polygon be fixed, 

and turn this polygon until the side /K falls on the parallel 

[MH]. In this motion, point K will describe arc KM, and side 

KI will unite with part /M. Let us see what side CB of the 

larger polygon will do. Since the revolution is made about 
the point /, the line 7B with end B will go back, describing 

the arc Bb below the parallel cA, so that when side K/ is 

joined with line MJ, side BC will unite with line bc, going 

forward only as much as the part Bc, and leaving behind the 

part subtended by the arc Bb, which comes to be superimposed 
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on the line BA. Assuming the rotation driven by the smaller 

polygon to continue in this way, it will trace and cover on its 
own parallel a line equal to its perimeter. But the larger 

[hexagon] will pass over a line shorter than its perimeter by 

one less line [of length] bB than [the number of] its sides, 

and this line will be approximately equal to that described 

by the lesser polygon, which it will exceed by only the length 

bB. Here, then, without any contradiction [repugnanza], 1s 

revealed the reason why the sides of the larger polygon, 

when driven by the smaller, do not cover a line greater than 

that traveled by the smaller; for a part of each side is super- 

imposed on that which precedes and is adjacent to it. 

Now consider the two circles around center A, placed on 

their parallels so that the smaller touches one of these at 

point B, and the larger [touches] the other at point C. The 

smaller [circle] commencing to roll, its point B will not remain 

motionless for any time while the [imaginary] line BC goes 

backward carrying point C, as happened in the polygons, 

where point / remained fixed until side K/ fell on line 7M. 

There, line /B did carry B (one end of side CB) backward 

to b so that side BC fell on bc, superimposing part Bb on 

line BA, and advancing only by the part Bc equal to /M, or 

to one side of the smaller polygon. On account of these 

superpositions, equal to the excesses of the larger sides over 

the smaller, the residual advances made, equal to the sides 

of the lesser polygon, come to compose in one entire revolution 

the straight line equal to that marked and measured by the 

smaller polygon. 

If we were to apply similar reasoning to the case of circles, 

we should have to say that where the sides of any polygon 

are contained within some number, the sides of any circle 

are infinitely many; the former are quantified and divisible, 

the latter unquantifiable and indivisible; either end of each 

side of the revolving polygon stays fixed for a time (that is, 

that fraction of the time of an entire revolution, which the 

side is of the entire perimeter), whereas in circles the delays 

of the ends of their infinitely many sides are momentary, 

because an instant in a finite time is a point in a line that 

contains infinitely many [points.] The backward turns made 

by sides of the larger polygon [each] advancing as far as the 

side of the lesser [polygon] are not those of a whole side, 

but only of its excess over a side of the smaller; in circles, 
the point (or “‘side’’) C, during the instantaneous rest of end B, 
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moves back as much as its excess over the “‘side’”’ B, and 

advances by as much as [point] B.** To sum up, the infinitely 
many indivisible sides of the greater circle, with their infinitely 

many indivisible retrogressions, made in the infinitely many 

instantaneous rests of the infinitely many ends of the infinitely 

many sides of the lesser circle, together with their infinitely 

many advances, equal to the infinitely many sides of the lesser 

circle, compose and describe [disegnano, mark] a line, equal 

to that described by the lesser circle, which contains in itself 

infinitely many unquantifiable superpositions, making a 

compacting and condensation without any [inter]penetration 

of quantified parts.** 
This is not to be understood as happening in the line divided 

into quantified parts, as in the perimeter of any polygon, 

which extended into a straight line cannot be compressed 

into [any] shorter length except by superposition and inter- 

penetration of its sides. The compacting of infinitely many 

unquantifiable parts without interpenetration of quantified 

parts, and the previously explained expansion of infinitely 

many indivisibles with the interposition of indivisible voids, 

I believe to be the most that can be said to explain the 

condensation and rarefaction of bodies without the necessity 

of introducing interpenetration of bodies and [appealing to] 

quantified void spaces. If anything in it pleases you, make 

capital of that; if not, ignore this as idle, and my reasoning 

along with it, and go search for some other explanation that 

will bring you more peace of mind. I repeat only this: we are 

among infinites and indivisibles. 

Sagr. I freely confess that the idea is subtle, and to my 

ears novel and remarkable. Whether in fact nature proceeds 

in any such way, I cannot decide. The truth is that until I 

hear something that better satisfies me, I shall stick to this 

rather than remain completely dumb. 

But Simplicio may have what I have not yet found—some 

33. According to Berkeley’s axiom (note 19, above), Galileo could not 
move from very small sides to point-sides for circles without losing the right 
to speak of any excess analogous to that existing between the sides of 
polygons of no matter how many sides. Being unable to argue consistently 
with his own views that points in one circle are somehow greater than those 
in another, he was left with no proper basis for the analogy here. 

34. The purpose of this clearly deliberate complication in an ostensible 
summing up was to discourage all attempts to simplify paradoxes which in 
Galileo’s opinion were genuine and needed to be thought about and thought 
through again and again. 
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way of explaining the explanation supported by his philoso- 

phers in this most abstruse matter. What I have read [in them] 

up to the present concerning condensation is, for me, so 

dense, and with regard to rarefaction what I have read is so 

subtle, that my feeble vision neither takes hold of the latter, 

nor penetrates the former. 
Simp. 1 am filled with confusion, and find hard obstacles 

in both opinions. Particularly in this new one; for according 

to this rule, an ounce of gold might be rarefied and expanded 

into a bulk greater than the whole earth, and all the earth 

might be condensed and reduced into a bulk smaller than a 

walnut. These things I do not believe, nor do I think that you 

yourself believe them. The considerations and demonstrations 

made by you up to this point, being mathematical things 

abstracted and separated from sensible matter, I believe 

would not work according to your rules if applied to physical 

and natural materials. 

Salyv. | doubt that you want me to make you see the invisible, 

nor am I able to do that; but so far as that which can be 

understood by our senses is concerned, and since you mention 

gold, do we not see immense expansions made of its parts? 

I don’t know whether -you have thought of the way in which 

artisans proceed in drawing gold for gilding, which is really 

gold only on the surface, while the matter inside is silver. The 

way they do this is to take a cylinder or rod of silver about 

ten inches long and three or four fingers thick; this they cover 

with beaten gold leaf, which as you know is so thin that it 

goes floating through the air. They put on eight or ten such 

leaves, no more; and they commence drawing it, thus gilded, 

with great strength, passing it through the holes of a wire die 

over and over again, drawing it successively through smaller 

holes. After a great many passages they reduce it to the fineness 

of a lady’s hair or finer; yet it remains gilded on the surface. 

I leave it to you to consider the thinness and expansion to 
which the substance of gold is thus subjected. 

Simp. I do not see that from this operation there comes in 

consequence a thinning of the material of gold by performing 

on it those marvels that you would have. First, the original 

gilding was done with ten gold leaves, which are of perceptible 

thickness; and second, though the silver grows in length with 

the drawing and thinning, at the same time it diminishes just 

as much in thickness, so that one dimension compensates the 

other, and the surface is not increased in such a way that to 
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clothe the silver with gold must reduce it to greater subtlety 
than that of the original leaves. 

Salv. You are very much mistaken, Simplicio, because the 

increase of surface is as the square root of the lengthening, as 
I can prove geometrically. 

Sagr. For my sake as well as Simplicio’s, I beg you to give 

us the demonstration, if you think we can follow it. 

Salv. Let me see whether I can recall it offhand. It is manifest 

that the original thick cylinder of silver and the very long wire 

drawn from it are equal in volume, being of the same silver. 

So if I show the ratio that holds between the surfaces of the 

equal cylinders, we shall have what we want. Hence I say that: 

The surfaces of equal cylinders, excluding [those of] their 

bases, are in the ratio of the square roots of their lengths. 

Let there be two equal cylinders with heights AB and CD, 

and let line E be a mean proportional between them; then I 

say that the surface of cylinder AB, excluding its bases, has 

to the surface of cylinder CD, likewise without its bases, the 

same ratio that line AB has to line E, which is the square root 

of the ratio of AB to CD. Cut the cylinder AB at F, letting 

height AF equal CD. Now, since the bases of equal cylinders 

are inversely proportional to their heights, the circle at the 

base of cylinder CD will be to the circle at the base of cylinder 

AB as the height BA is to the height DC. And since circles are 

to one another as the squares of their diameters, these [two 
squares] have the same ratio as BA to CD. But as BA is to CD, 

so the square on BA is to the square on E£, so that the four 

squares are proportional. Hence their sides are proportional, 

and as line AB is to E, so the diameter of circle C is to the 

diameter of circle A. And as the diameters, so are the circum- 

ferences; and as the circumferences, so also are the surfaces of 

cylinders equally high. Therefore as line AB is to E, so is 

the surface of cylinder CD to the surface of cylinder AF. 

Since height AF is to AB as surface AF is to surface AB, and 

as height AB is to line E, surface CD is to AF, then, by 

perturbed [proportion], surface CD will be to surface AB 
as height AF is to E; and by conversion, as the surface of 

cylinder AB is to the surface of cylinder CD, so is the line FE 

to AF (or to CD), or as AB is to E, which is the square root 

of the ratio of AB to CD; and this is what was to be proved. 

Now, if we apply what has thus been demonstrated to our 

original purpose, and assume that the silver cylinder which 
was gilded when it was no more than a foot [mezzo braccio] 
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long and three or four fingers thick, then when drawn to the 

fineness of a hair it is lengthened to forty thousand feet or 

even more, and we shall find that its surface has grown two 

hundred times over what it was originally. Hence those gold 

leaves that were assumed to be ten in number, being extended 

over a surface two hundred times as great, show us that the 

gold that covers the surface of so many feet of wire can be no 

thicker than one-twentieth [the thickness] of one ordinary 

beaten gold leaf. Now consider whether this thinness is 

possible to conceive without an enormous expansion of parts, 
and judge whether this seems to you an experience that tends 

in the direction of composition of infinitely many indivisibles 

into physical materials—though for this, there are not lacking 

other [experiences] stronger and more conclusive. 

Sagr. The proof appears to me so elegant that even if it had 

no power to persuade me of that original purpose for which 

it was adduced (though indeed for me it has), the brief time 

devoted to hearing it was well spent in any case. 

Salv. Seeing how much you enjoy these geometrical demon- 

strations, the bearers to us of secure gains, I shall give you 

the companion to this one, which settles a very curious 

question. From the above, we know what happens with two 

equal cylinders differing in height or length. It is good to 

hear also what happens with cylinders equal in surface but of 

unequal heights, meaning again the surrounding surfaces 

without those of the upper and lower bases. I say that: 

Right cylinders of which the surfaces, excluding their 

bases, are equal, have [volumes in] the ratio of their 

heights taken inversely. 

Let the surfaces of the two cylinders AE and CF be equal, 

but let the height of CD be greater than that of AB; I say that 

cylinder AE is to cylinder CF in the same ratio as is height 

CD to AB. Since the surface CF is equal to AE, the volume 

[cilindro] CF is less than AE; for if these were equal, then by 

reason of the foregoing proposition, surface CF would be 

greater than surface AE, and even more so if cylinder CF 

were greater than AE. Take cylinder /D equal to AE; then, 

by the foregoing, the surface of cylinder JD is to the surface 

of AE as the height /F is to the [geometric] mean between /F 

and AB. But it is given that surface AE is equal to CF; and 

surface JD having to CF the same ratio as the height /F to 

CD, it follows that CD is the mean proportional between 

IF and AB. Furthermore, the cylinder /D being equal to 
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cylinder AE, both have the same ratio to cylinder CF. But JD 

is to CF as height JF is to CD; hence cylinder AE is to cylinder 

CF in the same ratio as line /F to CD; that is, as CD is to AB, 

which was the theorem. 

From this we understand the reason for an event that is 
not heard without astonishment by most people; that is, that 

if the same piece of cloth, longer one way than the other, be 

made into a sack for holding grain, as is often done by placing 

a board at the bottom, it will hold more when we use for the 

height of the sack the smaller dimension of the cloth and wrap 

the longer around the board, than if made the other way. 

For example, if the cloth is six braccia one way and twelve 

the other, it will hold more when the length of twelve is 

wrapped around a board at the bottom and the sack is six 

braccia high, than if the enclosed circumference is six braccia 

and the height is twelve. 

Now to this general information that there is greater 

capacity the former way than the latter, there is added from 

what hasjust been proved the specific and particular knowledge 

[scienza] of how much more is held. The sack will hold more 

to the extent that it is lower, and less to the extent that it is 

higher. In specific measures, if the cloth is twice as long as it 

is wide, then sewn lengthwise it will hold half as much as the 

other way. Similarly, using a straw mat to make a basket, 

say [a mat] twenty-five braccia long and seven in width, 

then when rolled lengthwise it will hold only seven of those 

measures of which it will hold twenty-five when rolled the 

other way. 

Sagr. And so, to our particular pleasure, we go on acquiring 

curious and useful knowledge. But in this last proposition, 

I doubt whether among people who lack knowledge of 

geometry you would find four in a hundred who would not 

be mistaken at first, [thinking] that bodies contained inside 

equal surfaces are equal in all respects. They make the same 

error when speaking of surfaces; for in determining the sizes 
of different cities, they often imagine that everything is known 

when the lengths [quantita] of the city boundaries are given, 

not knowing that one boundary may be equal to another, 

while the area contained by one may be much greater than 

that in the other. This happens not only with irregular surfaces, 

but also among regular ones, where those which have more 

sides are always more spacious [for the same perimeter] 

than those having fewer sides. Ultimately the circle, as a 
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polygon of infinitely many sides, is the most capacious of all 

polygons of equal circumference. I recall having seen the 

proof of this with particular satisfaction when I was studying 

the Sphere of Sacrobosco and an added learned commentary.*° 

Salv. Very true: I also saw this passage, and had occasion 

to discover therefrom a unique and brief proof that the circle 
may be concluded to be the greatest of all regular isoperimetric 

figures, while among the others, those with more sides are 

greater than those with fewer. 
Sagr. I take such delight in proven propositions and selected 

demonstrations that depart from the trivial that I beg you 

to share this with me. 
Saly. I hasten to prove to you briefly the following theorem: 

The circle is the mean proportional between any two 

similar regular polygons of which one is circumscribed 

about it and the other is isoperimetric to it. Also, the 

circle being less than all circumscribed [figures], it is 

nevertheless the greatest of all isoperimetric [figures]. And 

among the circumscribed [polygons], those that have 

more angles are smaller than those that have fewer; on 

the other hand, among isoperimetric [polygons], those 

having more angles are the greater. 

Take two similar polygons, A and B; let A be circumscribed 

about circle A, and let B be isoperimetric to this circle; I 

say that the circle is the mean proportional between them. 

Draw radius AC. The circle [A] is equal [in area] to that 

right triangle of which one side is the radius AC and the other 

is equal to the circumference; likewise, the polygon 4 is equal 

to the right triangle that has one side equal to AC and the 

other to the perimeter of the polygon; hence it is evident that 

the circumscribed polygon has to the circle the same ratio 

that its perimeter has to the circumference of this circle, or 

to the perimeter of polygon B, which was assumed equal to 

that circumference. But polygon A is to B as the square 

of the ratio of its perimeter to the perimeter of B, these being 

similar figures; hence the circle A is the mean proportional 

between the polygons A and B. Since polygon 4 is greater than 

35. The work mentioned, written in the thirteenth century, survives in 
many manuscript copies, and was repeatedly published; Galileo himself 
lectured on it at Padua as the standard elementary text on astronomy. The 

learned commentary mentioned here was written by Christopher Clavius 
(1537-1612), Jesuit mathematician at Rome and an early correspondent 

of Galileo’s. See Clavius, In sphaeram Ioannis De Sacro Bosco commentarius 
(Rome, 1581), p. 81. 
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circle A, it is manifest that this circle A is greater [in area] 

than its isoperimetric polygon, B, and hence it is the greatest 

of all regular polygons to which it is isoperimetric. 

As to the other part, we must prove that of polygons 

circumscribed around the same circle, that with fewer sides 

is greater than that with more sides; while on the other hand, 

of all isoperimetric polygons, that with more sides is greater 

than that with fewer sides. These [propositions] we prove thus. 

To the circle of radius OA and center O, draw the tangent 

AD; let AD be the half-side of the circumscribed pentagon, 

and AC the half-side of the hectagon. Draw lines OGC and 

OFD, and taking O as center and OC as radius, describe the 

arc ECI. Since triangle DOC is greater than sector EOC, 

and sector CO/is greater than triangle COA, triangle DOC will 

have a greater ratio to triangle COA than sector EOC has 

to sector COJ, that is, than sector FOG to sector GOA. By 

composition and permuting, triangle DOA will have to sector 

FOA a greater ratio than triangle COA has to sector GOA, 

and ten triangles DOA will have to ten sectors FOA a greater 

ratio than fourteen triangles COA have to fourteen sectors 

GOA. Thus the circumscribed pentagon will have a greater 

ratio to the circle than will the hectagon, and hence the 

pentagon will be greater than the hectagon. 

Now take a hectagon and a pentagon that are both 

isoperimetric to the same circle; I say that the hectagon is 

greater than the pentagon. For the same circle is a mean 

proportional between the circumscribed pentagon and the 
isoperimetric pentagon, and is likewise the mean proportional 

between the circumscribed and the isoperimetric hectagon. 

It has been proved that the circumscribed pentagon is greater 

than the circumscribed hectagon; hence this pentagon will 

have a greater ratio to the circle than [will] the hectagon. 

That is, the circle will have a greater ratio to its isoperimetric 

pentagon than to its isoperimetric hectagon; therefore the 

pentagon is less than the isoperimetric hectagon, which was 

to be proved. 
Sagr. A very refined proof, and most acute,~° and one 

which at first glance seems to contain a sort of contradiction, 

since the reason for which the polygon of more sides is greater 

than its isoperimetric of fewer sides comes from the circum- 
scribed of more sides being less than the circumscribed of 

36 

36. The remainder of this sentence was added in the margins of Galileo’s 
copy of the printed book. 

104 



105 

64 Galileo, Opere, VIII (104—105) 

fewer sides. But where did we go astray, engulfing ourselves 

in geometry? We were about to consider the difficulties put 

forth by Simplicio, which truly need close attention—especially 

that of condensation, which seems very hard to me. 

Saly. If condensation and rarefaction are opposing changes 

[moti], then wherever great rarefaction is found, condensation 

no less enormous cannot be denied. We see daily immense 

rarefaction; and what is still more remarkable, this is almost 

instantaneous. I refer to the boundless rarefaction of a small 

amount of gunpowder, when it is resolved into a vast bulk of 

fire. And what of the almost unlimited expansion of [its] light? 

If that fire and that light were to be reunited—which is not 

impossible, seeing that they previously took up so little 

space—what a condensation that would be! Reasoning thus, 

you will find thousands of like rarefactions, which are more 

readily observed than are condensations, since materials that 

are dense to begin with are more tractable and more [readily] 

subjected to our senses. We can handle wood, and see it 

resolved into fire and light; but we do not thus see fire and 

light condensed to constitute wood. We see fruits, flowers, 

and a thousand other solid materials resolved (as a general 

rule) into odors; but we do not observe odorous atoms 

coming together in the constitution of scented solids. 

But where we lack sensory observations, their place may 

be supplied by reasoning, which is able to make us no less 

capable of understanding the change [moto] of solids by 

rarefaction and resolution than [the change] of tenuous and 

rare substances by condensation. We shall investigate the 

possibility of condensation and rarefaction by theorizing 

how they can happen in bodies capable of being rarefied 

and condensed without [our] introducing the void and an 

interpenetration of bodies. This leaves open the possibility 

that materials may exist in nature that exclude those things, 

and hence do not involve events that you call contradictory 

and impossible. Finally, Simplicio, out of respect for you 

and the rest of your friends the most learned philosophers, 

I have worked out a theory of condensation and rarefaction 

in which these can be understood to take place without 

assuming interpenetration of bodies and [at the same time] 

without introducing void spaces, since those are effects that 

you despise and abhor—though if you would but concede 

them, I [for my part] should not oppose them so stubbornly.>’ 

37. Here Galileo seems to incline toward the assumption of minute 
natural voids rather than point-voids; cf. notes 10, 15, and 32, above. 
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Hence you may either grant those contradictions, or welcome 

my theories, or find others that are more suitable. 

Sagr. In the denial of interpenetration I am completely on 

the side of the Peripatetic philosophers. With regard to the 

void, I should like to hear judiciously weighed the demon- 

stration with which Aristotle refutes it, and that with which 

you, [Salviati], oppose him. Do me the favor, Simplicio, of 

providing Aristotle’s proof exactly; and you, Salviati, shall 
reply to it. 

Simp. As I recall it, Aristotle does battle against some 

ancients who introduced the void as necessary for motion, 

saying that no motion could exist without it. Aristotle, 

opposing this [view], proves that on the contrary, the occur- 

rence of motion, which we see, destroys the supposition of 

the void; and these are his steps.*® He makes two assumptions; 

one concerning moveables differing in heaviness but moving 

in the same medium, and the other concerning a given 

moveable moved in different mediums. As to the first, he 

assumes that moveables differing in heaviness are moved 

in the same medium with unequal speeds, which maintain to 

one another the same ratio as their weights [gravita]. Thus, 

for example, a moveable ten times as heavy as another, is 

moved ten times as fast. In the other supposition he takes 

it that the speeds of the same moveable through different 
mediums are in inverse ratio to the crassitudes or densities of 

the mediums. Assuming, for example, that the crassitude of 

water is ten times that of air, he would have it that the speed 

in air is ten times the speed in water. 

From this second supposition he derives his proof [against 

the void] in this form: Since the tenuity of the void exceeds 

by an infinite interval the corpulence, though most rare 

[sottilissima], of any filled medium [mezzo pieno], every 

moveable that is moved through some space in some time 

through a filled medium must be moved through the void 

in a single instant; but for motion to be made instantaneously 
is impossible; therefore, thanks to motion, the void is 

impossible. 

Salv. This argument is seen to be ad hominem; that is, it 
goes against those who would have the void as necessary 

for motion. Hence if I accept the argument as conclusive 

and grant that motion does not take place in the void, the 

supposition of the void taken absolutely, and not just in 
relation to motion, is not thereby destroyed. 

38. See Physicu 215a.24-216a.21; De caelo 301b. 
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But to say what those ancients [attacked by Aristotle] would 

perhaps reply, so that we may better judge the conclusiveness 

of Aristotle’s argument, I think it possible to go against 

his assumptions and deny both of them. As to the first one, 

I seriously doubt that Aristotle ever tested [sperimentasse] 

whether it is true that two stones, one ten times as heavy as 

the other, both released at the same instant to fall from a 

height, say, of one hundred braccia, differed so much in 

their speeds that upon the arrival of the larger stone upon the 

ground, the other would be found to have descended no 

more than [né anco] ten braccia. 
Simp. But it is seen from his words that he appears to have 

tested this, for he says ‘““We see the heavier...” Now this 

“We see” suggests that he had made the experiment [/atta 

l’esperienza]. 

Sagr. But I, Simplicio, who have made the test, assure you 

that a cannonball that weighs one hundred pounds (or two 

hundred, or even more) does not anticipate by even one 
span the arrival on the ground of a robinet ball weighing only 

half [as much],*” both coming from a height of two hundred 

braccia. 

Salv. But without other experiences, by a short and 

conclusive demonstration, we can prove clearly that it is not 

true that a heavier moveable is moved more swiftly than 

another, less heavy, these being of the same material, and 

in a word, those of which Aristotle speaks. Tell me, Simplicio, 

whether you assume that for every heavy falling body there 

is a speed determined by nature such that this cannot ‘be 

increased or diminished except by using force or opposing 

some impediment to it. 

Simp. There can be no doubt that a given moveable in a 

given medium has an established speed determined by nature, 

which cannot be increased except by conferring on it some 

new impetus, nor diminished save by some impediment that 

retards it.*° 
Salv. Then if we had two moveables whose natural speeds 

39. The text reads Moschetto, usually meaning musket, but moschetto da 
gioco meant robinet, a kind of small cannon. The intent here was to indicate a 
cannon ball half the weight of another of 100, 200, or more pounds. Hence 
robinet must have been intended, not musket. 

40. This position is more extreme than the usual Peripatetic interpretation 
at the time. The essentials of Galileo’s argument had been given in his early 
treatise On Motion, pp. 29-30 (Opere, I, 265-66). G.B. Benedetti (1530-90) 
had previously argued that two united bodies would not change speed if 
separated during free fall; see Mechanics in Italy, p. 206. 
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were unequal, it is evident that were we to connect the slower 

to the faster, the latter would be partly retarded by the slower, 

and this would be partly speeded up by the faster. Do you 
not agree with me in this opinion? 

Simp. It seems to me that this would undoubtedly follow. 

Saly. But if this is so, and if it is also true that a large stone 

is moved with eight degrees of speed, for example, and a 

smaller one with four [degrees], then joining both together, 

their composite will be moved with a speed less than eight 
degrees. But the two stones joined together make a larger 

stone than that first one which was moved with eight degrees 

of speed ;*! therefore this greater stone is moved less swiftly 

than the lesser one. But this is contrary to your assumption. 

So you see how, from the supposition that the heavier body 

is moved more swiftly than the less heavy, I conclude that 

the heavier moves less swiftly. 

Simp. | find myself in a tangle, because it still appears to 

me that the smaller stone added to the larger adds weight to 

it; and by adding weight, I don’t see why it should not add 

speed to it, or at least not diminish this [speed] in it. 

Salv. Here you commit another error, Simplicio, because 

it is not true that the smaller stone adds [accresca] weight to 

the larger. 

Simp. Well, that indeed is beyond my comprehension. 

Salv. It will not be beyond it a bit, when I have made you 

see the equivocation in which you are floundering. Note that 

one must distinguish heavy bodies put in motion from the 

same bodies in a state of rest. A large stone placed in a balance 

acquires weight with the placement on it of another stone, and 

not only that, but even the addition of a coil of hemp will 

make it weigh more by the six or seven ounces that the hemp 

weighs. But if you let the stone fall freely from a height with 

the hemp tied to it, do you believe that in this motion the 

hemp would weigh on the stone, and thus necessarily speed 
up its motion? Or do you believe it would retard this by 

partly sustaining the stone? 

We feel weight on our shoulders when we try to oppose 

41. A marginal addition in Galileo’s copy of the book changes the rest 
of this sentence to read “‘... therefore this composite (though it is greater 

than that first [stone] alone) will be moved more slowly than the first alone, 
which is lesser.’’ He probably had noticed that it is not logically justified to 
call two stones tied together ‘ta greater stone” under the Aristotelian rule 
as set forth by Simplicio; for this is not one stone, but still two, each endowed 
with its own rule of motion governed by weight. 
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the motion that the burdening weight would make; but if 

we descended with the same speed with which such a heavy 

body would naturally fall, how would you have it press and 

weigh on us? Do you not see that this would be like trying 

to lance someone who was running ahead with as much 

speed as that of his pursuer, or more? Infer, then, that in 

free and natural. fall the smaller stone does not weigh upon 

the larger, and hence does not increase the weight as it does 

at rest. 
Simp. But what if the larger [stone] were placed on the 

smaller? 

Salv. It would increase the weight if its motion were faster. 

But it was already concluded that if the smaller were slower, 

it would partly retard the speed of the larger so that their 

composite, though larger than before, would be moved less 

swiftly, which is against your assumption. From this we 

conclude that both great and small bodies, of the same specific 

gravity, are moved with like speeds.** 
Simp. Truly, your reasoning goes along very smoothly; 

yet I find it hard to believe that a birdshot must move as swiftly 

as a cannonball. 

Salv. You should say “‘a grain of sand as [fast as] a mill- 

stone.” But I don’t want you, Simplicio, to do what many 

others do, and divert the argument from its principal purpose, 

attacking something I said that departs by a hair from the 

truth, and then trying to hide under this hair another’s fault 

that is as big as a ship’s hawser. Aristotle says, “A hundred- 

pound iron ball falling from the height of a hundred braccia 

hits the ground before one of just one pound has descended 

a single braccio.” I say that they arrive at the same time. 

You find, on making the experiment,** that the larger an- 
ticipates the smaller by two inches; that is, when the larger 

one strikes the ground, the other is two inches behind it. 

And now you want to hide, behind those two inches, the 

ninety-nine braccia of Aristotle, and speaking only of my 

tiny error, remain silent about his enormous one. 

Aristotle declares that moveables of different weight are 

moved (to the extent this depends on heaviness) through 

42. Mention of specific gravity appears superfluous here, but it is not: 
the discussion thus far required comparison of bodies of the same material. 
It was only after discussing resistance of the medium that an unqualified 
statement could be made; see note 50, below. 

43. The words ‘‘on making the experiment” had been inserted in Galileo’s 
own hand in the Pieroni MS, but were not printed in the 1638 edition. 
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the same medium with speeds proportional to their weights. 
He gives as an example moveables in which the pure and 

absolute effect of weight can be discerned, leaving aside 

those other considerations of shapes and of certain very 

tiny forces [momenta], which introduce great changes 

[alterazione] from the medium, and which alter the simple 

effect of heaviness alone. Thus one sees gold, which is most 

heavy, more so than any other material, reduced to a very 

thin leaf that goes floating through the air, as do rocks crushed 

into fine dust. If you wish to maintain your general pro- 

position, you must show that the ratio of speeds is observed 
in all heavy bodies, and that a rock of twenty pounds is 

moved ten times as fast as a two-pound rock. I say this is 

false, and that in falling from a height of fifty or a hundred 

braccia, they will strike the ground at the same moment. 

Simp. Perhaps from very great heights, of thousands of 

braccia, that would follow which is not seen at these lesser 

heights. 

Salv. If that is what Aristotle meant, you saddle him with 

a further error that would be a lie. For no such vertical heights 

are found on earth, so it is clear that Aristotle could not 

have made that trial; yet you want to persuade us that he 

did so because he says that the effect ‘is seen.”’** 
Simp. Well, the fact is that Aristotle did not make use of 

this rule [to refute the void], but of the other one, which, 

I believe, does not labor under these difficulties. 

Salv. The other [rule] is no less false than this one, and I 

marvel that you yourself do not see through its fallacy and 

infer that if it were true that in mediums of different subtlety 
and rarity and yielding differently, such as water and air 

44. A different version of this speech appears in the Pieroni MS, as follows: 
““Salv. If Aristotle had meant this, you would be burdening him with two 

more errors, whereas I remove two of the three because he did not actually 

commit them. One of the two [that you would add] would amount to a lie; 
for no such vertical heights are found on earth, so it is clear that Aristotle 
could not have made that trial. Yet (you say) he wants to persuade us that 

because he says the effect ‘is seen,’ he did make the experiment. The other 
error would be that if he introduced these considerations of ratios of speeds 
which hold for filled mediums, then in order to come to show the contradic- 

tions that would follow from their maintenance in void spaces [mezzi vacui, 

void mediums], and since such [ratios] are found only in mediums of 

immeasurable depths of thousands of braccia, he could not have concluded 
any more than that enormous void spaces cannot be found in nature—or 
at any rate [that they] are not found where heavy bodies do ordinarily move; 
a conclusion which, so far as I know, would be conceded to him by those 

ancients as well as by all modern philosophers.” 
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for example, the same moveable were moved more swiftly 

in air than in water, in the ratio of the rarity of air to that of 

water, it would follow that every moveable falling in air 

must also descend in water. But that is false, since many 

bodies fall through air that do not descend in water, but 

rise upward. 
Simp. 1 fail to see how that must follow; and besides, I 

say that Aristotle speaks of those heavy moveables that 

descend in both mediums; not of those that fall in air and 

rise in water. 
Salv. You produce defences for the Philosopher that he 

absolutely would not adduce, in order not to aggravate 

his original mistake. Tell me whether the materiality 
[corpulenza] of water, or whatever it may be that retards 

motion, has some ratio to the materiality of air, that retards 

it less; and if it does, assign that ratio at your pleasure. 

Simp. It does have, and let us assume that the ratio is ten 

to one, so that therefore the speed of a heavy body that 

descends in both elements is ten times as slow in water as 
in air. 

Salv. Next, take one of those heavy bodies that go down- 

ward in air, but do not in water; say, a wooden ball. I ask 

you to assign to this whatever speed you please for its descent 

through air. 

Simp. Let us assume that it moves with twenty degrees of 

speed. 

Salv. Very well. It is manifest that this speed has to some 

lesser speed that ratio which the materiality of water has to 
that of air; this speed is only two degrees. Thus, to go down 

the line in agreement with Aristotle’s assumption, one must 

conclude that the wooden ball which, in its descent through 
air that is ten times as yielding as water, is moved at twenty 

degrees of speed, will descend through water with two [degrees 

of speed], and not come floating up from the bottom as in 

fact it does. Unless, of course, you mean that for wood, 

to rise in water is the same thing as to fall with two degrees 

of speed, which I do not believe. But since the wooden ball 

does not sink to the bottom, I think you will grant that some 

ball of other material can be found, different from wood, 

that will descend through water with two degrees of speed. 

Simp. No doubt something can be found, but of material 
markedly heavier than wood. 

Salv. That is what I sought. But this second ball, which 
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descends in water with two degrees of speed, will descend 
in air with what speed? You must reply, if you wish to use 

Aristotle’s rule, that it will move at twenty degrees. But 

twenty degrees of speed is assigned by you yourself to the 
wooden ball, so that both it and the other (much heavier) 

ball will be moved at the same speed through air. Now, how 

does the Philosopher square this conclusion with that other 

of his, that moveables differing in heaviness are moved in 

the same medium with speeds differing in accordance with 
their weights [gravita]? 

Without any deep thought, you cannot have failed to 

observe some frequent and palpable events, or to have 

noticed two bodies of which one will be moved in water a 
hundred times faster than the other, while in air, the faster 

of these does not outrun the other by even one part in a 

hundred. For instance, a marble egg will fall through water 

a hundred times as fast as a hen’s egg, but through air it will 

not get four inches ahead in a distance of twenty braccia. 

One heavy body that takes three hours to get to the bottom 

in ten braccia of water will pass the same [ten] in air in a 

pulse beat or two.*> From this experience it would follow 

that the density of water exceeds that of air by more than a 

thousand doubles. Yet on the other hand some other body, 

which might be a lead ball, will pass the same ten braccia 

through water in a time perhaps little more than double the 

time in which it will pass an equal space through air. From 

this second experience one would have to conclude that the 

density of water is little more than twice that of air! 

Here, Simplicio, I know very well that you understand 

there is no room for any quibble [distinzione] or reply what- 

ever. Let us conclude, then, that such an argument [as 
Aristotle’s] proves nothing against the void, and if it did, 

it would destroy only [void] spaces of perceptible size. | 

neither suppose that the ancients assumed those to occur 

in nature, nor do I assume this myself, though indeed they 

may be created by force; this is deduced from various ex- 

periences that it would take too long to adduce now. 
Sagr. Seeing that Simplicio remains silent, Ill take the 

field to say something. You have clearly demonstrated that 

it is not at all true that unequally heavy bodies, moved in 

45. The remainder of this paragraph was added in the margin of Galileo’s 
copy of the printed book, which concluded simply: “‘and one such (as for 
example, a ball of lead) will pass them in a time easily less than double.” 
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the same medium, have speeds proportional to their weights 

[gravitd], but rather have equal [speeds]. You assumed 

bodies of the same material (or rather, of the same specific 

gravity), and not (or so I think) of different density, because 

I do not believe you mean us to conclude that a cork ball 

moves with the same speed as one of lead. Moreover, you 

have demonstrated quite clearly that it is not true that the 

same moveable, in mediums of differing resistances, main- 

tains the same ratio in its speeds (or slownesses) as that of 

the resistances. It would now be a most satisfying thing to me 

to hear what ratios are observed in either case. 

Salv. The questions are good, and I have often thought 

about them. I shall tell you my reasoning, and what I have 

ultimately deduced therefrom. It is certainly not true that 

the same moveable, in mediums of differing resistance, 

observes in its speed the ratio of the yieldings of these 

mediums; still less, that moveables of different heaviness, 

in the same medium, maintain in their speeds the ratio of 

the weights, meaning also [when they have] different specific 

gravities. After assuring myself of this, I began to combine 

these two phenomena together, noting what happened with 

moveables of different heaviness placed in mediums of 

different resistances, and I found that the inequality of 

speeds is always greater in the more resistant mediums, as 

compared with those more yielding. This difference is such 

that of two moveables descending in air and differing little 

in speed of motion, one of them will be moved in water ten 

times as fast as the other; or even such that one of them may 

swiftly descend in air, and not only fail to descend in water, 

but will remain quite still there, or even move upward. Thus 

sometimes one can find some kind of wood, or a knot or 

root, that remains at rest in water but will fall swiftly in air. 

Sagr. I have tried many times, with great patience, to 

adjust a ball of wax so that it will not sink [or rise] by itself, 
adding grains of sand to it and seeking that degree of 

similarity with the weight [of an equal volume] of water 

that would hold it still in the midst of water. But with all 

my diligence I never did succeed in accomplishing this, so 

I do not know whether any solid material can be found that 
is so physically [naturalmente] similar to water in heaviness 
as, placed therein, to stay at any given place. 

Saly. In this, as in a thousand other operations, there are 

many animals more skillful than we are. Fish are good 
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evidence of this in the matter you mention, they being so 
expert in this exercise that they can at will equilibrate them- 

selves not only with ordinary water, but with waters that 
are notably different, whether by nature or through the 
advent of turbidity or saltiness, which makes a very great 

difference. They equilibrate so exactly, I say, that without 

the least movement they rest quietly at any place. This they 

do, I believe, by using the instrument given to them by 

nature for the purpose; that is, a little bladder that they 

have in their bodies which communicates with the mouth 

by a very fine tube. By means of this they can at will let out 

part of the air contained in this bladder; or, rising to the 

surface by swimming, they can draw in more [air], in this 

way rendering themselves heavier or less heavy than the 

water, and equilibrating themselves at will. 

Sagr. By using a different artifice, I once fooled some 

friends to whom I had boasted of getting that ball of wax 

into exact equilibrium with water. Having put salt water 

into the lower part of a vessel, and fresh water above this, 

I showed them the ball at rest in the middle; pushed down 

or lifted up, it would not remain, but returned to the middle. 

Salv. Nor is this experiment devoid of use; doctors in 

particular deal with the different qualities of water, and 

especially with comparisons of its lightness or heaviness, 

among other things. This they do with such a ball [as yours], 

prepared so that it cannot decide, so to speak, between 

sinking and rising in a given water. However small the 

difference in weight between two waters, if such a ball will 

descend in one, it will rise in the other. The experiment is 

so precise that the addition of just two grains of salt in six 

pounds of water will make a ball rise to the top that before 
would sink. 

I want also to say something else, in confirmation of the 

delicacy of this experiment, and at the same time as a clear 

proof that water has no resistance to divison. Not only 

does mixture with some substance heavier than water 

make a noticeable difference in its heaviness, but merely 

heating or cooling slightly will produce the same effect. 

This operation is so subtle that the introduction of a few 

drops of water that is hotter or colder than the original six 
pounds will make the [said] ball fall or rise, descending when 

hot water is added, and rising with the infusion of cold water. 

So you see how mistaken are those philosophers who would 
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have water to possess some viscosity or cohesion of parts 

that makes it resistant to division and penetration. 

Sagr. On this subject, I have seen very conclusive reasonings 

in a treatise by our Academician.*® Yet a strong doubt 

remained with me, which I do not know how to remove. 

If no tenacity and coherence exists between the parts of 

water, then how can great drops, well raised up, sustain them- 

selves without spreading and flattening, as we see especially 

on cabbage leaves?*’ 
Salv. It is true that a man who has the right answer as his 

own can resolve all objections that are raised against it, but I 

do not arrogate to myself the power to do that. Still, inability 

on my part should not detract from the clarity of truth. In the 

first place, I confess that I don’t know how that business of 

sustaining large and elevated globules of water is accom- 

plished; yet I am certain that it does not derive from any 

internal tenacity existing among their parts, so the cause of 

this effect must be situated outside. That it is not internal, 

I can confirm by another experiment than those 

previously given. 

If there were an internal cause by which the parts of that 

raised water were sustained when surrounded by air, then 

the water should be even better sustained when surrounded 

by a medium in which it has less propensity to sink than it 

has in air. Such a medium would be any fluid heavier than 

air; for example, wine. Therefore, some wine being poured 

around that globule of water, the wine should rise little by 

little without disturbing the parts of the water, stuck to- 

gether by their [supposed] internal viscosity. But that is 

not what happens. Rather, no sooner does the liquor 

[poured] around approach the globule than, without waiting 

for this to rise around it, the water comes apart and flattens, 

staying under the wine [visibly] if that is red. 
Therefore the cause of the effect is external, and perhaps 

it belongs to the surrounding air. Truly, great dissension 

is observed between air and water, which I have observed 

in another experiment, and this is that if I fill with water a 

46. See note 5, above. 

47. Galileo noted and discussed several phenomena of surface tension, 
but, perceiving that they did not depend on any internal properties of water, 
he ascribed them, as below, to a natural conflict between water and air: 
cf. Bodies in Water, pp. 33-39 (Opere, IV, 95-103); Assayer, p. 283 (Opere, 
Vile 323) 
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glass ball that has a small hole, about the size of a straw, 

and I turn it thus filled mouth downward, then, though water 

is quite heavy and prone to descend in air, and air is likewise 

disposed to rise through water, being light, they will not 
agree the one to fall by coming out through the hole, and the 

other to rise by entering it, but both remain obstinate and 

contrary. But if I present to that hole a glass of red wine, 

which is almost imperceptibly less heavy than water, we 

promptly see it slowly ascending in rosy streaks through the 

water, while water with equal slowness descends through the 

wine, without their mixing, until finally the ball will be filled 

entirely with wine, and the water will drop quite to the bottom 
of the glass below.*® 
Now, what should be said here? What is deduced from 

this but a conflict [disconvenienza] between water and air, 

obscure to me, but perhaps... 

Simp. 1 can hardly keep from laughing when I see Salviati’s 

great antipathy for antipathy, since he will not even use the 

word; yet it is very suitable for solving the problem.*? 

Salv. Well, out of courtesy to Simplicio, let that be the 
solution of our puzzle; and stopping the digression, let us 

return to our purpose. We have seen that the difference of 

speed in moveables of different heaviness is found to be 
much greater in more resistant mediums. What now? In 

mercury as the medium, not only does gold go to the bottom 

more swiftly than lead, but gold alone sinks, and all other 

metals and stones are moved upward and float in mercury. 

Yet balls of gold, lead, copper, porphyry, and other heavy 

materials differ almost insensibly in their inequality of motion 

through air. Surely a gold ball at the end of a fall through 

a hundred braccia will not have outrun one of copper by 
four inches. This seen, I say, I came to the opinion that if one 

were to remove entirely the resistance of the medium, all 

materials would descend with equal speed.°° 

48. Despite the solubility of wine in water, very little mixing actually 
takes place when the experiment is performed as described by Galileo, 
using an aperture such that water will not flow out against atmospheric 

pressure. 
49. Here Simplicio refers to a specific passage in the Dialogue, p. 410 

(Opere, VII, 436). 

50. Cf. note 42, above. The restriction as to specific gravity is now removed. 
Yet motion in a vacuum is discussed below only in terms of a “probable 

guess” because actual experiments could not be made by Galileo for want 
of the air-pump developed soon afterwards. 
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Simp. That’s a fine thing to say, Salviati. I shall never believe 

that even in the void—if indeed motion could take place there 

—a lock of wool would be moved as fast as a piece of lead. 

Salv. Gently, Simplicio; your difficulty is neither so re- 

condite nor so unforeseeable that you should imagine it not 

to have occurred to me, and that consequently I have not 

found the answer to it. Hence for my clarification and your 

own understanding, hear my reasoning. We are trying to 

investigate what would happen to moveables very diverse in 

weight, in a medium quite devoid of resistance, so that the 

whole difference of speed existing between these moveables 

would have to be referred to inequality of weight alone. Hence 

just one space entirely void of air—and of every other body, 

however thin and yielding—would be suitable for showing 

us sensibly that which we seek. Since we lack such a space, 

let us [instead] observe what happens in the thinnest and least 

resistant mediums, comparing this with what happens in 

others less thin and more resistant. If we find in fact that 

moveables of different weight differ less and less in speed 

as they are situated in more and more yielding mediums; and 

that finally, despite extreme difference in weight, their diversity 

of speed in the most tenuous medium of all (though not void) 

is found to be very small and almost unobservable, then it 

seems to me that we may believe, by a highly probable guess, 

that in the void all speeds would be entirely equal. 

Let us, then, consider what happens in air. In order to have 

some form of very light material with a well-defined surface, 

we shall take an inflated bladder. The air inside this, in air 

itself as the medium, will weigh little or nothing, for not much 

can be compressed into it. Hence the [effective] heaviness is 

merely that of the membrane itself, which will be not one 

one-thousandth the weight of a quantity of lead the size of the 

inflated bladder. Now, Simplicio, when both are released 

from a height of four or six braccia, by how much space do 

you think the lead will get ahead of the bladder in its fall? 

Though you would have made it a thousand times as swift, 

you may be sure that it will not be ahead by a triple or even 

a double [speed]. 

Simp. It may be that at the beginning of motion, that is, in 

the first four or six braccia, things will happen as you say. 

But in the course of a longer continuation, I believe that the 

lead would leave the bladder behind not just six parts in 
twelve of distance, but eight or even ten such parts. 
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Salv. I, too, believe the same, and I do not doubt that 

over very great distances the lead might go a hundred miles 
before the bladder went one mile. But, my good Simplicio, 

what you are offering me as an effect contradicting my pro- 

position only confirms it the more. I repeat that my intention 

is to explain that the cause of diverse speeds in moveables 

of different heaviness is not that different heaviness at all, 

but depends on external events, particularly on the resistance 

of the medium, in such a way that by taking that away, all 

moveables would move at the same degrees of speed.°' I 

deduce this chiefly from what you yourself now admit, and 

what is certainly true; that is, that the speeds of [two] move- 

ables very different in weight become more and more different 

as the spaces they traverse become greater and greater. This 

effect would not follow if the speeds depended on the different 

weights; for those being always the same, the ratio between 

the spaces traversed would remain always the same. But this 

is the ratio we see to be always increasing as motion continues. 

A very heavy moveable in a fall of one braccio will not get 

ahead of the lightest one by the tenth part of that distance; 

but in a fall of twelve braccia it will beat this by one-third; 

in a fall of one hundred, by ninety percent; and so on. 

Simp. This is all very well; but following in your tracks: If 

the difference of weight in moveables of different heaviness 

cannot cause the change [with distance] in the ratio of the 

speeds, because the heaviness does not change, then neither 

can the medium cause any alteration in the ratio of speeds, 

since it too is always assumed to stay the same. 

Salv. You cleverly bring against what I say an objection 

that it is imperative to resolve. I say, then, that a heavy body 

has from nature an intrinsic principle of moving toward the 

common center of heavy objects (that is, of our terrestrial 

globe) with a continually accelerated movement, and always 

equally accelerated, so that in equal times there are added 
equal new momenta and degrees of speed. This must be 

assumed to be verified whenever all accidental and external 

impediments are removed. Among these, there is one that 
we cannot remove, and that is the impediment of the filled 

medium that must be opened and moved laterally by the 

51. The plural, “degrees”, prepares for the coming discussion of accelerated 
motion. For simplicity of treatment, Galileo had dealt with free fall up to 
this point in terms of the common and Aristotelian conception of fixed natural 
speeds. 
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falling moveable. The medium, though it be fluid, yielding, 

and quiet, opposes that transverse motion now with less, and 

now with greater resistance, according as it must be slowly 

or swiftly opened to give passage to the moveable, which, 

as I said, goes by nature continually accelerating, and con- 

sequently comes to encounter continually more resistance 

in the medium.°? This means [some] retardation and diminu- 

tion in the acquisition of new degrees of speed, so that 
ultimately the speed gets to such a point, and the resistance 

of the medium to such a magnitude, that the two balance 

each other, prevent further acceleration, and bring the move- 

able to an equable and uniform motion, in which it always 

[thereafter] continues to maintain itself. Thus there is an 

increase of resistance in the medium, not because this changes 

its essence, but because of change in the speed with which 

the medium must be opened and moved laterally to yield 

passage to the falling body that is successively accelerated. 

Now since it is seen that there is very great resistance of the 

air to the small momentum of the bladder, and little to the 

great weight of the lead, I hold it to be certain that if the air 

could be entirely removed, greatly accommodating the blad- 

der but aiding the lead very little, their speeds would be 

equalized. If we then assume the principle that in a medium 

no resistance exists at all to speed of motion, whether because 

it is a void or for any other reason, so that the speeds of all 

moveables would be equal, we can very consistently assign the 

ratios of speeds of like and of unlike moveables, in the same 

and in different filled (and therefore resistant) mediums. This 

we Shall do by considering the extent to which the heaviness of 

the medium detracts from the heaviness of the moveable, 

which heaviness is the instrument by which the moveable 

makes its way, driving aside the parts of the medium. No such 

action occurs in the void [nel mezzo vacuo], and therefore no 

difference [in speed] is derived from different heaviness. And 

since it is evident that the medium detracts from tiie heaviness 

of the body contained in it to the extent of the weight of an 

equal quantity of its own material, diminishing in that ratio 

the speeds of the moveables which in a non-resistant medium 

52. Here the resistance of the medium over and above its buoyancy effect 
is first introduced. This is functionally related to the square of the velocity. 
and not to the simple speed as assumed by Galileo; see note 11 to Fourth 
Day, below. Years earlier, Galileo had argued the concept of constant ter- 
minal speed on a wholly incorrect notion of acceleration; cf. On Motion, 
pp. 104-5 (Opere 1, 332-33). 
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would remain equal (as assumed), we shall have our goal. 

Assume, then, that lead is ten thousand times as heavy as air, 

but ebony only one thousand times. From the speeds of these 

two materials, which would be equal taken absolutely (that 
is, with all resistance removed), air takes from lead one degree 

[of speed] in ten thousand, and from ebony one degree in one 

thousand, or ten in ten thousand. Hence if lead and ebony fall 

through air from any height, and would have fallen in the same 
time in the absence of retardation by the air, then the air will 

take away from the speed of lead one degree in ten thousand, 

while from ebony it will take away ten degrees. This is to 

say that dividing the height from which they fall into ten 

thousand parts, the lead will strike the ground when the ebony 
remains behind by ten, or rather nine, of the ten thousand 

parts. This means that a lead ball falling from a tower two 

hundred braccia high will be found to anticipate an ebony 

ball by less than four inches. 

The ebony weighs one thousand times as much as air, but 

an inflated bladder weighs only four times as much; so from 

the instrinsic and natural speed of ebony, air detracts one 

degree in a thousand; but from that of the bladder, considered 

absolutely, let it take one degree in four; then the ebony ball 

falling from the tower will strike the ground when the bladder 

has passed by only three-quarters of the tower. Lead is 

twelve times as heavy as water, but ivory only twice; therefore 

water takes from lead one-twelfth, but from ivory one-half 

of their equal speeds. Hence when the lead shall have de- 

scended eleven braccia in water, the ivory will have dropped 

only six. And reasoning with this rule, I believe, we shall find 

that experience fits the computation much better than it 

fits Aristotle’s rule. 
Similarly we shall find the ratio between speeds of the same 

moveable in different fluid mediums, not by comparing the 

different resistances of the mediums, but by considering the 

excesses of heaviness of the moveable over the weights of [an 

equal bulk of] the mediums. Tin is a thousand times as heavy 
as air, and ten times as heavy as water; therefore, dividing the 

absolute speed of tin into a thousand degrees, in air, which 

detracts one one-thousandth, it will move with nine hundred 

ninety-nine [degrees], but in water with only nine hundred, 

since water takes away from it one-tenth of its heaviness, and 

air, one one-thousandth. Assuming a solid that is slightly 
heavier than water, which might be, for example, a ball of 
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oak that weighs one thousand drachms, while an equal 

amount of water weighs nine hundred fifty, and that much air 

weighs but two [drachms], it is evident that putting its absolute 

speed at one thousand degrees, this will remain nine hundred 

ninety-eight in air, while in water [it will be] only fifty, 

inasmuch as water takes away nine hundred fifty of the 

thousand degrees of weight and leaves only fifty. Hence this 

solid would be moved almost twenty times as fast in air as 

in water, just as the excess of its weight over that of water 

is one-twentieth its own [weight]. 
Here we should consider that since only those materials that 

are of greater specific weight than water can move down in it— 

and these are consequently hundreds of times heavier than 

air—then when we seek the ratio of their speeds in air and 

water, we can assume without notable error that the air takes 

nothing much away from the absolute heaviness or the 

absolute speed of such materials. The excess of their weights 

over the weight of water being easily found, we shall say that 

the ratio of their speed through air to that through water is the 

same as the ratio of their total weight to its excess over the 

weight of water. For example, an ivory ball weighs twenty 

ounces, and an equal amount of water weighs seventeen; 

therefore the speed of ivory in air is to its speed in water ap- 
proximately as twenty is to three.°? 

Sagr. | have learned much in this inherently curious matter, 

about which I have often troubled my mind without gain. 

Nothing is now lacking to put these speculations into practice, 

except a method of knowing the weight of air with respect to 

that of water, and thereby to other heavy materials. 

Simp. What if it is found that air, instead of gravity, has 

levity? What must then be said of this reasoning we have been 

hearing, which otherwise is so ingenious? 

Salv. It would have to be said that it is aerial, light, and 

empty. But how can you question that air is heavy, when you 

have Aristotle’s clear text, affirming that all the elements except 

fire have heaviness, even air itself? He adds that a sign of this 

is that an inflated leather bottle weighs more than an empty 
54 one. 

53. Acceleration is again ignored and steady speed assumed at all 
distances, probably because of the great difference in the buoyancy of water 
as compared with air; cf. note 51, above. 

54. De caelo 311a.10-11. The words “except fire” are taken from the 
Pieroni MS and were not printed in 1638. 
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Simp. That a leather bottle, or a football, weighs more when 

inflated, results, I believe, from heaviness not in the air, but 

in the many thick vapors that are mixed with air here in our 

base regions. It is thanks to this, I should say, that heaviness 

increases in the leather bottle. 

Salv. I do not like your saying this, and still less should you 

make Aristotle say it. For he, speaking of the elements and 

wishing to persuade me that the element of air is heavy, tries 

to have me see this by experience; if his proof were to say: 

‘Take a leather bottle and fill it with gross vapors, and observe 

that its weight increases,” I should tell him that it would weigh 

still more if filled with bran, adding that such experiences 

prove that bran and gross vapors are heavy, while as to the 

element of air, I remain in the same doubt as before. Aris- 

totle’s [own] experiment, though, is valid; and his proposition 

is true. But i can’t say the same of another argument (taken, 

however, merely as an indication) by some philosopher whose 

name I forget, though I know I have read this.°° The argument 
is that air is heavy rather than light, because it more readily 

carries heavy bodies downward than light ones upward. 

Sagr. That’s great, I swear. So by this argument, air will be 

much heavier than water, inasmuch as all heavy bodies are 

more readily carried downward through air than through 

water, and all light ones more readily [upward ?] in water than 

in air. Indeed,°° infinitely many materials rise through water 
that fall through air. 

But let [increased] heaviness in the [inflated] bottle exist, 

Simplicio, whether because of gross vapors or pure air; this in 

no way bars our purpose of seeking what happens to bodies 

moved in this vaporous region of ours. Getting back to 

something else that troubles me more, I should like, for 

complete instruction in the present matter, not just to rest 

assured that air is heavy (for I am convinced), but if possible, 

to know its weight. So if you have anything that will satisfy 

me on this too, Salviati, | beg you to favor me with it. 

55. Girolamo Borri (1512-92), De motu gravium et levium (Florence, 

1576), p. 231. Borri was one of Galileo’s teachers at Pisa, mentioned favourably 
in his early dialogue on motion; see Mechanics in Italy, p. 331 (Opere, 1, 

367). An experiment reported by Borri led Galileo to believe for a time that 
dense bodies move somewhat more slowly at the beginning of free fall than 

do less dense ones. 
56. Here the Pieroni MS includes an essentially redundant clause omitted 

in the printed edition: “infinitely many heavy bodies descend in air that 

ascend in water, and”. 
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Salv. Positive weight exists in air, and not lightness as 

some have believed; that is perhaps not be found in any 

material whatever. This is quite conclusively argued by the 

experience of the inflated football given by Aristotle. For 

if the quality of absolute and positive lightness existed in 

air, then when air was multiplied and compressed, the 

lightness would be increased, and with it the propensity to 

go upward; but experience shows us the opposite. As to 

your other question, concerning the method of investigating 

the weight of air, I have carried that out in the following 

manner. 
I took a large glass flask with a narrow neck to which I 

applied a leather collar, tied very tightly to the neck of the 

flask; into this was inserted and firmly tied a football-valve 

[animella da pallone] through which, by means of a syringe, 

I forced into the flask a great quantity of air; this permits 

itself to be very greatly condensed, so one can drive in two 

or three additional volumes [altri fiaschi] beyond what is 

naturally contained. Then, on a very delicate balance, I 

weighed most precisely that flask with the air compressed 

inside it, adjusting the balance with fine sand. The valve was 

then opened, giving exit to the air forcibly held in the flask, 

which was then put back on the balance and was found to be 

appreciably lighter. I took away sand from the counter- 

weight, setting it aside, until the balance came to rest, with 

the flask and the remaining sand in equilibrium. There can 

be no doubt that the weight of the sand set aside was that 

of the air forced into the flask, and afterward released. 

Up to this point, the experiment assures me only that the 

air forcibly held in the vessel weighs as much as the sand 

saved. I still do not know how much air weighs definitely 

and unequivocally, with respect to water or other heavy 

materials, and I cannot know this unless I measure the 

quantity of air compressed. For this investigation one needs 

a rule, and I have found two ways in which we can proceed. 

One of these is to take another flask, narrow-necked like 

the first, to the neck of which is tightly tied another collar 

that will receive the valve of the first, around which it is to 

be fastened with a tight knot. This second flask must have 

a [small] hole in the bottom, allowing an iron rod to be 

inserted, with which we can at will open the valve and give 

exit to the excess air in the first flask, after it has been 

weighed; and this second vessel is to be filled with water. 
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The whole apparatus thus prepared, the valve is opened by 

means of the rod; the air, coming out impetuously and 

entering the vessel of water, drives water out through the 

hole in the bottom. It is obvious that the quantity of water 

thus expelled is equal to the volume of air coming out of the 

original vessel; this water is to be saved. Weigh again the 

[first] flask, now lightened by the [escape of the] compressed 

air; it is assumed that this flask with the compressed air 

was already weighed before. The excess sand being removed 

in the way previously described, it is manifest that this gives 

the exact weight of as much air in volume as the volume of 

the water expelled and saved. By weighing that [water], we 

shall see how many times its weight contains the weight of 

the sand put aside; and without error we can say that water 

is that many times heavier than air. This will not be ten 

times, as Aristotle seems to believe, but about four hundred 

times, as shown by this experiment.°*’ 
The other method is quicker and may be carried out with 

a single flask, namely, the first one, prepared as before. 

Into this we shall [this time] not put more air beyond what 

is naturally there, but we shall drive water in without letting 

any air escape; it must yield to the incoming water and be 

compressed. Having driven in as much water as possible— 

and without much force, three-quarters of the capacity of 

the flask can be put in—we place it on the balance and weigh 

it very carefully. That done, hold the flask mouth upward 

and open the valve to free the air, of which exactly as much 
will escape as the amount of water contained in the flask. 

The air having escaped, replace the flask on the balance. It 

will be found to be lighter by the departure of air, and 

subtracting from the counterweight the excess [as before], 

from this weight we have the weight of as much air as there 

is water in the flask. 

Simp. The artifices you have invented cannot be called 

anything except subtle and ingenious; but while they seem 

to have given entire satisfaction to my mind, they confuse 

me in another direction. It is undoubtedly true that the 

elements in their own regions are neither heavy nor light; 

hence I can’t understand of that portion of air that appeared 

to weigh, say, four drachms of sand, how or where this can 

57. Galileo’s value is about one-half the correct figure. He first described 

the experiment in a letter to G.B. Baliani in 1614, where he gave the ratio 
460:1 (Opere, XII, 354). 
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really be said to have that weight in air, where the sand 

that balanced it indeed does retain its weight. So it seems 

to me that the experiment should be performed not in the 

airy element, but in some medium in which air itself can 

exert its burden [talento] of weight, if it truly has any. 

Salv. Simplicio’s objection is certainly sharp, so it must 

either be insoluble, or its solution must be equally subtle. 

It is quite clear that the air which, when compressed, is 
shown to weigh as much as the sand, being then released 

into its own element, no longer weighs [anything] there, 

while the sand still does. Hence in order to make the 

experiment [properly], we must choose a place and a medium 

where air, no less than sand, can gravitate. As we said 

before, from the weight of every material immersed in it, 

the medium detracts the weight of a volume of the medium 

equal to the volume immersed in it. Thus air takes from 

air all its weight, and in order to be performed precisely, 

the operation must be carried out in the void, where every 

heavy body exercises its moment without any diminution. 

Well then, Simplicio; if we were to weigh a quantity of air 

in the void, would you then rest satisfied and assured of 

the fact? 

Simp. Yes indeed; but this is to ask or wish for ‘the 

impossible. 

Salv. And therefore you should be very much obliged to 

me when, out of affection for you, I effect the impossible. 

But I do not want to sell you what I have already given you. 

In the experiment already adopted, we did weigh air in the 

void and not in air or any other filled medium. For from 

the volume immersed in the fluid medium, Simplicio, that 

medium subtracts weight [only] because it resists being 

opened, driven aside, and finally lifted up.°? A sign of this 
is given to us by its promptness in running immediately 

back to refill the space that the immersed bulk occupied in it, 

as soon as it leaves that space. For if it felt nothing of that 

immersion, it would not oppose it. Now, tell me: When you 

had, in air, the flask filled with the air naturally contained 

in it, what division, what driving aside, or in a word, what 

change did the surrounding external air receive from the 

58. There is an implication that if the displaced air were not eventually 
lifted, its displacement would not resist the moving body at all. Elsewhere, 

Galileo recognized repeatedly that fluids resist motion of any appreciable 
speed, quite apart from the buoyancy effect. 
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additional air that was then forced into the vessel? Did this 

_ perhaps enlarge the vessel, so that the ambient [air] had to 

withdraw a bit to yield it room? Surely not. Hence we may 

say that the new air is not immersed in the ambient; it 

occupies no space therein, and is as if it were placed in 

the void.°? Indeed, it really is so placed, transfused into 
the voids that were not filled completely by the original, 

uncondensed, air. 

I really can’t see the difference between any two situations 

of ambit and ambient in which, on the one hand, the ambient 

does not push against the ambit, and on the other hand the 

ambit does not push against the ambient. Such are the 

situations of matter in the void, and of air newly compressed 

in the flask. The weight, then, that is found in the condensed 

air is that [weight] which it would have, spread freely in the 

void. It is indeed true that the weight of the sand that counter- 

poised it, if weighed in the void rather than in open air, 

would have been a little more precise: and hence we should 

say that the air weighed is really somewhat heavier than the 

sand that balanced it; namely, by as much as an equal bulk 

of air [to that of the sand] would weigh in the void. 

Sagr.°° A very acute speculation, which contains the solution of a 

problem that seemed to partake of the miraculous. In substance, 

restricted to a few words, this shows us a way of finding the weight of 

any body weighed in a void, though we weigh it only in the filled medium 

of air. The explanation is this. Air detracts, from the absolute weight 

of every heavy body located in it, as much weight as the weight of a 

volume of air equal to the volume of the original body. Hence whoever 

could couple with the given body as much air as its own volume, with- 

out enlarging the body, would on weighing it have its absolute weight, 

that which it would have in the void, since without increasing its volume, 

there was added that very weight which is subtracted from it by air as 

the medium. Thus when in the flask already filled by the air naturally 

contained in it, a quantity of water is introduced without allowing any 

of the contained air to escape, it is manifest that the air naturally con- 

tained is restrained and condensed into a smaller volume, to give place 

to the water introduced. And it is evident that the volume of air so 

restricted is equal to the volume of the water introduced. Hence when 

one weighs in air the flask so prepared, it is evident that the weight of 

59. This very penetrating remark is promptly related by Galileo to the 
theory of condensation he had previously propounded on pp. 96 ff. ; see below. 

60. Sagredo’s speech was dictated by Galileo and inserted in his copy of 
the printed book. 
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the water is accompanied by [that of] an equal amount of air. Of the 

[total] weight, part is that of the water together with an equal amount 

of air, and this is the same weight that the water alone would have in 

the void. [To find this,] the whole vessel is weighed, and its whole weight 

is noted down. Then the compressed air is given exit, and everything 

remaining is reweighed; because of the release of air, this weight will 

be diminished. Taking the difference of the two weights, we shall have 

the weight of the compressed air that had been equal in volume to the 

water. Then taking the weight of the water alone, and adding to this 

the weight (which we noted separately) of the compressed air, we shall 

have the weight of the same water alone in the void. Next, to find the 

weight of the water [in air], empty the water from the vessel, weigh the 

vessel alone, and subtract this weight from that of the vessel plus water, 

as weighed before. It is evident that the remainder is the weight of the 

water alone, in air. 

Simp. It did seem to me that there was still something to 

be desired in the experiments adduced, but now I am entirely 

satisfied. 

Salv. What I have set forth thus far is new; especially that 

no difference of weight, however great, plays any part at all 

in diversifying the speeds of moveables, so that as far as 

speed depends on weight, all moveables are moved with 

equal celerity. At first glance, this seems so remote from 

probability that, if I did not have some way of elucidating 

it and making it clear as daylight, it would have been better 

to remain silent than to assert it. So now that it has escaped 

my lips, I must not neglect any experiment or reason that 

can corroborate it. 

Sagr. Not only this proposition, but many others of yours 

are so far from the opinions and teachings commonly 

accepted, that to broadcast them publicly will excite against 

them a great number of contradictors; for the innate condi- 

tion of men is to look askance on others working in their 

field whose studies reveal truth or falsity which they them- 

selves fail to perceive. By calling such men [as you] “‘inno- 

vators of doctrines,” a title most unpleasant to the ears of 

the multitude, they strain to cut those knots they cannot 

untie, and to demolish with underground mines those edifices 
which have been built by patient artificers, working with 
ordinary instruments. But to us, who are far from any such 
motives, the experiments and reasons adduced up to this 
point are quite satisfactory. 
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Salv. The experiment made with two moveables, as different 

as possible in weight, made to fall from a height in order 

to observe whether they are of equal speed, labors under 

certain difficulties. If the height is very great, the medium 
that must be opened and driven aside by the impetus of the 

falling body will be of greater prejudice to the small mo- 

mentum of a very light moveable than to the force of a very 

heavy one, and over a long distance the light one will remain 

behind. But in a small height it may be doubtful whether 

there is really no difference [in speeds], or whether there is 

a difference but it is unobservable. So I fell to thinking how 

one might many times repeat descents from small heights, 

and accumulate many of those minimal differences of time 

that might intervene between the arrival of the heavy body 

at the terminus and that of the light one, so that added 

together in this way they would make up a time not only 

observable, but easily observable. 

In order to make use of motions as slow as possible, in 

which resistance by the medium does less to alter the effect 

dependent upon simple heaviness, I also thought of making 

the moveables descend along an inclined plane not much 

raised above the horizontal. On this, no less than along the 

vertical, one may observe what is done by heavy bodies 

differing in weight. Going further, I wanted to be free of any 

hindrance that might arise from contact of these moveables 

with the said tilted plane. Ultimately, I took two balls, one 

of lead and one of cork, the former being at least a hundred 

times as heavy as the latter, and I attached them to equal 

thin strings four or five braccia long, tied high above. Removed 

from the vertical, these were set going at the same moment, 

and falling along the circumferences of the circles described 

by the equal strings that were the radii, they passed the 
vertical and returned by the same path. Repeating their 

goings and comings a good hundred times by themselves, 

they sensibly showed that the heavy one kept time with the 

light one so well that not in a hundred oscillations, nor in 

a thousand, does it get ahead in time even by a moment, 

but the two travel with equal pace. The operation of the 

medium is also perceived; offering some impediment to 

the motion, it diminishes the oscillations of the cork much 

more than those of the lead. But it does not make them more 

frequent, or less so; indeed, when the arcs passed by the 
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cork were not more than five or six degrees, and those of the 

lead were fifty or sixty, they were passed over in the same 

times.°! 
Simp. If that is so, why then will the speed of the lead not 

be [called] greater than that of the cork, seeing that it travels 

sixty degrees in the time that the cork hardly passes six? 

Salv. And what would you say, Simplicio, if both took the 

same time in their travels when the cork, removed thirty 

degrees from the vertical, had to pass an arc of sixty, and the 

lead, drawn but two degrees from the same point, ran through 

an arc of four? Would not the cork then be as much the 

faster? Yet experience shows this to happen. But note that 

if the lead pendulum is drawn, say, fifty degrees from the 

vertical and released, it passes beyond the vertical and runs 

almost another fifty, describing an arc of nearly one hundred 

degrees. Returning of itself, it describes another slightly 

smaller arc; and continuing its oscillations, after a great 

number of these it is finally reduced to rest. Each of those 

vibrations is made in equal times, as well that of ninety 

degrees as that of fifty, or twenty, or ten, or of four. Con- 

sequently the speed of the moveable is always languishing, 

since in equal times it passes successively arcs ever smaller 

and smaller. A similar effect, indeed the same, is produced 

by the cork that hangs from another thread of equal length, 

except that this comes to rest in a smaller number of oscilla- 

tions, as less suited by reason of its lightness to overcome the 

impediment of the air. Nevertheless, all its vibrations, large 

and small, are made in times equal among themselves, and 

also equal to the times of the vibrations of the lead. Whence 

it is true that if, while the lead passes over an arc of fifty 

degrees, the cork passes over only ten, then the cork is slower 

than the lead; but it also happens in reverse that the cork 

passes along the arc of fifty while the lead passes that of ten, 

or six; and thus, at different times, the lead will now be 

faster, and again the cork. But if the same moveables also 

pass equal arcs in the same equal times, surely one may say 

that their speeds are equal. 

61. In an earlier discussion, Galileo had avoided the assertion of exact 
isochronism for all arcs; cf. Dialogue, pp. 230, 450 (Opere, VII, 256, 475). 
The error introduced here seems to have been a deduction from the false 
assumption that air resistance is proportional to speed, rather than to its 
square; cf. note 52, above. In the Fourth Day, a different experiment is 
adduced to support this supposed isochronism (p. 277, below). 
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Simp. This reasoning seems to me conclusive, and also it 

seems it isn’t; my mind feels a kind of confusion that arises 

from the moving of both moveables now quickly, now slowly, 

and again extremely slowly, so that I can’t get it straight in 

my head whether it is true that their speeds are always equal. 

Sagr. I'd like to say a word, Salviati. Tell me, Simplicio, 

whether you grant that it may be said with absolute truth that 
the speed of the cork and that of the lead are equal every 

time that they both start at the same moment from rest and, 

moving along the same slopes, always pass equal spaces in 
equal times. 

Simp. In this there is no room for doubt; it cannot be 

contradicted. 

Sagr. Now it happens with either pendulum that it passes 

now sixty degrees, now fifty, now thirty, now ten, now eight, 

now four, now two, and so on. And when both pass the arc 

of sixty degrees, they pass this in the same time; in the arc 

of fifty, both bodies spend the same time; so in the arc of 

thirty, of ten, and the rest. Thus it is concluded that the speed 

of the lead in the arc of sixty degrees is equal to the speed of 

the cork in the same arc of sixty; and that the speeds in the 

arc of fifty are still equal to each other, and so on in the rest. 

But nobody says that the speed employed in the arc of sixty 

[degrees] is equal to that consumed in the arc of fifty, nor 

this speed to that in the arc of thirty, and so on. The speeds 

are always less in the smaller arcs, which we deduce by seeing 

with our own eyes that the same body spends as much time 

in passing the large arc of sixty degrees as in passing the 

smaller of fifty or the very small arc of ten; and in sum, that 
all arcs are passed in equal times. It is therefore true that the 

lead and the cork do go retarding their motion according to 

the diminution of the arcs, but their agreement in maintaining 

equality of speed in every arc that is passed by both of them 

remains unaltered. 

I wanted to say this to learn whether I have correctly 

understood Salviati’s idea, rather than because I believe that 

Simplicio deserved a clearer explanation than that of Salviati, 

who here, as in all things, is most lucid. Usually he unravels 

questions that seem not only obscure, but repugnant to nature 

and the truth, [and does this] by reasons, observations, or 

experiences that are well known and familiar to everyone. I 
have heard from various people that this has given occasion 

to a certain highly esteemed professor to deprecate his dis- 
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coveries [novita], holding them to be base, as depending on 

foundations too low and common—as if it were not the most 

admirable and estimable condition of the demonstrative 

sciences that they arise and flow from well-known principles, 

understood and conceded by all. 

But let us go on feasting on these light foods, assuming 

that Simplicio is now willing to assume and grant that the 

internal heaviness of different moveables has no part at all 

in diversifying their speeds, so that all, so far as weight is 

concerned, move with the same speeds. Salviati, tell us how 

you explain the sensible and obvious inequalities of motion, 

and reply to Simplicio’s objection, which I also confirm, that 

we see a cannonball fall more swiftly than a lead shot, whereas 

according to you, the difference of speed will be small. I 

counter this with some moveables of the same material, of 

which the larger will fall in less than a pulsebeat, in one 

medium, through a space that others smaller will not pass in 

an hour, or four, or twenty. These are stones, and fine sand, 

to say nothing of that dust that muddies water, a medium in 

which this does not fall through two braccia in many hours, 

through which [distance] rocks, and not very big ones at that, 

fall in a pulsebeat. 

Salv. The part played by the medium in more greatly re- 

tarding moveables according as they are less in specific gravity 

has already been explained; this occurs by the subtraction of 

weight. How a given medium can reduce speed very differently 

in bodies that differ only in size, and are of the same material 

and shape, requires for its explanation subtler reasoning than 

that which suffices to understand how a flat shape in a move- 

able, or motion of the medium against one, retards its speed. 

For the present problem, I reduce the reason to the rough- 

ness and porosity found commonly, and for the most part 

necessarily, at the surface of solid bodies. In motion, those 
irregularities strike the air or other surrounding medium, an 

evident sign of which is that we hear bodies hum when they 

fly rapidly through the air, even when rounded as thoroughly 

as possible; and they not only hum, but they are heard to 

whistle and hiss if some notable cavity or protuberance exists 

in them. It is also seen that every round solid turned on a 

lathe makes a little breeze. Again, we hear a humming, very 
high in pitch, made by a top when it spins rapidly on the 
ground. The pitch of this tone deepens as the spinning lan- 

guishes bit by bit; this also necessarily argues hindrances by 
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the air of the surface roughnesses, however tiny. It cannot 

be doubted that in the descent of moveables these [irregu- 

larities] rub against the surrounding fluid and bring about 

retardation of speed, greater as the surface is larger, as is the 

case with smaller solids in comparison with large ones. 

Simp. Wait, please, for here I begin to get confused. Al- 

though I understand and grant that friction of the medium 

with the surface of the moveable slows the motion, and that 

the slowing is greater (other things being equal) where the 

surface is larger, I do not understand on what grounds you 

call the surface of smaller solids greater. Besides, if as you 
say, a larger surface should bring about greater retardation, 

then larger solids should be slower, which is not the case. 

This objection is, however, easily removed by saying that 

although the larger has the greater surface, it also has greater 
heaviness; and against this, the impediment of greater surface 

does not surpass the impediment of a smaller surface as 

against the smaller heaviness, so that the speed of the larger 

solid does not become smaller.°? Hence I see no reason why 

the equality of speeds should be altered, for to the extent that 

the motive heaviness is diminished, the retarding property of 

the surface is diminished equally. 

Salv. I shall resolve jointly all that you oppose to me. You, 

Simplicio, assume two equal moveables of the same material 

and shape, which unquestionably do move equally fast, and 

then say that if one of these be diminished as much in heavi- 

ness as in surface, (but retaining the similarity of shape), the 

speed will not be reduced in this smaller one. 

Simp. It really seems to me that that must follow in your 

teaching, which has it that greater or less heaviness does not 

act to accelerate or retard motion. 

Salv. This I confirm, and I also grant you your dictum, 

from which it appears to me that in consequence, when 

heaviness is diminished more than is surface, some retarda- 

tion of motion is introduced into any body so reduced; and 

the more, in proportion as the diminution of weight is greater 

than the reduction of surface. 

Simp. | have no objection to this. 

Salv. Know, then, Simplicio, that one cannot diminish the 

62. What Simplicio here offers is precisely the kind of plausible verbal 
explanation that had long held back the development of accurately de- 
scriptive mathematical physics, influencing also Galileo’s early treatise 
On Motion, pp. 106 ff. (Opere, 1 333 ff.). 
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surface of a solid exactly as the weight, and still keep the 

shape similar. For manifestly, in diminishing a heavy solid, 

the weight is lessened as is the volume; and since in preserving 

similarity of shape the volume is always diminished more than 

the surface, the weight will also be reduced more than is the 

surface. But geometry teaches us that in similar solids, the 

ratio between volumes is much greater than the ratio of sur- 

faces. For your better understanding of this I shall explain 

a particular instance. 

Imagine for example a die of which the side is two inches 

long, so that one face will be four square inches, and all six 

[faces], that is, its whole surface, [will be] twenty-four square 

inches. Next, imagine that the die is sliced with three cuts 

into eight smaller dice. The side of each of them will be one 

inch, and each face one square inch, and its whole surface 

six square inches, whereas the surface of the uncut die con- 

tained twenty-four. Now you see that the surface of the little 

die is one-quarter the surface of the larger one, this being the 

ratio of six to twenty-four. But the volume of the same [cut] 

die is only one-eighth. Thus the volume, and hence the weight, 

falls off much more quickly than the surface. If you subdivide 

the little die into eight others, the whole surface of one of 

these will be one and one-half square inches, which is one- 

sixteenth of the surface of the original die, while its volume 

is only one sixty-fourth. See how in just these two divisions, 

the volumes have diminished four times as much as have the 

surfaces; and if we continue the subdivision until the original 

solid is reduced to fine powder, we shall find the weight of 

the minute atoms to be diminished hundreds and hundreds 
of times as much as their surfaces. 

What I have exemplified for you by cubes happens in all 

similar solids, the volumes of which are as the three-halves 

power of their surfaces. You see, therefore, in how much 

greater ratio the impediment of the surface contact of the 

moveable with the medium grows in small moveables than 

in larger ones. And if we add that the roughness of the tiny 

surfaces in fine powders is perhaps not any less than that of 

the surfaces of highly polished larger solids, we see how 

necessary it is that the medium be fluid, and entirely devoid 

of resistance to its being separated, if it is to give way to the 

passage of so feeble a force. And note also, Simplicio, that I 

was by no means mistaken when I said a moment ago that 

the surface of smaller solids is larger in comparison with that 
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of larger solids. 

Simp. I am quite satisfied; and you may both believe me 

that if I were to begin my studies over again, I should try to 

follow the advice of Plato and commence from mathematics, 

which proceeds so carefully, and does not admit as certain 

anything except what it has conclusively proved. 

Sagr. I liked this discussion very well, but before we pro- 
ceed I want to understand a term that is new to me. You just 

said that similar solids are to one another as “‘the three-halves 
power” of their surfaces. I saw and took in the proposition, 

with its demonstration in which it is proved that the surfaces 

of similar solids are in the doubled ratio [i.e., as the squares] 
of their sides, and the further proof that the volumes are in 
the tripled ratio [i.e., as the cubes] of the sides. But I cannot 

recall my ever having heard the ratio of solids to their surfaces 

named before. 

Salv. Well, you are replying for yourself, and answering your 

own question. For is not that which is the triple of something, 

of which another thing is double, said to be three-halves of 

that double? Now, if the surfaces are in doubled ratio of the 

lines of which the volumes are in tripled ratio, can we not say 

that the solids are as the three-halves power of the surfaces ?°? 
Sagr. 1 understand; and though some other details concern- 

ing the material treated remain for me to ask about, still, if 

we go on that way from one digression to another, we shall 

be very late in getting to the questions principally intended, 

which relate to the various phenomena of resistance by solids 
to their being broken. So if it suits both of you, we may pick 

up the original thread from which we started. 

Salv. Well said. But the things examined have been so 

varied that they have robbed us of much time, so that there 

is little left today to spend on that principal subject, which 

is full of geometrical demonstrations that must be attentively 

considered. I think it is better to put this off until tomorrow’s 

meeting, when I can bring along with me some sheets on 

which I have noted down in order the theorems and problems 

in which different essentials of that subject are set forth and 

proved. I should perhaps not call these to mind in the proper 

order by memory alone. 

63. Fractional exponents were not in general use, but this particular 
relationship of 3:2 was easy enough for Galileo’s readers to grasp by reason 
of the special Euclidean terminology for ratios of squares and cubes; see 

Glossary for ‘‘doubled ratio” and “tripled ratio,” which are “powers” in 
modern language. 
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Sagr. 1 willingly accept that counsel, the more so as in 

finishing today’s session I shall have time to hear the ex- 

planation of some questions that remain with me on the 

matters we have just dealt with. One of these is whether we 

must take the impediment of the medium [alone] as adequate 

to stop the acceleration of very heavy material in great bulk 

and spherical shape. I say “spherical” in order to take that 

which is contained within the smallest surface and is therefore 

least subject to retardation. 

Another [question] concerns the oscillations of pendulums, 

and it falls into two parts. One is whether all oscillations, 

large, medium, and small, are truly and precisely made in 

equal times. The other concerns the ratio of times for bodies 

hung from unequal threads; the times of their vibrations, I 

mean. 
Salv. The questions are good, and as happens with all 

truths, I am afraid that in dealing with either of them, other 

true and curious consequences will be drawn in. I do not 

know if we shall have time to discuss them all today. 

Sagr. If they have the flavor of those already covered, I 

should be happy to employ on them as many days, let alone 

as many hours as remain until dark. And I believe that 

Simplicio will not be wearied by such discussions. 

Simp. Certainly not; especially if they deal with physical 

questions on which no opinions or arguments of other phi- 

losophers are to be read in books. 

Salv. Then I shall take up the first, and affirm without 

doubt that there is no sphere so large, nor any material so 

heavy, that the resistance of the medium, however thin, fails 

to restrain its acceleration and bring it to uniformity of 

motion in its continuation. We have a very clear argument 

of this from experience itself. If any falling moveable were 

able, by continuing its motion [through a medium], to acquire 

any degree of speed whatever, then no speed that could be 

conferred on it by a mover external [to that medium]®* could 

be so great that the moveable would reject it and be despoiled 

of it thanks to the impediment of that medium; thus if a 

64. The limitations added in square brackets seem essential to the sense 
of the ensuing discussion, in which Galileo did not intend to deny that speed 
would increase without bound in the void. At the critical moment of entry 
into water, the speed that has been naturally acquired during fall through air 
may be (and in Galileo’s example is) too great to have been acquired during any 
fall through water. Yet some speed of entry might be small enough to be 
continued, or even increased, during the subsequent fall through water. 



Galileo, Opere, VIII (136-137) 95 

cannonball that had fallen, say, four braccia through air 

and acquired ten degrees of speed with which it then entered 

into water, and the impediment of the water were not able 

to cancel that impetus in the ball, the impetus would increase, 

or would at least continue to the bottom, which is not seen 

to happen. Indeed, the water, though not more than a few 

braccia deep, impedes and weakens the impetus so that it will 

make a very light impact on the bed of the river or lake. It 

is therefore manifest that the speed which the water was able 
to take from the ball in a short passage would never be 

permitted [by water] to be acquired even at a depth of a 

thousand braccia. And why would it permit this to be gained 

in a thousand, only to be taken away later in a few braccia? 

But what next? It is seen that the enormous impetus of the 

ball shot from the same cannon is so much abated by the 

interposition of a few braccia of water that with no damage 

to a ship, it hardly even reaches it to strike it. And air [itself], 

though very yielding, nevertheless does repress the speed of 

a falling moveable, however weighty, as we may understand 

with similar experiments. For if we should fire an arquebus 

downward from the top of a high tower,®°°> the shot would 
make a smaller dent in the ground than if we had made the 

shot from a point only four or six braccia above, a clear sign 

that the impetus with which the ball fired from the top of the 
tower comes out of the barrel is diminished in descending 

through air. Therefore no descent, from any height whatever, 

would be sufficient to make the ball acquire that impetus of 
which it is deprived by the resistance of the air, no matter 

how that impetus was conferred on it. Likewise, I believe, the 

damage done to a wall by a ball shot from a cannon twenty 

braccia distant would not be done by a ball coming vertically 

from any immense height. I believe that there is a limit to 

the acceleration of any natural moveable which leaves from 

rest, and that the impediment of the medium finally brings 

this to uniform motion in which the body is thereafter always 

maintained. 
Sagr. These experiments appear to me very much to the 

purpose, and nothing remains here except that some adver- 

sary might entrench himself behind a denial that this can be 

verified for very great and heavy bulks, [declaring] that a 

cannonball coming from the orbit of the moon, or just from 

the highest region of the air, would strike more strongly than 

65. A wad is assumed to hold the charge in place before firing. 
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one shot from a cannon. 

Salv. No doubt many things could be said in opposition, 

not all of which can be countered by experiments. In this 

refutation, however, it appears that something could be 

brought into consideration; namely, that it is highly probable 

that the heavy body falling from any height acquires that 

impetus, on arriving at the ground, which would suffice to 

drive it up to that height. This is clearly seen in a heavy 

pendulum which, drawn fifty or sixty degrees from the verti- 

cal, gains that speed and force [virtu] which precisely suffices 

to push it to an equal height, except for that little that is 

taken away by the impediment of the air. Hence to get the 

cannonball to such a height as would suffice for its acquisi- 

tion [by fall] of the impetus that is given to it by the powder 

[ fuoco] on its emerging from the cannon, it should be enough 

to shoot it vertically upward with the same cannon and then 

see, in its falling back, whether it made a blow equal to that 

of the impact made nearby in emerging [from the cannon]. 

I believe that it will not be as strong a blow by a long way; 

hence I think the speed the ball has near the mouth of the 

cannon to be such that the impediment of the air will never 

permit this [speed] to occur in natural motion starting from 

rest at any height whatever. 

Next I come to those other questions, pertaining to pen- 

dulums, a subject that may seem very dry, especially to 

philosophers who are forever occupied in the most profound 

speculations about physics. I do not mean to deprecate these 

men, inspired by the example of Aristotle himself, in whom 

I admire above all that it may be said he did not neglect any 

matter worthy of consideration, or fail to touch on it. Moved 

by your questions, I shall now tell you something of my 

thoughts pertaining to music—a most noble subject, on which 

many great men, including Aristotle himself, have written.°° 
He considers many curious problems relating to music; hence 

if from easy and sensible experiences I too shall draw reasons 

for marvelous things in the matter of sounds, I may hope that 

my discussions will be welcome to you. 

Sagr. Not just welcome, but highly desired by me at least, 

as one who is delighted by all musical instruments. Having 

philosophized much about the consonances, I have always 

remained puzzled and perplexed by them, inasmuch as one 
pleases and delights me far more than another, while some 

66. Aristotle, Problemata, Bk. XIX. 
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not only fail to delight, but actually offend me. Then there 

is the old problem of the two strings tuned in unison, of which 

one moves and audibly resounds to the sound of the other. 

I am unresolved about this, as I am also unclear about the 

forms of the consonances, and other particulars.°’ 
Salv. We shall see whether these pendulums of ours can 

bring some satisfaction to all these difficulties. As to the prior 
question, whether the same pendulum makes all its oscilla- 

tions—the largest, the average, and the smallest—in truly and 

exactly equal times, I submit myself to that which I once 

heard from our Academician. He demonstrated that the 

moveable which falls along chords subtended by every arc 
[of a given circle] necessarily passes over them all in equal 

times, as well that [chord] subtended by one hundred eighty 

degrees, which is the whole diameter, as those subtended by 

one hundred, by sixty, by ten, two, one-half, and by a few 

minutes [of arc]. It is understood that all [these arcs] end at 

the lowest point [of the circle], touching the horizontal plane. 

Now, as to descents along arcs of these chords rising from 

the horizontal, experience likewise shows us that all those not 

exceeding ninety degrees, or a quarter-circle, are passed in 

equal times, shorter, however, than the times of passage 

along the chords. This effect contains something of the 

miraculous, since at first glance it seems that the opposite 

should happen. [The paths] having in common their points 

of beginning and ending of motion, and the straight line being 

the shortest that lies between the same ends, it seems reason- 

able that the motion made along the straight line would have 

to be completed in the shortest time. This is not the case; the 

shortest time, and hence the swiftest motion, is that which is 

made along the arc of which the straight line is the chord. 

As to the ratio of times of oscillation of bodies hanging 

from strings of different lengths, those times are as the square 

roots of the string lengths; or we should say that the lengths 

are as the doubled ratios, or squares, of the times. Thus if, 

67. The ‘forms’? meant were the numerical ratios traditionally associated 
with musical consonances. The octave, fifth, and fourth were associated 
with the ratios 2:1, 3:2, and 4:3. Imperfect consonances, not all of which 
were accepted by all theorists, included the major and minor third and sixth 
as 5:4, 6:5, 5:3, and 8:5. Galileo’s father, Vincenzio Galilei (1520-90), was 

responsible for many of the experiments and results brought against numerical 
“forms” by Galileo, especially those he placed in the mouth of Sagredo. 
Vincenzio had ridiculed mathematical speculations about pure forms, 
contending that the trained ear is the only proper criterion of musical 

consonance. 
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for example, you want the time of oscillation of one pendulum 

to be double the time of another, the length of its string must 

be four times that of the other; or if in the time of one vibra- 

tion of the first, another is to make three, then the string of 

the first will be nine times as long as that of the other. It 

follows from this that the lengths of the strings have to one 

another the [inverse] ratio of the squares of the numbers of 

vibrations made in a given time.°® 
Sagr. Then, if I understood correctly, I can easily know the 

length of a string hanging from any great height, even though 

the upper end of the attachment is out of my sight, and I see 

only the lower end. For if I attach a heavy weight to the 

string down here, and set it in oscillation back and forth; and 

if a companion counts a number of its vibrations, while at 

the same time I likewise count the vibrations made by another 

moveable hung to a thread exactly one braccio in length, I 

can find the length of the string from the numbers of vibra- 

tions of these two pendulums during the same period of time. 

For example, let us assume that in the time my friend has 

counted twenty vibrations of the long string, I have counted 

two hundred forty of my thread, which is one braccio long. 

Then after squaring the numbers 20 and 240, giving 400 and 

57,600, I shall say that the long string contains 57,600 of those 

units [misure] of which my thread contains 400; and since my 

thread is a single braccio, I divide 57,600 by 400 and get 144, 

so 144 braccia is the length of the string. 

Salv. Nor will you be in error by a span, especially if you 

take a very large number of vibrations. 

Sagr. You often give me occasion to admire the richness 

of nature and her great liberality, when from such common 

things, or I might even say such base ones, you draw new 

and curious knowledge that is often far beyond my imagining. 

A thousand times I have given attention to oscillations, in 

particular those of lamps in some churches hanging from very 

long cords, inadvertently set in motion by someone, but the 

most that I ever got from such observations was the impro- 

bability of the opinion of many, who would have it that 

motions of this kind are maintained and continued by the 

medium, that is, the air. It would seem to me that the air 

must have exquisite judgment and little else to do, consuming 

hours and hours in pushing back and forth a hanging weight 

68. See note 74, below; Galileo’s omission here of the word “inverse” 
was noted by Viviani. 
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with such regularity. And now I learn that a given moveable, 

hung from a cord one hundred braccia long, and drawn from 

its lowest point now ninety degrees and again but one degree, 

or half a degree, would consume as much time in passing this 

smallest arc as that maximum arc. I certainly do not believe 

that I would ever have discovered this, which still seems to 

me to have in it something of the impossible. Now I wait to 

hear how these same simple minutiae provide me with reasons 

that can set my mind at least partly at rest concerning musical 
problems. 

Salv. First of all, it is necessary to note that each pendulum 

has its own time of vibration, so limited and fixed in advance 

that it is impossible to move it in any other period than its 

own unique and natural one. Take in hand any string you 

like, to which a weight is attached, and try the best you can 

to increase or diminish the frequency of its vibrations; this 

will be a mere waste of effort. On the other hand, we confer 

motion on any pendulum, though heavy and at rest, by merely 

blowing on it. This motion may be made quite large if we 

repeat our puffs; yet it will take place only in accord with 

the time appropriate to its oscillations. If at the first puff we 
shall have removed it half an inch from the vertical, by adding 

the second when, returned toward us, it would commence 

its second vibration, we confer a new motion on it; and thus 

successively with more puffs given at the right time (not when 

the pendulum is going toward us, for thus we should impede 

the motion and not assist it), and continuing with many 

impulses, we shall confer on it impetus such that much greater 

force than a breath would be needed to stop it. 

Sagr. As a boy, I observed that with impulses given at the 

right time, one man alone could ring a very large bell, and 

in trying to stop it later, several men would take hold of the 

rope and all of them would be lifted up into the air; nor 
could many men together [immediately] arrest the impetus 

that one man alone had conferred on it by regular, pulls. 

Salv. Your example explains my meaning no less acutely 

than my prefatory remarks fit in with the answer to that 

remarkable problem of the zither- or harpsichord-string that 

moves and even resounds, and not only with one in unison 

and concord, but also with its octave and fifth. The cord 

struck begins and continues its vibrations during the whole 

time that its sound is heard; these vibrations make the air 

near it vibrate and shake; the tremors and waves [increspa- 
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menti] extend through a wide space and strike on all the 

strings of the same instrument as well as on those of any 

others nearby. A string tuned in unison with the one struck, 

being disposed to make its vibrations in the same times, 

commences at the first impulse to be moved a little; the 

second, third, twentieth, and many more [impulses] being 

added, all in exact periodic times, it finally receives the same 

tremor as that originally struck, and its vibrations are seen to 

go widening until they are as spacious as those of the mover. 

This wave action [ondeggiamento] that expands through the 

air moves and sets in vibration not only other strings, but 

any other body disposed to tremble and vibrate in the same 

time as the vibrating string. If you attach to the base of the 

instrument various bits of bristle or other flexible material, 

it will be seen that when the harpsichord is played, this little 

body or that one trembles according as that string shall be 

struck whose vibrations are made in time with it. The others 

are not moved at the sound of this string, nor does the one 

in question tremble to the sound of a different string. If a 
thick viola-string is strongly bowed near a cup of thin and 

delicate glass, and the tone of the string is in unison with that 

of the goblet, the latter will shake and sensibly resound. The 

fuller waving of the medium close to the resonant body is 

easily seen by making the goblet sound when it contains 

water, by rubbing the ball of the finger on its edge. The 

contained water is seen to become wavy in a regular order, 

and the effect is still better seen by holding the base of the 

goblet on the base of some much larger vessel in which there 

is water almost up to the brim of the goblet. This being again 

made to resound by friction of the finger, this regular waving 

in the water will be seen to spread with great speed to a good 

distance around the goblet. Sounding in this way a very large 

vessel almost full of water, I have often seen waves formed 

in the water with extreme regularity; and sometimes it happens 

that the tone of the goblet jumps one octave higher, at which 

moment I have seen each of the waves divided in two; an 

event that very clearly proves the form of the octave to be 

the double [ratio]. 

Sagr. The same has happened for me more than once, to 

my delight, and to my profit also, since I had long been 
perplexed about the [ideal] forms of the consonances. It 
seemed to me that the reason ordinarily adduced for it by 

authors that have written on music up to the present was 
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insufficiently conclusive. They say that the diapason, or octave, 

is contained in the double [ratio]; the diapente, which we call 
the [perfect] fifth, by the sesquialter [three-to-two] ratio; 

and so on. Their reason is that when a string is stretched on 

the monochord, and sounded first entire and then in the half, 

by placing the bridge at the center, one hears the octave; when 

the bridge is placed at one-third the whole [length of the] 

string, and the whole string is sounded against two-thirds of 

it, the fifth is heard; hence, they say, the octave is embraced 

between two and one, and the fifth between three and two. 

This reasoning, I say, did not seem conclusive to me in 

assigning by law the double and the sesquialterate as the 

natural forms of octave and fifth, my idea being as follows. 
There are three ways in which the pitch of a string can be 

raised. One is to shorten it; another is to stretch, or let us 

say pull, it more; the third is to make it thinner. If we keep 

the same tension and thickness of string, and want to hear 

the octave, we must shorten the string by half; that is, strike 

it and then its half. Keeping the same length and thickness, 

however, if we wish to make it rise an octave by pulling it 

harder, it will not suffice to pull twice as hard, but one needs 

four times [the tension]; thus if at first it was pulled by a 

one-pound weight, it will be necessary to attach four [pounds] 

to raise it one octave. Finally, if we keep the same length and 

tension, and want a string that will give the octave by being 

thinner, we must retain only one-fourth the thickness of the 

deeper string. 

What I say of the octave—that is, that its form [when] 

derived from the tension or the thickness of string is in 

squared ratio of that which we have from its length—is to 

be understood of all the musical intervals. For what a length 

in three-halves ratio gives us, as when we sound the whole 

and then two-thirds, may be derived from tension or from 

thinness, but this requires the square of the three-halves ratio, 

taking that of nine to four. Thus if the lower string is stretched 

by four pounds of weight, not six but nine must be attached 
to the higher string; and as to thickness, to get the fifth, the 

lower string must be to the higher one in the ratio of nine 

to four.°? These being true experiments, I saw no reason why 

69. This relationship had been discovered experimentally by Vincenzio 
Galilei, who published it in 1589. It may be the first physical law to have 

been discovered by systematic experiment for the purpose of overthrowing 
a previously accepted mathematical rule. 
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wise philosophers should have established the form of the 

octave as the double [ratio] any more than as the quadruple, 

or that of the fifth as three-halves rather than nine-fourths. 

But inasmuch as it is quite impossible to count the vibra- 

tions of a sounding string, since it makes so many of them, 

I should have remained always in doubt whether it was true 

that the higher string of the octave makes double the number 

of vibrations in the same time as the lower string, had it not 

been that the waves persist as long as you like in the sounding 

and vibrating goblet. This showed me sensibly that at the 

very moment at which the tone is sometimes heard to jump 

an octave, smaller waves are seen to be generated that pre- 

cisely bisect those that were there before. 

Salv. A beautiful observation, making possible the distinc- 

tion one by one of the waves from the vibration of the 

resounding body. It is these which, diffused through the air, 

go to make that titillation of the eardrum which in the mind 

becomes sound. But since such observations, and the sight of 

waves in water, last only as long as friction with the finger 

is continued, and even during that time the waves are not 

permanent, but are continually generated and dissolved, 

would it not be a fine thing if one might arrange that they 

remain with great exactness for a long time, months or years, 

to make it easier to measure and number them at leisure? 

Sagr. That really would be an invention! 

Salv. The invention was by accident, and my observation 

amounted only to making capital of this and esteeming it as 

a new proof of a noble theory, though a very humble achieve- 
ment in itself. 

Scraping a brass plate with an iron chisel to remove some 

spots from it, I heard the plate emit a rather strong and clear 

note once or twice in many strokes as I moved the chisel 

rapidly over it. Looking at the plate, I saw a long row of thin 

lines, parallel to one another and at exactly equal distances 

apart. Scraping again, many times, I noticed that it was only 

when a stroke made this noise that the chisel left marks on 

the plate, and when it went without the shrill tone, there was 

not the faintest trace of such lines. As I repeated the trick 

again and again, stroking now with greater and again with 

less speed, the sound was of higher or lower pitch; and I 

observed that the marks made during the shriller tone were 

closer together, and those made during the lower tone less 
so. Sometimes also, according as the stroke itself was made 
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faster at the end than the beginning, the sound was heard to 
rise in pitch and the lines were seen to increase in frequency, 

though always marked with extreme neatness and absolutely 

parallel. 

During the sibilant strokes, moreover, I felt the iron tremble 

in my hand, from which a kind of tenseness ran through me; 

in the iron is felt, to be brief, precisely what we feel in speaking 

sotto voce and then raising this to a loud voice. For the 

breath being sent in a whisper to form sound, we feel hardly 
any movement in the throat and mouth in comparison with 

the great tremor in larynx and jaws when we speak, especially 

in a low and powerful tone. Sometimes I have also noted, 

among the strings of a harpsichord, two [vibrating in] unison 

with two sounds made by scraping in the way described. These 

two, different in pitch, were separated by a perfect fifth; and 

measuring the intervals between the lines for each of the two 

strokes, it was seen that the distance containing forty-five 

spaces in one, contained thirty in the other, which indeed is 

the form [of ratio] attributed to the diapente. 

Before going further, I want to call your attention here to 

the fact that of the three ways in which pitch may be raised, 

that which you assigned to thinness of string should more 

properly be attributed to the weight. For the change [in pitch] 

due to thickness answers [to the squared ratio] when the 

strings are of the same material, so that one gut string must 

be four times as thick as another gut string to sound the 

octave; or one brass string four times the thickness of another 

brass string. But if I should want to form the octave between 

a brass string and one of gut, it would be done not by thicken- 

ing [the lower] one four times, but by making it four times as 

heavy. As to thickness, the metal string would not be four 

times as thick at all, but four times as heavy, and in some 

cases this would even be thinner than the corresponding gut 
an octave higher in pitch. So it comes about that stringing 

one harpsichord with gold strings, and another with brass 

strings of the same length, tension, and thickness, the first 

tuning comes out about a fifth lower, since gold is about 

twice as heavy.’° Here note that the heaviness of the moveable 
is more resistant to speed than is its thickness, contrary to 

what one might at first suppose, since it seems reasonable 

70. Gold being twice as dense, the effect is as the square root of two, or 

about 2.8 to 2, which is close to the musical interval of the fifth; that is, 3:2. 
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that speed should be more retarded by the resistance of the 

medium to being separated by a thick but light moveable 

than by a heavy and thin one; yet in this instance, the 

contrary happens.’ 
Going back to our original purpose, I say that the length 

of strings is not the direct and immediate reason behind the 

forms of musical intervals, nur is their tension, nor their 

thickness, but rather, the ratio of the numbers of vibrations 

and impacts of air waves that go to strike our eardrum, 

which likewise vibrates according to the same measure of 

times. This point established, we may perhaps assign a very 

congruous reason why it comes about that among sounds 

differing in pitch, some pairs are received in our sensorium 

with great delight, others with less, and some strike us with 
great irritation; we may thus arrive at the reason behind perfect 

consonances, and imperfect, and dissonances. The irritation 

from the latter is born, I believe, of the discordant pulsations 

of two different tones that strike on our eardrums all out of 

proportion; and very harsh indeed will be the dissonances 

whose times of vibration are incommensurables. One such 

[noise] will occur when two strings are sounded together, of 

which one is to the other as the side of a square is to its 

diagonal, a dissonance such as that of the tritone or minor 

third. Those pairs of sounds will be consonant, and heard 

with pleasure, which strike the eardrum with good order; this 

- requires first that the impacts made within the same period 

are commensurable in number, so that the cartilage of the 

eardrum need not be in a perpetual torment of bending in 

two different ways to accept and obey ever-discordant beat- 

ings. Hence the first and most welcome consonanee is the 

octave, in which for every impact that the lower string delivers 

to the eardrum, the higher gives two, and both go to strike 

unitedly in alternate vibrations of the high string, so that 

one-half of the total number of impacts agree in beating 

together. In unison, the blows of strings are always joined 

together and are therefore as [those] of a single string, and 
do not form a consonance [properly speaking]. The fifth also 
gives pleasure, inasmuch as for every two pulsations of the 

low string, the high string gives three, whence it follows that 

counting the vibrations of the high string, one-third of all 

71. The Pieroni MS did not contain this paragraph, which went consider- 
ably beyond the findings of Galileo’s father. 
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[pulses] agree in beating together, with two solitary [pulses] 

interposed between each pair of concords; in the [perfect] 

fourth, three [solitary beats] intervene. In the whole tone, or 

sesquioctave, only one in every nine pulsations comes to strike 

in agreement with that of the lower string; all the rest are 

discordant, and being received with irritation on the eardrum 

are judged dissonant by our hearing. 

Simp. I should like to hear this argument explained more 

clearly. 

Salv. Let this line AB be the amplitude [spazio e la dilata- 

zione| of one vibration of the lower string, and let line CD 

be that of the higher string which gives the octave with the 

first. Divide AB in the center at E, and let the strings begin 

to move at the points A and C. It is manifest that when the 

higher vibration has come to the point D, the lower has got 

only to the center, E, which, not being an end of its motion, 

causes no impact, though a stroke will be made at D. The 

vibration D returning then to C, the other passes from E to 

B, wherefore the two impacts at B and C beat unitedly on 

the eardrum. Returning and repeating similar vibrations 

thereafter, it is concluded that alternately, in one but not the 

other of the vibrations C and D, union of impacts will occur 

with A and B. But the pulsations at the ends [A and B] always 

have as companions either C or D, and always the same one. 

This is obvious, because assuming that A and C beat together, 

while A goes to B, C goes to D and returns to C, so that C 
beats with B; and in the time that B returns to A, C passes 

through D and returns to C, so that the blows A and C are 

made together. 

Next, let the two vibrations AB and CD be those that 

produce the fifth, of which the times are in the ratio of three 

to two; divide AB of the lower string into three equal parts 

at E and O. Supposing the vibrations to commence at the 

same moment from points A and C, it is evident that at the 
stroke to be made at D, the vibration AB will have got only 

to O, so that the eardrum receives the impact of D alone; in 

the return of D to C, the other vibration passes from O to B 

and gets back to O, making a pulsation at B; this, however, 

is solitary and countertimed, a fact yet to be considered. For 

having assumed the first pulsations to be made at the same 

moment at points A and C, the second, which was only that 

at point D, is made after as much time as the transit CD, or 

AO. But the next, which is made at B, is spaced from the other 
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solitary [pulse] only as much as the time of OB, which is half 

[the previous time]. Continuing now the return from O to 4A, 

while C goes to D, there come to be made two united pulsa- 

tions at A and D. Then there follow other periods similar to 

the above; that is, with the interposition of two pulsations 

of the high string unaccompanied and solitary, and one of 

the low string, also solitary and interposed between the two 

solitary [pulsations] of the high string. 
Thus if we imagine time divided into moments, that is, into 

minimum equal tiny parts, and assume that in the first two 

[moments] from concordant pulsations made at A and C, we 

go to O and D, and at D there is a stroke, then in the third 

and fourth moments there is a return from D to C with a 

stroke at C,’? and from O there is a passage through B and 

a return to O, with a stroke at B, and finally in the fifth and 

sixth moments there is passage from O and C to A and D, 
with strokes at both. Then we shall have on the eardrum 

pulsations distributed in such order that, assuming the pulsa- 

tions of the two strings at the same instant, two moments 

later the eardrum will receive a solitary impact; at the third 

moment, another solitary one; at the fourth, another solitary 

one; and then two moments later, that is, at the sixth moment, 

two [pulses] joined together; and this finishes the period, or 

so to speak, the anomaly, which period is thereafter many 

times repeated.’* 
Sagr. No longer can I remain silent; I must exclaim over 

the great pleasure I take in hearing such a complete explana- 

tion of phenomena which have so long held me in the dark 

and blinded. Now I understand why unison does not differ 

at all from one single tone; I see why the octave is the principal 

consonance, but so like unison that, like unison, it is taken 

and mixed with other consonances. It resembles unison 

because where all the pulsations of strings in unison always 

strike together, those of the lower string in the octave are 

always accompanied by those of the upper string, but one 

[pulsation] of the latter is interposed alone and at equal 

intervals and (so to speak) without any foolery, so that the 

72. The words “with a stroke at C” do not occur in the Pieroni MS. 
73. Galileo’s theory of consonances differs essentially both from its 

predecessors and from the modern view. It mistakenly assumes dependence 
on phase relationships, and fails to escape the implication that string-lengths 
of, say, 3001 :2000 should sound harsh together; in fact, such a chord would 
be indistinguishable from the perfect fifth, 3:2. 
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resulting consonance is rather too bland, and lacks fire. 

The fifth, however, is characterized by its displaced beats; 

that is, by the interposition of two solitary beats of the upper 
string and one solitary beat of the lower string between each 

pair of united pulsations. These three [solitary beats] are 

moreover separated by an interval of time equal to one-half 

of that between each pair of united beats and a solitary beat 

of the upper string. This produces a tickling and teasing of 

the cartilage of the eardrum so that the sweetness is tempered 

by a sprinkling of sharpness, giving the impression of being 

simultaneously sweetly kissed, and bitten. 

Salv. Seeing that you like these novelties so well, I must 

show you how the eye, too, and not just the hearing, can be 

amused by seeing the same play that the ear hears. 

Hang lead balls, or similar heavy bodies, from three threads 

of different lengths, so that in the time that the longest makes 

two oscillations, the shortest makes four and the other makes 

three. This will happen when the longest contains sixteen 

spans, or other units, of which the middle [length] contains 

nine,’* and the smallest, four. Removing all these from the 
vertical and then releasing them, an interesting interlacing of 

the threads will be seen, with varied meetings such that at 

every fourth oscillation of the longest, all three arrive unitedly 
at the same terminus; and from this they depart, repeating 

again the same period. The mixture of oscillations is such that 

when made by [tuned] strings, it renders to the hearing an 

octave with the intermediate fifth. And if with similar arrange- 

ments we modify the lengths of other strings so that their 

vibrations answer to those of other musical intervals which 

are consonances, other interlacings will be seen in which, at 

determinate times and after definite numbers of vibrations, 

all the strings (let them be three or four) agree in coming at 

the same moment to the terminus of their oscillations, and 

begin from there another like period. But if the vibrations of 

two or more strings are either incommensurables, so that they 

never return to concord at the end of a definite number of 
oscillations, or if, not being incommensurables, they return 

[only] after a long time and a large number of oscillations, 

then vision is confused by the disorderly order so irregularly 
interlaced, as the ear is annoyed by untempered pulses of air 

74. The appropriate lengths are not 4, 9, and 16 as given in the text, but 
64 64 and 4; that is, 4, 75, and 16; cf. note 68, above. The correction of 9 to 
74 was later noted by Viviani. 
a 
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tremors that go without order or law to strike the eardrum. 

But gentlemen, where have we allowed ourselves to be 

carried through so many hours by various problems and 

unforeseen discussions? It is evening, and we have said little 

or nothing about the matters proposed; rather, we have gone 

astray in such a way that I can hardly remember the original 

introduction and that small start that we made by way of 

hypothesis and principle for future demonstrations. 

Sagr. It will be best, then, to put an end for today to our 

discussions, giving time for our minds to compose themselves 

tranquilly at night, so that we may return tomorrow (if you 

are pleased to favor us) to the discussions desired and in the 

main agreed upon. 

Salv. I shall not fail to be here at the same hour as today, 

to serve and please you. 

The First Day Ends 



Second Day 

Sagr. Simplicio and I have been awaiting your arrival, and 

in the meantime we have been reviewing in memory the last 
consideration, to be taken as a principle and assumption for 

the conclusions that you intended to demonstrate to us. This 

concerned that resistance which all bodies have to fracture, and 

depends on that cement that holds their parts attached and 

conjoined so that they do not yield and separate without a 

powerful pull. There was then a search for the cause of that 

coherence, which is extremely strong in some solids; and the 

chief cause proposed was that of the void. This was then the 

occasion of many digressions that kept us occupied all day, 

without our getting near to the principal subject originally 

chosen. This, as I said, was the investigation of the resistances 

of solids to being broken. 

Saly. | remember it all quite well. And taking up the original 

thread, then, whatever may be the resistance of solid bodies to 

parting under a violent pull, its presence in them is beyond any 

doubt. This resistance is very great against a force that pulls 

them in a straight line, but is observed to be much less when the 

force is across them. Thus we see that a steel or glass rod, for 

example, supports a weight of a thousand pounds lengthwise, 

but when fixed horizontally in a wall, it is broken by attaching 

only fifty [pounds] to it. We must speak of this second re- 

sistance, seeking the proportions in which it is found in prisms 

and cylinders of the same material, whether similar or dis- 

similar in shape, length, and thickness. In such speculations 

I take as a known principle one which is demonstrated in 

mechanics about the properties of the rod which we call the 

lever: that in using a lever, the force is to the resistance in the 

inverse ratio of the distances from the fulcrum to the force and 

to the resistance. 

Simp. This was demonstrated by Aristotle in his [Questions 

of] Mechanics before anyone else.' 

1. The pseudo-Aristotelian treatise noted that points on a rotating bar 
travel in the same time through distances proportional to their distances 

from the center of rotation, and argued that this measures the ease of motion, 
whence this motion is inverse to the heaviness of the respective weights; 
see Loeb edition, pp. 343-47; 375-77. From this stress on time and ease of 

motion, Galileo took his principle of virtual velocities, for which he credited 
the ancient treatise in his Bodies in Water, p. 71 (Opere, IV, 69). 
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Salv. | admit that we should concede priority to him, but in 

rigor of proof I think we must put Archimedes a long way in 

front of him. Upon a single proposition proved in his [Plane] 

Equilibrium there depends the reasoning not only for the lever, 

but for most other mechanical instruments.” 

Sagr. Inasmuch as that principle is to be assumed as the 

foundation of everything that you mean to demonstrate to us, 
it would be much to the purpose for you to give us also its 

proof, if that matter is not too prolix. Thus you will be giving 

us entire and complete instruction. 
Salv. If this must be done, it will be better that I introduce 

you by another approach, somewhat different from that of 

Archimedes, to our whole field of future speculations. Without 

assuming anything except that equal weights placed in a 

balance of equal arms are in equilibrium (a principle likewise 

assumed by Archimedes),? I shall next prove to you that it is 

equally true that unequal weights rest in equilibrium on a 
steelyard when they are suspended at distances unequal in the 

inverse ratio of these weights; and not only that, but that it is 

also the same thing to hang equal weights at equal distances as 

it is to put unequal weights at distances having the inverse 

ratio of the weights. 

Now for a clear demonstration of what I say, I draw a solid 

prism or cylinder AB, hung by its ends from the line H/ by two 

threads, HA and JB. It is evident that if I suspend all this by the 

string C, placed at the middle of the balance H/, the prism AB 

will remain in equilibrium by the principle assumed, one-half 

2. Archimedes, On Plane Equilibrum, Bk. I, Props. 6, 7; see T. L. Heath, 

The Works of Archimedes, (Cambridge, 1897), pp. 192-94. What Galileo 
calls a single proposition made up two for Archimedes, who proved separately 
the cases of commensurable and incommensurable distances. 

3. Two other Archimedean assumptions are omitted by Galileo; namely, 
that of equal weights at unequal distances, the more distant one will descend, 
and that weights in equilibrum will be disturbed by any addition or removal 
of weight on either side. He brings in later the further Archimedean assump- 
tion that equilibrium is preserved when proportional weights or distances 
are substituted. Galileo’s proof, which is much easier to follow than that 
of Archimedes, appeared first in a treatise written for his students; see On 
Mechanics, pp. 153-55 (Opere, II, 161-63). 
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of its weight being on one side, and one-half on the other [side] 

of the point of suspension C. Next, suppose the prism to be 
divided in two unequal parts by a plane through the line at D; 

let DA be the greater part, and DB the smaller. And in order 

that when this cut is made, the parts of the prism will remain 
in place, in the same arrangement with respect to the line H/, 
let us assist with a thread ED, tied at the point E, which 

thread shall sustain both parts of the prism, AD and DB. 

There is no question that since there has been no change of 

place on the part of the prism with respect to the balance H/, 

it will remain in the previous state of equilibrium. But the part 

of the prism which is now suspended from its two ends by the 

threads AH and DE also remains in the same arrangement if 

hung by a single thread GL placed at its center; and likewise 

the other part, DB, will not change position if suspended from 

the middle and sustained by the thread FM.* Hence, removing 

threads HA, ED, and /B, and leaving only the two [threads] GL 

and FM, the previous equilibrium will prevail, the suspension 

from point C always remaining. 
Now here we turn to consider that we have two heavy bodies, 

AD and DB, hanging from the ends G and F of a steelyard GF, 

in equilibrium around the point C in such a way that the 

distance of suspension of the heavy body AD from point C is 

the line CG, while the other part, CF, is the distance from 

which the body DB is hung. So it remains only to demonstrate 

that these distances have the same ratio between them as those 

same weights, but taken inversely. That is, the distance GC is 

to CF as the prism DB is to the prism DA. This we prove as 

follows. 
Line GE being one-half of the line EH, and EF one-half of 

EI, all GF is one-half of the whole HY, and is therefore equal to 

CI. Subtracting the common part CF, the remainder GC will 

be equal to the remainder F/, that is, to FE. Taking CE 

common to both, GE is equal to CF; hence as GE is to EF, so 

FC is to CG. But as GE is to EF, so is one double to the other; 

that is, so HE to EI, or the prism AD to the prism DB. There- 

fore, by equidistance of ratios and inversion, as distance GC 

is to distance CF, so is weight BD to weight DA; which is what 

I wished to prove to you. 

4. It is assumed that so long as no motion takes place as a result of 

manipulations within the system, no motion of the system as a whole will 

occur. 
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This understood, I believe you will have no difficulty in 

admitting that the two prisms AD and DB are in equilibrium 

around point C, because half the entire solid AB is to the right 

of the suspension C, and the other half is to its left, so that they 

represent two equal weights disposed and extended over two 

equal distances. And the two prisms AD and DB, reduced to 

cubes or balls or any other shapes whatever, provided only 

that they keep the same suspensions, G and F, will continue 

to be in equilibrium around point C.° I believe no one can 

doubt this, for it is quite evident that shape does not change 

a weight so long as the same quantity of material is preserved. 

From this we may draw the general conclusion that two 

weights, whatever they may be, are in equilibrium at distances 

inversely corresponding to their heavinesses. 

This principle is therefore established. Before we go on 

further, I must next point out that these forces, resistances, 

moments, shapes, and so on may be considered in the abstract 

and separated from matter; or alternatively, in the concrete 

and conjoined with matter. In the latter way, the phenomena 

that conform to the diagrams considered as immaterial receive 

some modifications when we add to them material, and hence 

heaviness. For example, let us take a lever, which shall be BA 

here, placed on the fulcrum E and used to raise the heavy 

stone D. It is obvious, from the principle just proved, that the 

force applied at the end B will suffice to match the resistance 

of the heavy body D, if its moment has the same ratio to the 

moment of D that distance AC has to distance CB; or rather, 

this is true without taking into consideration other moments 

5. This involves the further assumption that the center of gravity may be 
taken as representing the whole body; cf. On Mechanics, p. 152 (Opere, 
II, 160). 
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than those of the simple force at B and the resistance at D, as 

if the lever were immaterial and without heaviness. But if we 

also take into account the heaviness of the lever-instrument 

itself, which will be sometimes of wood and sometimes of iron, 

it is manifest that when the weight of the lever is added to the 

force at B, the ratio will be altered and will have to be stated 

in other terms. Hence, before we proceed, it is necessary for 

us to agree in making a distinction between these two manners 

of considering things, saying that the instrument is “taken 

absolutely” when we mean it to be taken in the abstract, 

separated from the heaviness of its actual material; but joining 

both material and heaviness to the simple and absolute figures, 

we shall call the figures joined with matter ““moment, or 

compound force.’’® 
Sagr. Here I must break my resolve to give no occasion for 

digression, for I cannot apply myself attentively to what is to 

come until a certain doubt, just born in me, is removed. It 

seems to me that you make comparison between the force 

applied at B and the total heaviness of the stone D, though I 

think that a part of this, and perhaps most of it, is supported 

on the horizontal plane, so that... 

Salv. I quite understand. Say no more; yet please notice that 

I have not yet spoken of the total heaviness of the stone, but 

only of the moment that it has and exercises on the point A, 

the very end of the lever BA. This [moment] is always less than 

the entire weight of the [supported] stone, and it varies 

according to the shape of the stone, and whether it is to be 

lifted more, or less. 

Sagr. All right, as to this; but another desire now awakens in 

me, which is that for a complete understanding, I be shown the 

way (if there is any) by which we can determine the part of the 

total weight that is sustained on the plane beneath, and the 

part that weighs on the bar at its extermity A. 

Saly. Since I can give you satisfaction in a few words, I shall 

not fail to serve you. Therefore, drawing a little diagram, take 

6. Thus far, the device or instrument is the lever, but later it becomes 

the beam whose strength is to be analyzed. Either is said to be “taken 
, absolutely” when its own weight is neglected; when that is taken into account, 

the text refers to the “‘*moment” of the lever or beam, or to its “compound 
force.” The moment, or compound force, belongs to the lever as such, 
separately from the weights and forces applied to it, and its effect depends 
upon the point of support in relation to that of application. It represents, 
so to speak, the “net leverage” of a heavy beam acting against itself; cf. 

Prop. VI, below. 
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the weight with center of gravity A, supported on the horizon- 

tal plane at the end B; at the other end, let it be sustained by the 

lever CG with fulcrum N by a power [potenza] placed at G. 

From the center A and the end C, drop perpendiculars AO and 

CF to the horizontal. I say that the moment of the whole 

weight has to the moment of power at G, the ratio compounded 

from the ratio of the distance GN to the distance NC, and [the 

ratio of the distance] FB to BO. 

Find [a line X] such that as line FB is to BO, NC is to X. 

Now, the whole weight A being sustained by the two powers 

placed at B and C, the power B is to C as the distance FO is to 

OB; and by composition [of each ratio], the two powers B and 

C together, that is, the whole moment of all the weight A, is to 

the power at C, as line FB is to BO; that is, as NC is to X. But 

the moment of the power at C is to the moment of the power at 

G as distance GN is to NC; therefore, by perturbed equi- 

distance of ratios, the total weight A is to the moment of 

the power at G as GN is to X. But the ratio of GN to X is 

compounded from the ratio of GN to NC and that of NC to X, 

which is [that of] FB to BO. Hence the weight A has to the 

power that sustains it at G, the ratio compounded from [that 

of] GN to NC and that of FB to BO; which is what was to be 

demonstrated. 

Now, getting back to our first purpose, it will not be difficult 

to understand the reason whence it comes about that: 

PROPOSITION I 

A solid prism or cylinder of glass, steel, wood, or other 

material capable of fracture, which suspended lengthwise 

will sustain a very heavy weight attached to it, will 

sometimes be broken across (as said earlier) by a very 

much smaller weight, according as its length exceeds its 

thickness. 

Let us imagine the solid prism ABCD fixed into a wall at the 
part AB; and at the other end is understood to be the force of 

the weight E (assuming always that the wall is vertical and the 

prism or cylinder is fixed into the wall at right angles). It is 

evident that if it must break, it will break at the place B, where 
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the niche in the wall serves as support, BC being the arm of the 

lever on which the force is applied. The thickness BA of 
the solid is the other arm of this lever, wherein resides the 

resistance, which consists of the attachment that must exist 

between the part of the solid outside the wall and the part that 

is inside. Now, by what has been said above, the moment of 

the force applied at C has, to the moment of the resistance 

which exists in the thickness of the prism (that is, in the 

attachment of the base BA with its contiguous part), the same 

ratio that the length CB has to one-half of BA. Hence the 

absolute resistance to fracture in the prism BD, (being that 

which it makes against being pulled [apart] lengthwise, for then 

the motion of the mover is equal to that of the moved) has, 

to resistance against breakage by means of the lever BC, the 

same ratio as that of the length BC to one-half of AB, in the 

prism; or, in the cylinder, to the radius of its base. And let 

this be our first proposition. ’ 
Note that what I say is to be understood without considera- 

tion of the weight of the solid BD itself, which solid has been 

taken as weighing nothing. When we come to take into account 

7. Propositions are numbered in the original only in the margins, and the 
later ones are not numbered; here they will be given numbers in brackets 
for convenience of reference. The first proposition (which underlies the 
rest) is a postulate or assumption rather than a theorem and 1s followed by 
an explanatton rather than a proof. In making this assumption, Galileo 
deliberately neglected various properties that differentiate the actual materials 
named as examples. Note that adhesion or coherence is treated as if spread 
uniformly over the area at AB, and that points A and C are regarded as 
rigidly connected. Galileo’s is the first known attempt to formulate a mathe- 
matical theory of strength of materials; in it, as in his treatment of motion 

(Third Day), he concerns himself only with ratios, whence the factors left 
out of account (particularly elasticity) do not invalidate his results expressed 
only as proportions applicable to a given type of material. 
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its own heaviness, adding this to the weight E, we must add to 

the weight E one-half the weight of the solid BD. Thus the 

weight of BD being, say, two pounds, and the weight E ten 

pounds, the weight E must be taken as if it were eleven. 

Simp. And why not as if it were twelve? 

Salv. The weight E, my good Simplicio, hangs from the end 

C and presses on the lever BC with its full moment of ten 

pounds; and if BD alone were hung there, it would weigh down 

with its full moment of two pounds. But as you see, that solid 

is uniformly distributed along the entire length BC, whence the 
parts near the extremity B press down less than do those 

farther away. In short, balancing the near parts with the far, 

the weight of the whole prism comes to operate at its center of 

gravity, which corresponds to the center of the lever BC. But 

a weight hanging from the extremity C has double the moment 

it would have if hung from the middle; and hence one-half the 

weight of the prism must be added to the weight E when we 

treat the moment of both as located at the end C. 

Simp. 1 understand; and if Iam not mistaken, the power of 

both weights BD and E, thus placed, would have the same 

moment as if all the weight of BD and double the weight E were 
hung from the center of the lever BC. 

Salv. Precisely so, and this must be kept in mind. And now 
we can immediately understand: 

PROPOSITION II 

How, and in what ratio, a rod, or rather a prism of 

greater breadth than thickness, more greatly resists 

breaking when loaded across its breadth than across its 
thickness. 
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For an understanding of this, imagine a ruler AD whose 
breadth is AC and whose thickness, much less, is CB. It is 

asked why, when we wish to break it on edge as in the first 

figure, it will resist the great weight 7; but placed flat, as in the 

second figure, it will not [even] resist X, which is less than T. 

This is clear when we understand the fulcrum in one [the 

latter] case to be under the line BC, and in the other case under 

CA, the distances of the force being equal to the length BD in 

both cases. For in the first case the distance of the resistance 

from the fulcrum, which is one-half the line CA, is greater than 

in the other case, where this is one-half of BC, whence it is 

necessary that the force of the weight T be greater than X¥ by 

the same amount that one-half the breadth CA is greater than 

one-half the thickness BC, CA serving in the former, and CB 

in the latter, as counterlever to overcome the same resistance, 

which is in the [same] quantity of fibers of the whole base AB. 

It is thus concluded that the same ruler or prism, broader than 

it is thick, more greatly resists being broken when on edge 

than when flat, according to the ratio of its breadth to its 

thickness. 

Next, it is appropriate for us to commence this investigation: 

PROPOSITION III 

The ratio in which the moment of heaviness of a horizon- 

tal prism or cylinder increases, in relation to its own 

resistance to being broken by elongation, I find to be in 

squared proportion to the lengthening. 

For this demonstration, consider the prism or cylinder AD 

fixed solidly into the wall at the end A, parallel to the horizon, 

and understand this to be lengthened to E by adding the part 

BE. It is evident that the lengthening of the lever AB out to C 

increases the moment of the downward [premente] force 

against resistance to fracture and detachment made at 4. 

[This increase], taken absolutely, is in the ratio of CA to BA 

[alone]; but besides this, the weight of the solid BE added to 

the weight of the solid AB increases the downward moment of 
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heaviness according to the ratio of the prism AE to the prism 

AB, which ratio is the same as that of the length AC to AB. 

Hence, combining the two increases of length and of heaviness, 

it is manifest that the moment compounded from both is in the 

squared ratio of either one. It is therefore concluded that the 

moments of the forces of prisms (or cylinders) of equal 

thickness but unequal length are to each other in the squared 

ratio of their lengths; that is, are as the squares of the lengths. 

We shall now show, in the second place, the ratio according 

to which resistance to being broken increases in prisms and 

cylinders of the same length, when they are increased in 

thickness. Here I say that: 

PROPOSITION IV 

In prisms and cylinders of equal length but unequal 

thickness, resistance to fracture increases as the cubed 

ratios of the thicknesses or the diameters [respectively] 

of their bases. 

Let the two cylinders A and B have equal lengths DG and 

FH, and unequal bases, these being circles of diameters CD 

and EF. I say that the resistance to fracture of cylinder B is to 

the resistance of cylinder A as the cube of the ratio of diameter 

FE to diameter DC. For first, consider the absolute and simple 

resistance that resides in the bases (that is, in the [areas of] 

circles EF and DC), when these are to be broken by exerting a 

force that stretches them lengthwise. There is no doubt that 

the resistance of cylinder B is [in that case] greater than that 

of cylinder A by as much as circle EF is greater than [circle] CD, 

because so many the more are the fibers, filaments, or holding 

elements that keep the parts of such solids together. 

Now let us consider that in exerting force crossways, we 

employ two levers. The arms (or distances at which the forces 

are applied) are the lines DG and FH; the fulcrums are at 

points D and F; and the other arms (or distances at which the 

resistances are situated) are the radii of circles DC and EF, for 

the filaments [being] spread throughout the surfaces of these 

circles, it is as if all were concentrated at their centers. In such 

levers, I say, consider the resistance at the center of the base 

EF against the force at H; this is as much greater than the 

resistance of the base CD against the force applied at G as the 

radius [of] FE is greater than the radius [of] DC; and the 
forces at G and H act on the equal levers DG and FH. Therefore 
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the resistance to fracture in cylinder B exceeds the resistance of 

cylinder A according to both ratios—that of the circles EF 

and DC, and [that] of their radii (or diameters). Now the ratio 

of the circles is the square of that of the diameters; but the 

ratio of resistances, being compounded from these [two 

ratios], is the triplicate ratio of the same diameters; which is 

what was to be proved. And since cubes are in the triplicate 

ratio of their sides, we may similarly conclude that the re- 

sistances of cylinders of equal length are to one another as 

the cubes of their diameters. 

From what has been demonstrated, we can also conclude: 

COROLLARY 

The resistances of prisms and cylinders of equal length 
are as the three-halves power of the [ratio of volumes 

of the] said cylinders.® 
This ts manifest, since prisms (or cylinders) of equal altitude 

have to one another the same ratio as their bases, which is the 

square of the [ratio of] sides (or diameters) of those bases. But 

the resistances, as demonstrated above, are as the cubes of the 

same sides (or diameters); therefore the ratio of resistances is 

the three-halves [power] of the ratio of the solids themselves, 

and consequently of the weights of those solids [of like material 

and equal length]. 

Simp. Before we go on, it is necessary for me to be relieved 

of a certain difficulty. Thus far, I have heard nothing said in 

consideration of a certain other kind of resistance which 
appears to me to decrease in solids as they increase in length, 

and [to weaken them] not only transversely but also longitudi- 

nally. Thus we see a very long rope to be much less able to hold 

a great weight than if shorter; and I believe that a short wooden 

or iron rod can support much more weight than a very long 

one when loaded lengthwise (not [just] crosswise), and also 

taking into account its own weight, which is greater in the 

longer. 

Salv. I think that you, together with many other people, are 

mistaken on this point, Simplicio, at least if I have correctly 
grasped your idea. You mean that a rope, say forty braccia in 

length, cannot sustain as much weight as one or two braccia of 

the same rope. i 

8. The exponential terminology is used here in place of Galileo’s ratio 
terminology; see Introduction and note 63 to First Day, above. 
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Simp. That is what I meant, and at present it appears to me 

a highly probable statement. 
Salv. And I take it to be not just improbable, but false; and 

I believe that I can easily remove the error. So let us assume 

this rope AB, fastened above at one end, A, and at the other 

end let there be the weight C, by the force of which this rope 

is to break. Now assign for me, Simplicio, the exact place at 

which the break occurs. 
Simp. Let it break at point D. 

Salv. | ask you the cause of breaking at D. 

Simp. The cause of this is that the rope at that point has not 

the strength to bear, for instance, one hundred pounds of 

weight, which is the weight of the part DB together with [that 

of] the stone C. 

Salv. Then whenever the rope is strained at point D by the 

same 100 pounds of weight, it will break there. 

Simp. So I believe. 

Salv. But now tell me: if the same weight is attached not to 

the end of the rope, B, but close to point D, say at E; or the 

rope being fastened not at A, but closer to and above the same 

point D, say at F; then tell me whether the point D will not 

feel the same weight of 100 pounds. 

Simp. It will indeed, provided that the length of rope EB 

accompanies the stone C. 

Salv. If, then, the rope, pulled by the same hundred pounds 

of weight, will break at the point D by your own admission, 

and if FE is but a small part of the length 4B, how can you say 

that the long rope is weaker than the short? Be pleased 

therefore to have been delivered from an error, in which you 

had plenty of company, even among men who are otherwise 
very well informed, and let us proceed. 

Having demonstrated that prisms and cylinders of constant 

thickness increase in moment beyond their own resistances as 

the squares of their lengths, and likewise that those of equal 

length but differing in thickness increase their resistances in 

the ratio of the cubes of the sides (or diameters) of their bases, 

let us go on to investigate what happens to such solids when 

they differ in both length and thickness. In these, I note that: 

PROPOSITION V 

Prisms and cylinders differing in length and thickness 

have their resistances to fracture in the ratio compounded 

from the ratio of the cubes of the diameters of their bases 
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and from the inverse ratio of their lengths.” 

Let ABC and DEF be two such cylinders; I say that the 

resistance of cylinder AC has to the resistance of cylinder DF 
the ratio compounded from the ratio of the cube of diameter 

AB to the cube of diameter DE, and the ratio of length EF to 
length BC. 

Make EG equal to BC. Let H be the third and / the fourth 

proportional to lines AB and DE, and let J be to S as EF is to 
BC. Since the resistance of cylinder AC is to the resistance of 

cylinder DG as the cube of AB is to the cube of DE, it will be 

as the line A Bis to the line /; and since the resistance of cylinder 

DG is to the resistance of cylinder DF as the length FE is to 

EG, it will be as the line / is to the line S. Therefore, by equi- 

distance of ratios, as the resistance of cylinder AC is to the 

resistance of cylinder DF, so is line AB to line S. But line AB 

has to line S the ratio compounded from [the ratios of] AB 

to J and J to S; therefore the resistance of cylinder AC has to 

the resistance of cylinder DF the ratio compounded from [the 

ratio of] AB to J (that is, the cube of AB to the cube of DE) 

and from the ratio of line / to line S (that is, the length EF 

to the length BC). And that is what was to be demonstrated. 

Having demonstrated this proposition, we are to consider 

what happens among [geometrically] similar cylinders and 

prisms. We shall prove that: 

PROPOSITION VI 

The compound moments ’° of [two geometrically] similar 

cylinders or prisms, resulting from their own weights and 

[from their own] lengths serving as levers, have to one 

another the ratio that is the three-halves power of the 

ratio of the resistances of their bases. 

To demonstrate this, let us draw two similar cylinders AB 

and CD; I say that the moment of cylinder AB in overcoming 

the resistance of its base B has, to the moment of CD in 

9. This is probably the first expression of s strictly physical property in 
terms of two independent variables. Archimedes had used the compounding 
of ratios in a similar way, but only for mathematical relationships. Cf. Heath, 

Archimedes, p. clixxix. 
10. See note 6, above, regarding ‘compound moments.” 
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overcoming the resistance of its [base] D, that ratio which is 

the three-halves power of the ratio which the resistance of the 

base B has to the resistance of the base D. 

The moments of solids AB and CD, [in acting] to overcome 

the resistances of their bases B and D, are compounded from 

their [respective] weights and net leverages [forze delle lor 

leve].1! The net leverage of AB is equal to the net leverage of 

CD, because length AB has the same ratio to the radius 

of base B that length CD has to the radius of base D, by 

[geometrical] similarity of the cylinders. It follows that the 

total moment of cylinder AB [with respect to its resistance] 

is to the total moment of CD [with respect to its resistance] 

as the weight alone of cylinder AB is to the weight alone of 

cylinder CD; that is, as cylinder AB itself is to cylinder CD. 

But these [volumes] are in cubed ratio of the diameters of the 

bases B and D; and the resistances of the bases being to one 

another as the [areas of the] bases themselves, these resistances 

are in squared ratio of those same diameters. Therefore the 

moments of the cylinders are as the three-halves power of the 

[ratio of the] resistances of their bases. 

Simp. This proposition strikes me as not only new but 

surprising, and at first glance very remote from the judgment I 

had conjecturally formed. For since the shapes are similar in 

all other respects, I should have thought it certain that their 

moments against their own resistances would also be in the 
same ratio. 

Sagr. This demonstrates the proposition which, as I said 

at the beginning of our discussions, seemed then to reveal 
itself to me through shadows. 

Salv. What is now happening to Simplicio happened also to 

me for some time. I believed the resistances of [geometrically] 

similar solids to be similar,'? until a certain observation, 

11. In this translation, the phrase ‘‘net leverages” (note 6, above) is intro- 

duced to distinguish Galileo’s own phrase, “forces of their levers,” from 
the modern implications of that phrase. What is meant is not the ratio of 
mechanical advantages of the cylinders used as levers, but the ratio of the 
leverages of two similar solids against their own weights when each is 
supported at one end. 

12. That is, to be proportional to their volumes. Similarity of materials 
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itself not very definite or correct, suggested to me that among 

similar solids there is not to be found an equal tenor of robust- 

ness, and that the larger are less fitted to suffer violent shocks. 

Thus large men are injured more by falling than are small 

boys; and as we said at the beginning, a great beam or a 
column is seen to go to pieces where a stick or a small marble 

cylinder falling from the same height does not. It was this 

observation that put my mind to the investigation of that truly 

remarkable property which I am about to demonstrate; and 

indeed, among the infinite [possible] shapes of [geometrically] 

similar solids, not even two have the same ratio of moments 

with respect to their own resistances. 

Simp. Now I recall something or other that was proposed by 

Aristotle in his Mechanical questions, where he tries to give 
a reason for the fact that the longer pieces of wood are, the 

weaker they are and the more they bend, even though the 

shorter [pieces] are quite thin, and the long ones very thick. If 

I recall correctly, he reduces this to the simple lever.!? 

Salv. Quite true, and since his solution seems to leave some 

reason for doubt, Monsignor di Guevara, who has greatly 

ennobled and illuminated that treatise with his learned 
commentaries, adds other very acute speculations to resolve 

all difficulties."* But he too remains perplexed on one point: 
whether, by increasing in constant ratio the lengths and 

thicknesses of such solid shapes, one may retain the same level 
of robustness in their resistance to fracture as well as bending. 

After long thought about this, I found what I am about to 

put before you, in proper order, concerning this point. And 

first I shall demonstrate that: 

PROPOSITION VII 

Among [geometrically] similar prisms or cylinders having 

weight [gravi], there is a single and unique case of the 

critical [u/timato] state between breaking and remaining 

whole when [the solid is] pulled down [gravato] by its own 

weight, such that if greater, unable to resist its own 

weight, it will break; and if smaller, it resists with some 

is assumed throughout (note 7, above), and the word “geometrically” has 
been added in brackets because similar figures are meant here. With regard 
to Sagredo’s remark, above, cf. pp. 51-52. 

13. Questions of mechanics, 27 (Loeb ed., p. 401). 
14. The book meant is identified in note 11 to First Day, above. 
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force whatever is done to break it.’° 
Let the material [grave] prism AB be brought to the greatest 

length of its holding together, so that lengthened a trifle 

[minimo], it breaks. I say that AB is unique in reduction to 

this neutral [ancipite] state among all [geometrically] similar 

[prisms], which are infinitely many, so that every one greater, 

pressed by its own weight, breaks, and every smaller does not, 

but will resist up to some additional load a new force beyond 

that of its own weight. 
Let the prism CE be similar to, but greater than, AB; I say 

that it cannot hold together but will break, overcome by its 
own heaviness. Take in it the part CD, as long as AB; since 

the resistance of CD is to that of AB as the cube of the thickness 

of CD is to the cube of the thickness of AB (that is, as the 

prism CE is to the prism AB, these being similar), the weight 

of CE is the greatest that can be sustained, spread over the 

length of prism CD. But the length CE is greater [than CD], 

whence the prism CE will break.1° Now let FG be smaller 

[than AB]; it will be likewise demonstrated, by putting FH 

equal to BA, that the resistance of FG to that of AB would be 

as the prism FG to the prism AB if the distance AB (that is, 

FH) were equal to FG. But it is greater; therefore the moment 

of prism FG if placed at G does not suffice to break the prism 

FG. 

Sagr. A very clear and concise demonstration, which proves 

the truth and the necessity of a proposition which at first 

glance seemed far from probable. It will therefore be necessary, 

in order to achieve that neutral state between holding and 

breaking, to alter greatly the ratio between length and thick- 

ness of the greater prism [CE] by thickening or shortening it. 

The investigation of that state, I think, might require equal 
ingenuity. 

Salv. Even more, and more labor too; I know, for I spent no 

small time in finding it. But now I wish to share it with you. 

PROPOSITION VIII 

Given a cylinder or prism of the maximum length that 

is not broken by its own weight, and given also a greater 

length, to find the thickness of some cylinder or prism 

15. This represents one of the first physical problems to be treated in 
terms of maxima and minima, concepts that were well known in pure 
geometry but were of limited application before the invention of the calculus. 

16. By reason of the greater moment when the same total weight is spread 
out over a greater length. 
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which, at this given length, is the unique and maximum 

that resists its own weight. 

Let the cylinder BC be of the greatest [length] resisting its 

own weight, and let DE be a greater length than AC; it is 

required to find the thickness of the cylinder of length DE that 

will be the greatest to resist its own weight. Take J, the third 

proportional between lengths DE and AC; and as DE is to J, 

let the diameter FD be to BA, and construct the cylinder FE. 

I say that this is the unique and maximum, among all those 

similar [to FE], that can resist its own weight. Let M be the 

third and O the fourth proportional to lines DE and J, and 
make FG equal to AC. Since the diameter FD is to the diameter 

AB as line DE is to J, and O is the fourth proportional to DE 

and J, the cube of FD will be to the cube of BA as DE is to O. 

But as the cube of FD is to the cube of BA, so is the resistance 

of cylinder DG to the resistance of cylinder BC. Therefore 

the resistance of cylinder DG is to that of cylinder BC as line 

DE is to O. And since the moment of cylinder BC is equal 

to its resistance, if we show that the moment of cylinder FE 

is to the moment of cylinder BC as the resistance DF is to 

the resistance BA (that is, as the cube of FD is to the cube of 

BA, or as line DE is to O), we shall have our goal, that the 

moment of cylinder FE is equal to the resistance situated at 

FD. 
The moment of cylinder FE is to the moment of cylinder DG 

as the square of DE is to the square of AC; that is, as line 

DE is to J. But the moment of cylinder DG to the moment of 

cylinder BC is as the square of DF to the square of BA, which 

is as the square of DE to the square of J, which is as the square 

of J to the square of M, or as J is to O. Therefore, by equi- 

distance of ratios, as the moment of cylinder FE is to the 

moment of cylinder BC, so is line DE to O, which is as the 

cube of DF is to the cube of BA, which is as the resistance 

of the base DF is to the resistance of the base BA; and that is 

what was sought. 

Sagr. This is a long proof, Salviati, and very difficult to 

keep in mind by hearing it only once. Hence I should like you 
to be so kind as to repeat the demonstration. 

Salyv. I shall obey your request, but perhaps it would be better 

to give you a quicker and more concise proof. This will require 

a somewhat different diagram."’ 

17. The ensuing demonstration is a simplified form of one that had been 
sent to Galileo at Siena in 1633 by Andrea Arrighetti (1592-1672); see 

(Opere, XV, 279-81). Galileo replied that he wished to include it in this book 
(ibid., pp. 283-84). 
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Sagr. So much greater will be the favor, but I should be 

obliged if you would also give me the above proof in writing, 

so that I may study it at leisure. 

Salv. I shall be happy to oblige you. Now let us take the 

cylinder A, of which the base diameter is the line DC, and let 

A be the maximum [cylinder of the given material] that can 

sustain itself; we wish to find a larger [cylinder] than this 

which is again the maximum and unique one that sustains 

itself. Let E be [a cylinder geometrically] similar to A but of 

the assigned length, and let the diameter of its base be KL. 

Let MN, the third proportional of the two lines DC and KL, 

be the diameter of cylinder X, equal in length to £; I say that 

X is that which we seek. The resistance DC is to the resistance 

KL as the square of DC is to the square of KL, which is as the 

square of KL is to the square of MN, which is as cylinder E 

is to cylinder X, which is as the moment of F is to the moment 

of X. The resistance KL is to the resistance MN as the cube of 

KL is to the cube of MN, or as the cube of DC is to the cube 

of KL, or as cylinder A is to cylinder F, or as the moment of 

A is to the moment of E. Hence, by perturbed equidistance of 

ratios, as the resistance DC is to MN, so is the moment A to 

the moment X; whence prism X has the same relation of 

moment and resistance as does prism A. 

I wish now to make the problem still more general, so 

that the proposition will be this: 

[PROPOSITION IX] 

Given the cylinder AC, of any moment whatever against 

its own resistance, and given any length DE, to find 

the thickness of the cylinder of length DE, such that 

its moment against its resistance shall have the same 

ratio as that of the moment of cylinder AC against its 
[resistance].'° 

Returning to the earlier diagram and taking once more 

nearly the same steps, let us say: Since the moment of 

cylinder FE has to the moment of its part DG the same 

ratio that the square of ED has to the square of FG, which 

is that of line DE to J; and since the moment of cylinder 

FG is to the moment of cylinder AC as the square of FD 

is to the square of AB, or as the square of DE is to the 

18. The earlier diagram required here was not repeated in the original 
edition. 
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square of J, or as the square of J is to the square of M, or 

as the line J is to O; then, by equidistance of ratios, the 

moment of cylinder FE has, to the moment of cylinder AC, 

the same ratio as that of line DE to O, or the cube of DE 

to the cube of /, or the cube of FD to the cube of AB; 

that is, [the ratio] of the resistance of the base FD to the 

resistance of the base AB; which is what was to be done.!° 

You now see how, from the things demonstrated thus far, 

there clearly follows the impossibility (not only for art, but 

for nature herself) of increasing machines to immense size. 

Thus it is impossible to build enormous ships, palaces, or 

temples, for which oars, masts, beamwork, iron chains, and 

in sum all parts shall hold together; nor could nature make 

trees of immeasurable size, because their branches would 

eventually fail of their own weight; and likewise it would 

be impossible to fashion skeletons for men, horses, or other 

animals which could exist and carry out their functions 

proportionably when such animals were increased to immense 

height—unless the bones were made of much harder and 

more resistant material than the usual, or were deformed 

by disproportionate thickening, so that the shape and 

appearance of the animal would become monstrously gross. 

Perhaps this was noticed by our very alert poet when, in 

describing a huge giant, he said: 

His height is quite beyond comparison, 

So immeasurably gross is he all over.”° 

To give one short example of what I mean, I once drew 

the shape of a bone, lengthened only three times, and then 

thickened in such proportion that it could function in its 
large animal relatively as the smaller bone serves the smaller 

19. This proposition is an appropriate conclusion to the first set of pro- 

blems on strengths of uniform solid beams, since it corrects the intuitive 
answer offered near the beginning of the First Day by Sagredo (p. 50) and 
affirmed by Salviati to be a common misapprehension (p. 51). 

20. Ariosto, Orlando Furioso, xvii, 30. Galileo’s wording contains two 
minor departures from the standard modern text translated here. 
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animal; here are the pictures. You see how disproportionate 

the shape becomes in the enlarged bone. From this it 1s 

manifest that if one wished to maintain in an enormous 

giant those proportions of members that exist in an ordinary 

man, it would be necessary either to find much harder and 

more resistant material to form his bones, or else to allow 

his robustness to be proportionately weaker than in men of 

average stature; otherwise, growing to unreasonable height, 

he would be seen crushed by his own weight and fallen. 

On the other hand it follows that when bodies are diminished, 

their strengths do not diminish in like ratio; rather, in very 

small bodies the strength grows in greater ratio, and I believe 

that a little dog might carry on his back two or three dogs 

of the same size, whereas I doubt if a horse could carry 

even one horse of his own size. 

Simp. But the immense bulks that we encounter among 

fishes give me grave reason to doubt whether this is so. 

From what I hear, a whale is as large as ten elephants; yet 

whales hold together. 

Salv. Your doubt, Simplicio, enables me to deduce some- 

thing that I did not mention before, a condition capable of 

making giants and other vast animals hold together and 

move around as well as smaller ones. That would follow if, 

but not only if, strength were added to the bones and other 

parts whose function it is to sustain their own weight and 

that which rests on them. But leaving the skeleton in the 

same proportions, these structures would hold together just 

as well, or even better, if one were to diminish in the same 

ratio the heaviness of the material of the bones themselves, 

and that of the flesh or other [material] that must be 

supported on the bones. It is this latter artifice that nature 

uses in the structure of fish, making the bones and flesh 

not merely somewhat lighter, but without any heaviness 
whatever. 

Simp. I perceive the direction of your reasoning, Salviati. 

You mean that the habitat of fishes being the element of 
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water, which by its bodily nature, or as some will have it, its 

heaviness, reduces the weight of bodies that are submerged 
in it; and for that reason the material of fishes, weighing 

nothing, can be sustained without overloading their bones. 

But this does not suffice. Even if most of the substance of 

fishes does not weigh down, there is no doubt that the 

material of their bones does do so. Who would deny that 

a whale’s rib, large as a beam, weighs a great dea!, and 

would sink to the bottom in water? Hence those bones must 
be unable to sustain so vast a bulk. 

Salv. Your objection is clever. Before I reply to your 

question, tell me: have you observed fish remaining motion- 

less at their pleasure under water, neither descending to the 

bottom nor rising to the top, [yet] without applying any 

force by swimming? 

Simp. This is very easily observed. 

Salv. Well, the ability of fish to stay motionless in water 

is a convincing argument that the composition of their 

corporeal bulk is equal to water in specific gravity. So if 

some parts heavier than water are found in them, there 

must necessarily be an equivalent amount less heavy in order 

for equilibrium to hold. So if the bones are heavier [than 

water], it must be that the flesh, or some other material 

present, is lighter, and that these offset with their lightness 

the weight of the bones. Thus, what happens in aquatic 

animals is the opposite of the case with terrestrial animals; 

namely, that in the latter, it is the task of the skeleton to 

sustain its own weight and that of the flesh, while in the 

former, the flesh supports its own weight and that of the 
bones. And there the marvel ceases that there can be very 

vast animals in the water, but not on the earth, that is to 

say, in the air. 

Simp. This satisfies me; and I note further that these 

animals which we call “terrestrial” might more reasonably 

be called ‘‘aerial,’’ since they truly live in air, are surrounded 

by air, and it is air that they breathe.”? 
Sagr. Simplicio’s reasoning pleases me, both as to the 

question and its solution. Furthermore, I understand quite 

easily that one of these enormous fishes, drawn up on land, 

would perhaps be unable to support itself very long; the 

21. Evangelista Torricelli (1608-47) used the memorable phrase, “We 
live at the bottom of a sea of air” in his explanation of atmospheric pressure 
in 1644. 
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attachments of its bones becoming weakened, its vast bulk 

would flatten out. 

Salv. For the present I am inclined to believe this, nor 

am I far from thinking that the same might happen to 

yonder huge ship which, floating in the sea, does not come 

apart under the weight and load of its many goods and 

furnishings, but which would perhaps burst its seams on 

land, surrounded by air. But let us get on with our subject, 

and show that: 

[PROPOSITION X] 

Given a prism or cylinder and its [own] weight, and 

[given] the maximum weight it sustains [at one end], 

we can find the maximum length beyond which the 

prism itself, if prolonged, would break of its own weight. 

Given the prism AC with its own weight, let the given 

weight D be the maximum that can be sustained at its end 

C; the maximum length must be found, beyond which the 

prism cannot be extended without breaking. Extend CA to 

HA [in the same ratio] as [that of] the weight of prism AC 

to the combination of the weight AC with double the weight 

of D. Let AG be the mean proportional between these [CA 

and HA]; I say that AG is the length sought. Inasmuch as 

the downward [gravante] moment of weight D at C is equal 

to the moment of a weight double that of D but placed at 

the middle of AC, which is the center of moment of prism 

AC, the moment of the resistance at A of prism AC is 

equivalent to the downward tendency of double the weight 

D [together] with the weight of AC, attached at the middle 

of AC. What is sought is that the moment of the said 

[combined] weights (that is, of double D plus AC), so situated, 

shall be to the moment of AC as HA is to AC. Between 

these, the mean proportional is AG; therefore the moment 
of double D plus the moment of AC is to moment AC as 

the square of GA is to the square of AC. But the downward 

moment of prism GA is to the moment of AC as the square 

of GA is to the square of AC. Hence the length AG is the 

maximum sought, that is, the length to which prism AC 

would sustain itself, but beyond which it would break. 

Thus far there have been considered the moments and 

resistances of solid prisms and cylinders of which one ex- 

tremity is assumed to be fixed, and only at the other end 

is the force of a pressing weight applied, this [weight] being 
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considered alone, or in conjunction with the heaviness of 

the solid [prism] itself, or again, only the heaviness of that 

solid [being considered]. Now I wish some discussion of the 

same prisms and cylinders, but when they are sustained at 

both ends, or are EON on a single point taken between 

extremities. 

I say first that the cylinder pressed [gravato] by its own 

weight [alone] and brought to that maximum length beyond 

which it can no longer sustain itself, either on a single 

support exactly at its middle, or supported by two at its 

extremities, can be twice as long as when fixed in a wall or 

sustained at one end only. This is sufficiently manifest in 

itself, for if we take the half AB of the cylinder ABC as the 

greatest length capable of sustaining itself when fixed at the 

end B, just so will it sustain itself when placed on the support 

G and counterbalanced by the other half, BC. And similarly, 

if the length of the cylinder DEF is such that only half of 

it can sustain itself when fixed at the end D, and only the 

other [half] EF when fixed at end F, it is manifest that 

putting the supports H and / under the ends D and F, any 

moment of force or weight that is added at E will make a 

break there. 
Deeper speculation is required when, abstracting their own 

heaviness from such solids, it is proposed to investigate 

whether that force or weight which would suffice, when 

applied at the middle of a cylinder sustained at both ex- 
tremities, to break this, could have the same effect when 

applied at any other place, closer to one end than the other. 

For example, if we want to break a staff by taking its ends 

in hand and pressing the knee at its center, will the force 

[just] sufficient to break it in that way suffice also when the 

knee is placed not at the center, but closer to one of the 

ends? 
Sagr. | think that this problem was touched on by Aristotle 

in his Questions of Mechanics.*? 

22. Questions of Mechanics, 14 (Loeb ed., p. 369). 
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Salv. Aristotle’s question was not precisely the same. All 

he sought was to give a reason why less effort is required to 

break the stick by holding the hands at its ends, away from 

the knee, than by holding them closer together; and he gave a 

general reason, reducing the cause to the greater length of 

the levers [applied] when one’s arms are separated to grasp 

the ends. Our question adds something further; we inquire 

whether the same force serves at all places, with the knee at 

the center or elsewhere, but keeping the hands always at the 

ends [of the stick]. 

Sagr. At first glance it would seem that it does, since 

these two levers in a certain way preserve the same [total] 

moment, inasmuch as to the extent that one is shortened, 

the other is lengthened. 

Salv. Just see how ready at hand mistakes can be, and 

with what caution and circumspection one must proceed in 

order not to run into them. What you say, and what seems 

at first to have so much probability, is in a word so false 

that whether the knee (which is the fulcrum of both levers) 

is placed at the center or not makes so great a difference 

that the force required to cause fracture at the center, when 

applied at some other place, will sometimes remain inadequate 
even if multiplied four, or ten, or a hundred times, or a 

thousand. 

Let us consider this generally, and then we may come to 

the specific determination of the ratio in which the forces 

that cause fracture vary from one point to another. First we 

shall draw this timber AB, to be broken at the middle over 

the support C, and then the same [timber], but designated 

DE, to be broken over the support F, some distance from 

the middle. The distances AC and CB being equal, it is 

manifest first that the applied force will be divided equally 

between the ends B and A. Second, as the distance DF 

becomes less than the distance AC, the moment of the force 

applied at D becomes less than the moment [of the force] 

at A, applied at distance CA. The former diminishes in the 
ratio of line DF to AC; hence this [force at D] must be 

increased in order to equal or overcome the resistance at F. 

But distance DF can diminish in infinitum in relation to 

distance AC; hence it is necessary to increase in infinitum 

the force applied at D in order to match the resistance at 
F [as F recedes toward D]. 

On the other hand, as distance FE increases beyond CB, 
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one must diminish the force at E to match the resistance 
at F;?° but the distance FE cannot increase in infinitum in 

relation to CB as the support F is withdrawn toward end D; 

in fact, it cannot even double. Therefore the force required 

at E to match the resistance at F will always be [less than, 

but] more than one-half, the force at B. Thus you understand 

the necessity of infinitely increasing the combined moments 

of the forces at E and D, in order to equal or overcome 
the resistance located at F, as the support F approaches the 
extremity D. 

Sagr. What shall we say, Simplicio? Must we not confess 

that the power of geometry is the most potent instrument 

of all to sharpen the mind and dispose it to reason perfectly, 

and to speculate? Didn’t Plato have good reason to want 

his pupils to be first well grounded in mathematics? I 

understood quite well the action [facolta] of the lever, and 
how by increasing or reducing its length, the moment of its 

force and of the resistance grew or diminished; yet for all 

that, I was mistaken in the solution of the present problem, 

and not a little, but infinitely. 
Simp. Truly I begin to understand that although logic is 

a very excellent instrument to govern our reasoning, it does 

not compare with the sharpness of geometry in awakening 
the mind to discovery [invenzione]. 

Sagr. It seems to me that logic teaches how to know 

whether or not reasonings and demonstrations already 

discovered are conclusive, but I do not believe that it teaches 

how to find conclusive reasonings and demonstrations. 

But it will be better for Salviati to show us the ratio of 

increase of the moments of the forces required to overcome 

resistance in the same timber, with regard to its different 

places of breaking. 

Salv. The ratio which you seek has the following form: 

[PROPOSITION XI] 

If two places are taken in the length of a cylinder at 

which the cylinder is to be broken, then the resistances 

at those two places have to each other the inverse ratio 

[of areas] of rectangles whose sides are the distances of 

those two places [from the two ends.] 

23. In order that breaking shall occur and not a mere pulling of one hand 

by the other. 
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Let forces A and B be the least [forces required] for break- 

age at C, and likewise let E and F be the least for breakage 

at D; I say that forces A and B have to forces E and F the 

same ratio as the rectangle AD-DB has to the rectangle 

AC-—CB. Forces A and B have to forces E and F the ratio 

compounded from the [ratio of the sum of] forces 

A and B to force B; that of B to F; and that of F to [the sum 

of] F and E. But as forces A and B are to force B, so is the 

length BA to AC; and as the force B is to F, so is line DB 

to BC; and as the force F is to forces F and E, so is line DA 

to AB. Therefore forces A and B have to forces E and F 

the ratio compounded from the three; that is, from the 

said?* BA to AC, DB to BC, and DA to AB. But from the 
two [ratios] DA to AB and AB to AC is compounded the 

ratio of DA to AC; hence forces A and B have to forces 

E and F the ratio compounded from [those of] DA to AC 

and DB to BC. But rectangle AD-DB has to rectangle 

AC-—CB the ratio compounded from [those of] DA to AC 

and DB to BC; therefore the forces A and B stand to E and 

F as rectangle AD-DB to rectangle AC—CB. This is to say 

that the resistance to breakage at C has to resistance to 

breaking at D the same ratio that rectangle A4D—DB has to 

rectangle AC-—CB; which was to be proved.”° 
In consequence of this theorem, we can solve another very 

curious problem, which is: 

[PROPOSITION Xi] 

Given the maximum weight supported at the middle of 

a cylinder (or prism), where its resistance is least, and 

given a weight greater than this, to find the point in 

the cylinder at which the given greater weight is supported 

aS a maximum weight. 

Let the given weight, greater than the maximum supported 

at the middle of cylinder AB, be in the same ratio to that 

maximum as line E is to line F; it is required to find the 

point in the cylinder at which the given weight is sustained 

as the maximum. Let G be the mean proportional between 

FE’ and F, and as E is to G, make AD to S; S will be less than 

AD. Let AD be the diameter of the semicircle 4HD, in which 

24. The original text reads retta, but the context shows that derta was 
meant. 

25. A different, shorter proof appears in the Pieroni MS. 
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take AH equal to S. Draw HD, and cut off DR equal to 

HD; I say that R is the point sought, at which the given 

weight, greater than the maximum supported by the middle 

of cylinder D, will be supported as the maximum. 
On BA construct the semicircle ANB and erect the per- 

pendicular RN; join ND. Since the squares of NR and RD 

are equal to the square of ND, that is, to the square of AD, 

which is [equal to the squares of] AH and HD, and [the 

square of] HD is equal to the square of DR, then the square 

of NR, or the rectangle AR-RB, will be equal to the square 

of AH, which is the square of S. But the square of S is to 

the square of AD as Fis to E; that is, as the maximum weight 

supported at D is to the given greater weight. Hence this 

greater [weight] will be supported at R as the maximum that 

can be sustained there; which is what was sought. 

Sagr. I understand perfectly. And I am considering that 

since prism AB is always stronger and more resistant to 

pressure at points farther and farther from the middle, then 
from very large and heavy beams a considerable part might 

be removed toward the ends, with notable lightening of 

weight. This would be of no small advantage and utility in 
the rafters of great halls. It would be a fine thing to know 

the shape that must be given to a solid in order that it would 
be equally resistant at all points, and no more easily broken 

by a given weight pressing on it in the middle than at any 

other place.”° 
Salv. I was about to tell you something very noteworthy 

and wonderful to this purpose; here is a diagram, the better 

to explain this. Here, DB is a prism in which the resistance 
to fracture by a force pressing on end B is, as previously 

demonstrated, less at the end AD than is the resistance at 

CI, by as much as length CB is less than BA.*’ Next, consider 

the same prism sawed through diagonally along the line FB, 

so that the opposite faces form two triangles, one of which, 

FAB, is facing us. This solid has a nature contrary to that 

of the prism, since it less resists being broken over the point 

26. The problem is to find a beam supported at both ends that would bear 
some constant given weight as a maximum at any point. Salviati’s next 
remark suggests that he will discuss a related but different problem; cf. 
note 31, below. 

27. What had been proved was not this, but that the weights required for 
breaking prisms supported at A and C were inverse to the lengths AB and 
BC, as Viviani noted in his copy of the book. 
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C than over A, by a force applied at B, in proportion as CB 

is less than BA. This is easily proved. 
Consider the section CNO parallel to AFD; in triangle 

FAB, line FA has to CN the same ratio that line AB has 

to BC. Now understand points A and C to be the fulcrums 

of two similar levers whose arms are BA and AF, BC and 

CN. The moment of the force applied at B [acting] through 

distance BA against the resistance situated at distance AF 

will be that which the same force [applied] at B has, acting 

through distance BC against the same resistance situated at 

distance CN. But the resistance to be overcome by the force 

applied at B, at the fulcrum C situated at distance CN, is 

as much less than the resistance at A as rectangle CO is 

less than rectangle AD; that is, as much as line CN is less 

than AF, or CB than BA. Hence the resistance of part OCB 

to being broken [off] at C is as much less than the resistance 

of all DAB to being broken at A as the length CB is less than 

AB. Thus we have taken away from the beam or prism DB 

a part, in fact one-half, by cutting it diagonally, leaving the 

wedge or triangular prism FBA; and these two solids are of 

contrary condition, the former being more resistant the 

more it is shortened [in the direction of B], and the latter 

losing robustness as it is shortened. Now, this being the 

case, it seems quite reasonable and even necessary that a 

cut can be made after which, the superfluous part being 

removed, there remains a solid of such shape that it is equally 

resistant in all its parts. 

Simp. Indeed, it is necessary that where we pass from the 

greater to the less, we also meet with the equal. 

Sagr. But the point now is to find how to guide the saw 
so as to make this cut. 

Simp. It seems to me that this should be an easy task. 

By cutting the prism diagonally and taking away half, the 

shape that remains has its nature contrary to that of the 

entire prism, in such a way that wherever the latter gained 

strength, the former lost as much. So I believe that we should 

take the middle path; that is, by taking only one-half of the 

half, or one-quarter part of the whole, the remaining figures 

will neither gain nor lose robustness at any of those places 

at which the other two figures had equal losses and gains. 

Salv. You have not hit the target, Simplicio. As I shall 

show you, that which can be sawed from the prism and 

removed without weakening it is in truth not one-quarter, 
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but one-third. Now, as Sagredo has mentioned, it remains 

to find the line by which the saw should travel, which line 

I shall prove to be parabolic. But first it is necessary to 

demonstrate a certain lemma, which is this: 

[LEMMA] 

If there are two balances or levers, divided by their 

supports in such a way that the two distances at which 

the forces [to be compared] are applied shall be to each 

other in the squared ratio of the distances of the 

resistances, and if those resistances are to each other 

as their distances, then the sustaining powers [at the 

two points] will be equal. 

Let AB and CD be two levers, divided by their fulcrums 

E and F in such a way that distance EB has to FD the squared 

ratio of distance EA to FC, and assume, at A and C, 

resistances in the ratio of EA and FC.’® I say that equal 
powers at B and D will sustain the resistances A and C. 

Take EG as the mean proportional between EB and FD; 

then as BE to EG, so GE will be to FD, and AE to CF, which 

was taken to be the [ratio of the] resistance A to the resistance 

C. Since AE is to CF as EG is to FD, by permuting, GE will 

be to EA as DF is to FC. Therefore, since the two levers, 

DC and GA, are proportionately divided at points F and E, 

the power which, when applied at D, balances resistance C, 

when moved to G will balance the same resistance C moved 

to A. But by the assumption, resistance A has to resistance 

C the same ratio that AE has to CF, or BE to EG. Therefore 
the power [at] G, or we may say [at] D, when placed at B, will 

sustain the resistance situated at A; which was to be proved. 

This understood, let the parabolic line FNB, whose apex 

is B, be drawn on the face FB of prism DB, and let the prism 

be sawed along this line, leaving the solid that lies between 

the base AD, the rectangular plane AG, the straight line 

BG, and the surface BGDF, which has the curvature of the 

parabolic line FNB. I say that this solid [taken absolutely] 

is equally resistant throughout.”° 
Take the plane section CO, parallel to AD, and think of 

28. The words from “‘and assume ...” to the end of this sentence appear 
in the Pieroni MS but not in printed editions prior to the Opere. 

29. In the sense of breaking indifferently at F or N when the weight is 

applied at B. 

180 



138 Galileo, Opere, VIII (180-181) 

two levers divided by and placed on the fulcrums 4 and 

C, so that the arms of one lever are BA and AF, and of the 

other, BC and CN. Since in the parabola FBA, AB is to 

BC as the square of FA is to the square of CN, it is manifest 

that arm BA of one lever has to arm BC of the other, the 

squared ratio of arm AF to arm CN. And since the resistance 

to be balanced by lever BA has to the resistance to be 

balanced by lever BC the same ratio that rectangle DA has 

to rectangle OC, which is the same as that of line AF to 

NC (the other two arms of the levers), it is evident from the 

above lemma that the same force which, applied by the line 

BG, balances resistance DA, will also balance resistance CO. 

The same is demonstrated when the solid is cut at any other 

place; and therefore this parabolic solid [taken absolutely] is 

equally resistant throughout.*° 
That one-third is removed by cutting the prism along the 

parabolic line FNB becomes apparent, because the semi- 

parabola FNBA and the rectangle FB are the bases of two 

solids lying between two parallel planes, that is, between 

rectangles FB and DG, whence they have the same ratio as 

that of their bases. But rectangle FB is three-halves of semi- 

parabola FNBA; therefore, the prism being cut along the 

parabolic line, one-third is taken away. From this it is seen 

that beamwork can be built, without any reduction in strength, 

while diminishing weight by over thirty-three per cent. In 

large ships, especially to support the decks, this may be 

quite useful, since lightness is extremely important in such 

structures. >! 
Sagr. Its uses are so numerous that it would be a long 

task, or impossible, to record them all. But leaving that 

aside, I had rather understand that the lightening made is 

in the ratio you have assigned. I understand quite well that 
the cut along the diagonal removes one-half the weight; I 

30. The words ‘... to a force applied at BG” are required at the very 
least, and even then this would hold only for a weightless beam—or as 
Galileo would say, a beam “taken absolutely.” This oversight became the 
topic of further study and controversy by Francois Blondel (1626-86), 
Viviani, and Alessandro Marchetti (1633-1714). Yet it should be noted 
that the entire discussion by Galileo opened (p. 173) as if intended 
“absolutely’’; that is, by abstracting heaviness. 

31. Obviously Galileo did not perceive the essential difference between 
his problem and that of beams supported at both ends, for which the shape 
Pie turned out to be elliptical rather than parabolic; cf. notes 26 and 
0, above. 
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can believe that this parabolical cut carries away one-third 

of the prism on Salviati’s word, always truthful; but on this 

I should be thankful for science rather than faith. 

Salv. Then you would like to have the proof that the 
excess of the prism over what we may here call the parabolic 

solid is one-third of the whole prism. I know that I once 

demonstrated this, and I shall now try whether I can put 

the proof together again. I recall that for this I made use 

of a certain lemma of Archimedes in his book On Spiral 

Lines, and this is that if any given number of lines equally 

exceed one another, the excess being equal to the shortest 

of them; and given an equal number of lines each equal to 

the longest, then the [sum of the] squares of all the latter 

is less than triple the [sum of the] squares of the former 

lines, while it is more than triple the same after deducting 

the square of the longest line.” 
Assuming this lemma, let the parabolic line AB be inscribed 

in the rectangle ACBP. We must prove that the mixed 

triangle*> BAP, whose sides are BP and PA, and whose 
base is the parabolic line BA, is one-third of the whole 

rectangle CP. If it is not, it will be either more than one- 

third, or less. Let it be less, if possible, and let it be short 

by the space X. Divide the rectangle continually into equal 

parts by lines parallel to the sides BP and CA; eventually 

we shall arrive at parts less than space X. Let one such part 

be rectangle OB, and through the points at which the other 

parallels cut the parabolic line, pass lines parallel to AP. 

Now, by ‘‘circumscribed about our mixed triangle,” I shall 

mean the figure composed of rectangles BO, IN, HM, FL, 

EK, and GA, which [broken-line] figure will be less than 

one-third of the rectangle CP, since the excess of this figure 

over the mixed triangle is much less than rectangle BO, and 

that in turn is less than space X [by construction]. 

Sagr. A moment, please, for I do not see why the excess 

of this circumscribed figure, over and above the mixed 

triangle, is much less than rectangle BO. 

Salv. Rectangle BO is equal, is it not, to the sum of all 

these little rectangles through which our parabolic line 

32. Archimedes, On Spiral Lines, Prop. 10 (Heath, Archimedes, p. 162, 
with proof on pp. 107-9, the same theorem having been used as a lemma 
to Prop. 2, On Conoids and Spheroids). Galileo’s next demonstration illus- 
trates the Archimedean method of exhaustion. 

33. The three-sided figure of which one side is a curved line. 
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passes? I am speaking of B/, JH, HF, FE, EG, and GA, of 

each of which only a part lies outside the mixed triangle. 

And wasn’t rectangle BO assumed to be also less than space 

X? Therefore if, for the adversary, the [mixed] triangle plus 

X equaled one-third of the rectangle CP, then the circum- 

scribed figure, which adds to the [mixed] triangle less than 

space X, will still have to be less than one-third of rectangle 

CP. But this cannot be, since [as will be shown] it is greater 

than one-third; hence it is not true that our mixed triangle 

is less than one-third of the rectangle. 

Sagr. I understand the answer to my question, but now 

you must prove to us that the circumscribed figure is more 

than one-third of rectangle CP, in which I believe we shall 

have a great deal more trouble. 

Salv. Oh, there is no great difficulty about it. In the 

parabola, the square of line DE has to the square of ZG 

the same ratio that line DA has to AZ, which is the ratio 

of rectangle KE to rectangle AG, the altitudes AK and KL 

being equal. Therefore the ratio of the square ED to the 

square ZG (that is, of square LA to square AK) is also that 

of rectangle KE to rectangle KZ. And in just the same way 

the other rectangles, LF, MH, NI, and OB, are proved to 

be to one another as the squares of lines MA, NA, OA, 

and PA. 

Next, consider that the circumscribed figure is composed 

of spaces that are to one another as the squares of lines 

that exceed one another by differences equal to the shortest, 

and that the rectangle CP is composed of that same number 

of spaces, each of which is equal to the longest, namely, 

all the rectangles equal to OB. Then, by the lemma from 

Archimedes, the circumscribed figure is more than one-third 

of rectangle CP.** But it was also less, which is impossible. 
And thus the mixed triangle is not less than one-third of 
rectangle CP. 

Likewise I say that it is not more. For if it is more than 

one-third of rectangle CP, make space X [now] equal to the 

excess of the [mixed] triangle over one-third of rectangle CP. 

Then, having made the division and subdivision of the 
rectangle into ever-equal rectangles, we shall again arrive at 

one such that it is less than space X. This done, and rectangle 

34. Strictly speaking, the Archimedean theorem applies to sums of 
Squares only, but a corollary to it states that any geometrically similar 
figures of any kind may be substituted for squares. 
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BO being less than X, describe the figure as above, and 

we shall have inscribed within the mixed triangle a figure, 

composed of the rectangles VO, TN, SM, RL, and OK, 

which will not be less than one-third of rectangle CP. For 

the mixed triangle exceeds this inscribed figure by much less 
than it surpasses one-third of rectangle CP, inasmuch as 

‘the excess of the [mixed] triangle over and above one-third 

of rectangle CP is equal to space X, which is [again] less 

than rectangle BO, and this latter is still less than the excess 

of the [mixed] triangle over the inscribed figure. For BO is 

equal to all the rectangles AG, GE, EF, FH, HI, and JB, 

and the excesses of the [mixed] triangle over the inscribed 

figure are less than one-half of these. And since the [mixed] 

triangle exceeds one-third of the rectangle CP by much more 

(that is, by space X) than it exceeds the inscribed figure, 

this figure will still be greater than one-third of rectangle 

CP. But by the assumed lemma, it is less, since the rectangle 

CP, as aggregate of all the long rectangles, has the same 

ratio to the component rectangles of the inscribed figure, 

that the aggregate of all the squares of lines equal to the 

longest has to the squares of all the lines that equally exceed 

[one another, after] deducting the square of the longest. 

And thus, as happens with the squares [of the lines], the 

whole aggregate of long [rectangles], which is rectangle CP, 

is more than triple the aggregate of the [rectangles] exceeding 

one another, omitting the longest, that compose the inscribed 

figure. Therefore the mixed triangle is neither greater nor 

less than one-third of rectangle CP, and they are accordingly 

equal. 

Sagr. A beautiful and ingenious demonstration, so much 

the more so in that it gives us the quadrature of the para- 

bola, showing this to be four-thirds of the triangle inscribed 
in it.?> This proves something that Archimedes demonstrated 
by two different trains of many propositions, both of them 

admirable, and which was also demonstrated more recently 

by Luca Valerio, a second Archimedes according to our 
age°°, whose demonstration is given in the book he wrote 

35. The true triangle ABC, which is not drawn in Galileo’s diagram; 
this is not to be confused with the ‘‘mixed” triangle (note 33, above) used 
in the proof. See Archimedes, Quadrature of the Parabola, Props. 17, 24 
(Heath, Archimedes, pp. 246, 251-52). 

36. Cf. note 20 to First Day. Valerio’s proof is found in Prop. IX of his 

Quadratura parabolae (Rome, 1606). 
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on the center of gravity in solids. 

Salv. A book truly not to be placed below anything written 

by the most famous geometers of the present or all past 

centuries. When it was seen by our Academician, it caused 

him to desist from pursuing the discoveries that he had 

been writing about the same subject, since he saw the whole 

thing so happily revealed and demonstrated by Signor 

Valerio.*’ 
Sagr. I was told of all these events by the Academician 

himself, and also tried to get him to let me see the demon- 

strations he had already found when he met with Signor 

Valerio’s book, but I did not succeed in seeing them. 

Salv. | have a copy and will show it to you, for it will 

please you to see the difference in the methods by which 

these two authors move through the investigation of the 

same conclusions and their demonstrations. Some of the 
conclusions have different explanations, though in fact 

equally true. 

Sagr. I shall be very happy to see them; when you return 

to our customary meetings, do me the favor of bringing 

them along. Meanwhile, since this [matter] of the resistance 

of a solid removed from a prism by a parabolic cut is an 

operation no less elegant than useful in many mechanical 

works, it would be a good thing for artisans to have some 

easy and speedy rule for drawing the parabolic line on the 

surface of the prism. 

Salv. There are many ways of drawing such lines, of which 

two are speedier than the rest; I shall tell these to you. One 

is really marvelous, for by this method, in less time than 

someone else can draw finely with a compass on paper 

four or six circles of different sizes, I can draw thirty or 

forty parabolic lines no less fine, exact, and neat than the 

circumferences of those circles. I use an exquisitely round 

bronze ball, no larger than a nut; this is rolled [tirata] on 

a metal mirror held not vertically but somewhat tilted, so 

that the ball in motion runs over it and presses it lightly. 

In moving, it leaves a parabolic line, very thin, and smoothly 

traced. This [parabola] will be wider or narrower, according 

37. At Valerio’s request, Galileo had withheld publication of his early 
work on the same subject, here included as an appendix, when that was 
planned in 1613, because Valerio was at work on a revised edition of the 
work cited in the text. Galileo’s posthumous tribute to Valerio is thus more 
than generous, particularly in view of Valerio’s opposition to his Copernican 
campaign at Rome in 1616. 
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as the ball is rolled higher or lower. From this, we have a 

clear and sensible experience that the motion of projectiles 

is made along parabolic lines, an effect first observed by 

our friend, who also gives a demonstration of it.*® We shall 

all see this in his book on motion at the next [primo] meeting. 

To describe parabolas in this way, the ball must be somewhat 

warmed and moistened by manipulating it in the hand, so 

that the traces it will leave shall be more apparent on the 
mirror. 

The other way to draw on the prism the line we seek is 

to fix two nails in a wall in a horizontal line, separated by 
double the width of the rectangle in which we wish to draw 

the semiparabola. From these two nails hang a fine chain, 

of such length that its curve [sacca] will extend over the 

length of the prism. This chain curves in a parabolic shape, 

so that if we mark points on the wall along the path of the 

chain, we shall have drawn a full parabola.*° By means of 

a perpendicular hung from the center between the two nails, 

this will be divided into equal parts. There is then no difficulty 

about transferring such a line onto the opposite faces of the 

prism; an average craftsman will know how to do this. Or 

one may use the geometrical lines marked on our friend’s 

[proportional] compass to mark out the points of the same 

line on the face of the prism directly, without any other 

stratagem.*° 
Thus far we have demonstrated many conclusions relating 

to the theory of resistances of solids to fracture, having first 

opened the door to this science by supposing known their 

longitudinal resistance. It is thus possible to go on ahead, 

discovering more and more conclusions and their demon- 

strations, which are inexhaustible [infinite] in nature. But now, 

as the final end of today’s discussions, I want to add the 

theory of resistances of hollow [vacui] solids. Art, and nature 

even more, makes use of these in thousands of operations 

in which robustness is increased without adding weight, as 

38. The parabola underlay Galileo’s first mathematical treatise composed 
in 1587. The same two methods of tracing parabolas are also described in 
the undated notebook now preserved at Paris, left by Galileo’s patron, 
Guidobaldo del Monte (1545-1607). 

39. The curve formed by a hanging chain is a catenary, not a parabola, 
but closely approximates one under the conditions given in the Fourth 
Day (p. 310). 

40. Galileo’s “‘geometric and military compass,” devised about 1597, 
included a scale of squares facilitating the drawing of parabolas. 
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is seen in the bones of birds and in many stalks [canne] that 

are light and very resistant to bending and breaking. For 

a straw sustains an ear much heavier than the whole stem, 

but if this were made of the same quantity of material 

compacted, it would be much less resistant to bending and 

breaking. Hence art has observed, and experience has con- 

firmed, that a hollow rod or a tube of wood or metal is much 

firmer than it would be if it were of the same weight and 

length, but solid, and consequently thinner; and thus art 

has found how to make lances hollow when it is desired 

to have them strong and light. We shall, therefore, show that: 

[PROPOSITION XIII] 

The resistances of two cylinders of equal weight and 

length, one of which is hollow and the other solid, 

are to each other as the diameters. 
Let AE be the tube or hollow cylinder, and JN the solid 

cylinder, equal in weight and equally long; I say that the 

resistance of the tube AE to fracture has to the resistance 
of the solid cylinder JN the same ratio that the diameter 

AB has to the diameter JL. This is manifest, for the tube 

[AE] and the cylinder /N being equal [in volume and material] 

and equally long, the circle /L that is the base of the cylinder 

will be equal to the doughnut [ciambella]*! AB that is the 
base of the tube AE (I call the surface that remains when 

a smaller circle is taken from a larger one concentric to it 

a “‘doughnut’”’); whence their absolute resistances will be 

equal. In breaking the cylinder JN across, we use the length 

LN as a lever with its fulcrum at point L, and the radius 

(or diameter) L/J as its counterlever. But in the tube, the 

arm of the lever BE is equal to LN, while the counterlever 
beyond the fulcrum B is the radius (or diameter) AB. Hence 

it is clear that the resistance of the tube will exceed that of 

the solid cylinder in the ratio of the diameter AB over the 

41. Ciambella is the name of a flat pastry having a central hole. See p. 
74 for similar uses by Galileo of homely expressions as technical terms for 
geometric forms. 
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diameter /L; which is what we sought. The robustness of 

the tube therefore gains over the robustness of the solid 

cylinder in proportion to the diameters, provided always 

that both are of the same material, weight, and length. 

It will be good next to investigate what happens in other 

‘cases, in general, between all equally long tubes and solid 

cylinders unequal in weight, and more or less widely hollowed 

out. And first we shall demonstrate how: 

[PROPOSITION XIV] 

Given a hollow tube, to find a filled cylinder equal to 
it [in resistance to fracture}. 

The operation is very easy. Let line AB be the diameter 

of the tube, and CD the diameter of its hollow. In the larger 

circle draw line AE equal to the diameter CD, and join E 

and B. Since in the semicircle AEB, E is a right angle, the 

circle whose diameter is AB will be equal to the two circles 

of diameters AF and EB. But AE is the diameter of the hollow 
of the tube; therefore the circle whose diameter is EB will 

be equal to the doughnut ACBD. Hence the solid cylinder 

whose base is the circle of diameter EB will be equal [in 

area, and hence resistance] to the tube, the two being of 

equal length. 
This proved, we shall quickly: 

[PROPOSITION XV] 

Find the ratio of the resistances of any tube and any 

cylinder whatever, of equal lengths. 

Let there be the tube ABE and the cylinder RSM, of equal 

length; we must find the ratio between their resistances. By 
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the preceding [proposition], find the cylinder JLN equal to 

the tube and of the same length. Let line V be the fourth 
proportional of lines /L and RS, the diameters of the bases 

of cylinders JN and RM. | say that the resistance of the tube 

AE is to that of the cylinder RM as line AB is to V. For the 

tube AE being equal to and of equal length with the cylinder 
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IN, the resistance of the tube will be to the resistance of 

the cylinder as line AB is to /L; but the resistance of cylinder 

IN is to the resistance of cylinder RM as the cube of /L 

is to the cube of RS; that is, as line JL is to V. Therefore, 

by equidistance of ratios, the resistance of tube AE has to 

the resistance of cylinder RM the same ratio that line AB 

has to V; which is what was sought. 

The Second Day Ends*? 

42. Division of the book at this point was made by the publishers. Lack 
of the usual conversational conclusion here, and of a conversational opening 
for the Third Day, suggests that Galileo intended to add material here but 
failed to get it to Leyden in time. See note 30 to Fourth Day, below. 



Third Day 

[Sa/viati (reading from Galileo’s Latin treatise) :] 

On Local Motion 

We bring forward [promovemus] a brand new science 

concerning a very old subject. 

There is perhaps nothing in nature older than MOTION, 

about which volumes neither few nor small have been written 

by philosophers ; yet I find many essentials [symptomata] of 

it that are worth knowing which have not even been remarked, 

let alone demonstrated. Certain commonplaces have been noted, 

as for example that in natural motion, heavy falling things 

continually accelerate ; but the proportion according to which 

this acceleration takes place has not yet been set forth. Indeed 

no one, so far as I know, has demonstrated that the spaces run 

through in equal times by a moveable descending from rest 

maintain among themselves the same rule {rationem] as do the 

odd numbers following upon unity.’ It has been observed that 

missiles or projectiles trace out a line somehow curved, but no 

one has brought out that this is a parabola. That it is, and 

other things neither few nor less worthy [than this] of being 

known, will be demonstrated by me, and (what is in my opinion 

more worthwhile) there will be opened a gateway and a road 

to a large and excellent science of which these labors of ours 

shall be the elements, [a science | into which minds more piercing 

than mine shall penetrate to recesses still deeper. 

We shall divide this treatise into three parts. In the first 
part we consider that which relates to equable or uniform 

1. Although important rules of uniformly accelerated motion had been 
given by medieval writers, those to which Galileo alludes were not among 
them. Neither the progression of spaces traversed according to the odd 
numbers, nor the relation of total distances to the squares of times, had 
been related to free fall. Those relations had been found by Galileo in 1604, 
and were utilized in his Dialogue, pp. 221-23, 227-29 (Opere, VII, 248-50, 

253-56). His neglect to mention this may have been due to the fact that the 
Dialogue was a prohibited book. That Galileo did not mention here Cavalieri’s 
application of those rules in 1632 is understandable, as is his omission in the 
next sentence of Cavalieri’s derivation of the parabolic trajectory: cf. note 30 

to First Day: 
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motion ; in the second, we write of motion naturally accelerated ; 

and in the third, of violent motion, or of projectiles. 

On Equable Motion 

Concerning equable or uniform motion, we require a single 

definition which I offer in this form: 

DEFINITION 

Equal or uniform motion I understand to be that of which 

the parts run through by the moveable in any equal times 

whatever are equal to one another. 

NOTE: To the old definition,» which simply calls 
motion ‘‘equable’’ when equal spaces are completed 

[transiguntur] in equal times, it seems good to add the 

qualifier ‘any whatever,”’ that is, in all equal times ; for 

it may happen that a moveable passes through equal 

spaces in some equal times although the spaces com- 

pleted in smaller parts of those same times, themselves 

equal, are not equal. 

From the definition there hang four axioms, as follows: 

AXIOM I 

During the same equable motion, the space completed in 

a longer time is greater than the space completed in 

shorter time. 

AXIOM II 

The time in which a greater space is traversed in the 

same equable motion is longer than the time in which a 
smaller space is traversed. 

AXIOM III> 

The space traversed with greater speed is greater than the 

2. The “old definition” is presumably that of Aristotle, Physica 237b. 
27-30: “In all cases where a thing is in motion with uniform velocity ... 
if we take a part of the motion which shall be commensurable with the whole, 
the whole motion is completed in as many equal periods of time as there 
are parts of the motion.”’ Galileo’s definition removes the restriction to 
commensurables. Archimedes did not define uniform motion in any sur- 
viving work, but his book On Spiral Lines, Prop. 1, implied Galileo’s addition, 
which had also been correctly given by Richard Swineshead in the 
fourteenth century. 

3. This and the next axiom, unlike the first two, are not restricted to uni- 

form motion; like Props. II and III below, which depend on them, they are 
of perfectly general applicability. 
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space traversed in the same time with lesser speed. 

AXIOM IV 

The speed with which more space is traversed in the same 

time is greater than the speed with which less space is 
traversed. 

PROPOSITION I. THEOREM ins 

If a moveable equably carried [latum] with the same speed 
passes through two spaces, the times of motion will be to 

one another as the spaces passed through. 

Let the moveable equably carried with the same speed pass 

through two spaces, AB and BC; and let the time of motion 

through AB be DE, while the time of motion through BC is 

EF ; I say that space AB is to space BC as time DE is to time 

EF. 

Extend the spaces toward G and H, and the times toward 

I and K. In AG take any number of spaces [each] equal to 

AB, and in DI likewise as many times [each] equal to DE. 

Further, let there be taken in CH any multitude of spaces 

[each] equal to CB, and in FK that multitude of times [each] 

equal to EF. Space BG and time EI will now be equimultiples 

of space BA and time ED [respectively], according to whatever 

multiplication was taken. Similarly, space HB and time KE 

will be equimultiples of space CB and time EF in such multi- 

plication. And since DE is the time of movement through AB, 

the whole of EI will be the time of the whole [space] BG, since 

this motion is assumed equable, and in EI there are as many 

equal times DE as there are equal spaces BA in BG; and 
similarly it is concluded that KE is the time of movement 

through HB. But since the motion is assumed equable, if the 

space-GB is equal to BH, the time IE Will be equal to time EK, 
while if GB is greater than BH, so will IE be greater than EK ; 

and if less, less. Thus there are four magnitudes, AB fitst, 

4. For ease of reference in this translation, the proposition numbers 
are placed before the theorem or problem numbers, reversing the original 

order. Theorem I is the converse of Archimedes, On Spiral Lines, Prop. 1, 
whose proof was likewise based on the Eudoxian definition of “same ratio” 
(Euclid, Elements V, Def. 5). 
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BC second, DE third, and EF fourth; and of the first and third 

(that is, of space AB and time DE), equimultiples are taken 

according to any multiplication, [i.e.] the time IE and the 

space GB; and it has been demonstrated that these either both 

equal, both fall short of, or both exceed the time EK and the 

space BH, which are equimultiples of the second and fourth. 

Therefore the first has to the second (that is, space AB has 

to space BC) the same ratio as the third to the fourth (that 

is, time DE to time EF); which was to be demonstrated. 

PROPOSITION II. THEOREM II 

If a moveable passes through two spaces in equal times, 

Yo these spaces will be to one another as the speeds. And if 

the spaces are as the speeds, the times will be equal.° 

Taking the previous diagram, let there be two spaces, AB 

and BC, completed in equal times, space AB with speed DE 

and space BC with speed EF ; I say that space AB is to space 

BC as speed DE is to speed EF. Again, as above, taking 

equimultiples both of spaces and of speeds according to any 

multiplication—that is, GB and \E [equimultiples| of AB and 

DE, and likewise HB and KE [equimultiples| of BC and EF 

—it is concluded in the same way as above that multiples GB 

and IE either both fall short of, or equal, or exceed equimultiples 

BH and EK. Therefore the proposition is manifest. 

PROPOSITION III. THEOREM III 

Of movements through the same space at unequal speeds, 

the times and speeds are inversely proportional. 

Let there be unequal speeds, A greater and B lesser, and 

let there be motion through the same space CD according to 

each [speed]; I say that the time in which speed A goes through 

[permeat] CD is, to the time in which speed B goes through 
the same space, as speed B is to speed A.® For let CD be to 

5. The statements of this and the next theorem contain no restriction to 
equable or uniform motion, nor do their proofs involve restricted axioms; 

cf. note 3, above. Galileo used Prop. II in certain proofs relating to accelerated 
motion, for example, on p. 222. 

6. The wording here which makes a speed go through or traverse a distance 
is curious. Elsewhere Galileo sometimes speaks of speeds as being spent, 
consumed, or used up (as we say of time) in the traversing of a space by a 
moveable. 
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CE as A is to B; then from the preceding, the time in which 

speed A traverses [conficit] CD is the same as the time in 

which B traverses CE; but the time in which speed B traverses 

CE is, to the time in which the same [B] traverses CD, as 

CE is to CD. Therefore the time in which speed A traverses 

CD is, to the time in which speed B traverses the same CD, 

as CE is to CD, or as speed B is to speed A; which was 

proposed. 

PROPOSITION IV. THEOREM IV 

If two moveables are carried in equable motion but at 

unequal speeds, the spaces run through by them in unequal 

times have the ratio compounded from the ratio of speeds 

and from the ratio of times.’ 
Let two moveables, E and F, be moved in equable motion, 

and let the ratio of the speed of moveable E be to the speed 

of moveable F as A is to B, while the ratio of the time in which 

E is moved, to the time in which F is moved, is as C is to D; 

I say that the space run through by E at speed A in time C 

has, to the space run through by F at speed B in time D, the 

ratio compounded from the ratio of speed A to speed B and 

from the ratio of time C to time D. 

Let G be the space run through by E at speed A in time C, 

and let G be to | as speed A is to speed B, and let | be to L 

as time C is to time D. It follows that 1 is the space through 

which F is moved in the same time as that in which E is moved 

through G, since spaces G and | are as speeds A and B. Since 

I is to L as time C is to time D, and 1 is the space that 

is traversed by moveable F in time C, then L will be the space 

traversed by F in time D with speed B. Hence the ratio of G 

to L is compounded from the ratios of G to 1 and of | to L; 

that is, from the ratios of speed A to speed B and of time C 

to time D;; therefore the proposition holds. 

PROPOSITION V. THEOREM V 

If two moveables are carried in equable motion but with 

unequal speeds, and unequal spaces are run through, then 

the ratio of the times will be compounded from the ratio 

of spaces and from the inverse ratio of speeds. 

Let there be two moveables A and B, and let the speed of 

A be to the speed of B as V is to T; and let the spaces 

7. The Archimedean concept of compound ratios is essential here, as 

elsewhere in Galileo’s applications of mathematics to physics; cf. Intro- 
duction, Glossary, note 9 to Second Day, and pp. 210, 220, below. 
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—— run through be as S is to R; I say that the ratio of the time in 

>. ____, which A is moved, to the time in which B is moved, is com- 

a pounded from the ratio of speed T to speed V and from the 

ratio of space S to space R. 

Let C be the time of motion A, and as speed T is to speed 

V, so let time C be to time E. Since C is the time in which 

A, at speed V, traverses space S, and since time C is to time 

E as speed T of moveable B is to speed V, time E will be that 

in which moveable B traverses the same space Si Now make 

time E to time G as space S is to space R. Clearly, G is the 

time in which B will traverse space R. And since the ratio of 

C to G is compounded from the ratios C to E and E to G, 

the ratio of C to E is the same as the inverse ratio of the speeds 

of moveables A and B; that is, [the same] as the ratio of T 

to V. But the ratio of E to G is the same as the ratio of spaces 

S and R; therefore the proposition holds. 

196 PROPOSITION VI. THEOREM VI 

If two moveables are carried in equable motion, the ratio 

of their speeds will be compounded from the ratio of 

Spaces run through and from the inverse ratio of times. 

Let two moveables, A and B, be carried in equable motion, 

nd let the spaces run through by them be in the ratio of V 

o T, while the times are as S is to R; I say that the speed of 

moveable A has to the speed of moveable B the ratio com- 

pounded from the ratios of space V to space T and of time R 
to time S. 

Let speed C be that with which moveable A traverses space 

V in time S, and let speed C have to another [speed], E, the 

ratio that space V has to space T. Then~E-witt—be_the speed 
with which moveable B traverses space T in the same time, S. 
But if speed E is made to another [speed], G, as time R is 

to time S, then speed G will be that with which moveable B 

traverses space T in time R. Thus we have speed C, with which 

moveable A traverses space V in time S, and speed G, with 

which moveable B traverses space T in time R; and the ratio 

of C to G is compounded from the ratios C to E and E to G. 

But the ratio C to E is assumed to be the same as the ratio of 

space V to space T, while [ratio] E to G is the same as ratio 

R to S; therefore the proposition holds. 

Salv. What we have just seen is all that our Author has 
written of equable motion. We therefore pass on to a new 
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and more subtle contemplation, concerning naturally accel- 

erated motion, which is that which is universally carried 

out by heavy falling moveables. Here is his title and his 
introduction: clini 

On Naturally Accelerated Motion® 

Those things that happen which relate to equable motion 

have been considered in the preceding book ; next, accelerated 

motion is to be treated of. 

And first, it is appropriate to seek out a ooh 

definition that best agrees with that {acc motion] which 

nature employs. Not that there is anything wrong with inventing 

at pleasure some kind of motion and theorizing about its 

consequent properties, in the way that some men have derived 

spiral and conchoidal lines from certain motions, though nature 

makes no use of these [paths]; and by pretending these, men 

have laudably demonstrated their essentials from assumptions 

[ex suppositione.] But since nature does employ a certain kind 

of acceleration for descending heavy things, we decided to look 

into their properties so that we might be sure that the efinition 

of accelerat tion which are about uce agrees 

pith the essence-ef- naturally accelerated motion And at length, 
after continual agitation of mind, we are confident that this 

has been found, chiefly for the very powerful reason that the 

essentials successively demonstrated by us correspond to, 

are seen to be in agreement wi ich physical experi- 

ments fara experimena slow fot 10ers 
Further, it is as though we have been y the hand to the 
investigation of naturally accelerated motion by consideration 

of the custom and procedure of nature herself in all her other 

works, in the performance of which she habitually employs 

the a a and easiest means. And indeed, no one of 

judgmenr believes that swimming or flying can be accomplished 

in a simpler or easier way than that which fish and birds 

employ by natural instinct. 

8. It is significant that this title refers to natural rather than to uniform 
acceleration. Galileo’s central topic is free fall, and he defines uniformity 
on the basis of natural phenomena. This reverses the medieval procedure, 
in which a purely mathematical analysis of accelerated motion was carried 
out, often illustrated by ingenious examples but never based on reference 

to free fall. 
9. Compare the statement of Heinrich Hertz cited in the Introduction. 
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Thus when I consider that a stone, falling from rest at some 

height, successively acquires new_increments of speed, why 

should I not believe that those_additions are made by the 

simplest_and_most evident rule?" For if we look into this 
attentively, we can discover no simpler addition and increase 

than that which is added on always in the same way. We easily 

understand that the closest affinity holds between time and 

motion, and thus equable and uniform motion is defined through 

uniformities of times and spaces ; and indeed, we call movement 

equable when in equal times equal spaces are traversed. And 

by this same equality of parts of time, we can perceive the 

increase of swiftness to be made simply, conceiving mentally 

that this motion is uniformly and continually accelerated in 

the same way whenever, in any equal times, equal additions of 

hag LLL 
Thus, taking any equal particles of time whatever, from the 

first instant in which the moveable departs from rest and 

descent is begun, the degree of swiftness acquired in the first 

and second little Ti TREE Ge the degree 

that the moveable acquired in the first little part [of time]; 

and the degree that it gets in three little parts of time is triple ; 

and in four, quadruple that same degree [acquired] in the first 

particle of time. So, for clearer understanding, if the moveable 

were to continue its motion at the degree momentum of 

speed acquired in the first little part of time, and were to extend 

its motion successively and equably with that degree, this 

movement would be twice as slow as [that] at the degree of 

speed obtained in two little parts of time. And thus it is seen 

that we shall not depart far from the correct rule if we assume 

that intensification of speed is made according to the extension 

of time; from which the definition of the motion of which we are 

going to treat may be put thus: 

[DEFINITION] 

I say that that motion is equably or uniformly accelerated 

which, abandoning rest, adds on to itself equal momenta 

of swiftness in equal times. 

Sagr. Just as it would be unreasonable for me to oppose this, 

or any other definition whatever assigned by any author, all 

10. A more ordinary, intuitive view was that the simplest rule was to take 
the ever-changing speeds as proportional to distances traversed from rest. An 
essential mathematical disparity between that rule and Galileo’s is shown in 
the discussion on pp. 2034, below. 
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[definitions] being arbitrary, so I may, without offence, doubt 

whether this definition, conceived and assumed in the abstract, 

is adapted to, suitable for, and verified in the kind of accel- 

erated motion that heavy bodies in fact employ in falling 

naturally. And since it seems that the Author promises us that 

what he has defined is the natural motion of heavy bodies, I 

should like to hear you remove certain doubts that disturb my 

mind, so that I can then apply myself with better attention to 

the propositions that are expected, and their demonstrations. 

Salv. It_will be good for you and Simplicio-te-propound the 
difficulties, which I imagine will be the same ones that occurred 

to me when I first saw this treatise, and that our Author himself 

put to rest for me in our discussions, or that I removed for 

myself by thinking them out. 

Sagr. I picture to myself a heavy body falling. It leaves from 

rest; that is, from the deprivation of any speed whatever, and 

enters into motion in which it goes accelerating according to 

the ratio of increase of time from its first instant of motion. It 

will have obtained, for example, eight degrees of speed in eight 

ulse-beats, of which at the fourth beat it will have gained 

ar second [beat], two; and at the first, one. Now, time 

being infinitely divisible, what follows from this? The speed 

being always diminished in this ratio, there will be no degree 

of speed, however small (or we might say, “no degree of slow- 

ness, however great’), such that the moveable will not be 

found to have this [at some time] after its departure from 

infinite slowness, that is, from rest. Thus if the degree of speed 

that it had at four beats of time were such that, maintaining 

this uniformly, it would run two miles in one hour, while with 

the degree of speed that it had at the second beat it would have 
made one mile an-hour, it must be said that in instants of time 

closer and closer to the first [instant] of its moving from rest, it 

would be found to be so slow that, continuing to move with 

this slowness, it would not pass a mile in an hour, nor ina day, 

nor in a year, nor in a thousand [years], and it would not pass 

even one span in some still longer time. Such events I find very 

hard to accommodate in my imagination, when our senses 

show us that a heavy body in falling arrives immediately at a 

very great speed. 

Salv. This is one of the difficulties that gave me pause at the 

outset; but not long afterward J removed it, and its removal 

was effected by the same experience that presently sustains 

it for you. 
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You say that it appears to you that experience shows the 

heavy body, having hardly left from rest, entering into a very 

considerable speed; and I say that this same experience makes 

it clear to us that the first impetuses of the falling body, how- 

ever heavy it may be, are very slow indeed. Place a heavy body 

on some yielding material, and leave it until it has pressed as 

much as it can with its mere weight. It is obvious that if you 

now raise it one or two braccia, and then let it fall on the same 

material, it will make a new pressure on impact, greater than it 

made by its weight alone. This effect will be caused by the 

falling moveable in conjunction with the speed gained in fall, 

and will be greater and greater according as the height is 

greater from which the impact is made; that is, according as the 

speed of the striking body is greater. The amount of speed of a 

falling body, then, we can estimate without error trom the_ 

quality-and quantity of its impact. 
But tell me, gentlemen: if you let a sledge fall on a pole from 

a height of four braccia, and it drives this, say, four inches into 

the ground, and will drive it much less from a height of two 

braccia, and still less from a height of one, and less yet from a 

span only; if finally it is raised but a single inch, how much 

more will it accomplish than if it were placed on top [of the 

pole] without striking it at all? Certainly very little. And its 

effect would be quite imperceptible if it were lifted only the 

thickness of a leaf. Now, since the effect of impact is governed 

by_the speed of a giverl percussent, who can doubt that its 

motion is very slow and minimal when its action is impercep- 

tible? You now see how great is the force of truth, when the 

same experience that seemed to prove one thing at first glance 

assures us of the contrary when it is better considered. 

But without restricting ourselves to this experience, though 

no doubt it is quite conclusive, it seems to me not difficult to 

penetrate this truth by simple reasoning. We have a heavy 

stone, held in the air at rest. It is freed from support and 

set at liberty; being heavier than air, it goes falling downward, 

not with uniform motion, but slowly at first and continually 

accelerated thereafter. Now, since speed may be increased or 

diminished in infinitum, what argument can persuade me that 

this moveable, departing from infinite slowness (which is rest), 
enters immediately into a speed of ten degrees rather than into 

one of four, or into the latter before a speed of two, or one, or 

one-half, or one one-hundredth? Or, in short, into all the 

lesser [degrees] in infinitum? 
— 

——— 
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Please hear me out. I believe you would not hesitate to grant 

me that the acquisition of degrees of speed by the stone falling 

from the state of rest may occur in the same order as the 

diminution and loss of those same degrees when, driven by 

impelling force, the stone is hurled upward to the same height. 

But if that is so, I do not see how it can be supposed that in the 

diminution of speed in the ascending stone, consuming the 

whole speed, the stone can arrive at rest before passing through 

every degree of slowness. 

Simp. But if the degrees of greater and greater tardity are 

body will never come to rest, but will move forever while 

always slowing down—something that is not seen to happen. 

Salv. This would be so, Simplicio, if the moveable were to 

hold itself for any time in each degree; but it merely_passes 

there, without remaining beyo instant. And since in any 

finite time [tempo quanto], however small, there are infinitely 

many instants, there are enough to correspond to the in- 

finitely many degrees of diminished speed. It is obvious that 

this rising heavy body does not persist for any finite time in” 

any one degrée of speed, for if any finite time is assigned, and if 
the moveable had the-sameé degree of speed at the first instant 
of that time and also at the last, then_it could likewise be 
driven upward with this latter degree [of speed] through as 

much space [again], just as it was carried from the first [instant] 

to the second; and at the same rate it would pass from the 
second to a third, and finally, it would continue its uniform 

motion in infinitum. 

Sagr. From this reasoning, it seems to me that a very 

appropriate answer can be deduced for the question agitated 

among philosophers as to the possible cause of acceleration of 

the natural motion of heavy bodies. For let us consider that in 

the heavy body hurled upwards, the force frixtu] impressed 

upon it by the thrower is continually diminishing, and that 

this is the force that drives it upward as long as this remains 

Bios inc teiettnird ey garte. chute feavinesatheny ete 
these two [forces] reach equilibrium, the moveable stops 

rising and passes through a state of rest. Here the impressed 

impetus is [still] not annihilated, but merely that excess has 

been consumed that it previously had over the heaviness of the 

moveable, by which [excess] it prevailed over this [heaviness] 

and drove [the body] upward. The diminutions of this alien 

impetus then continuing, and in consequence the advantage 
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passing over to the side of the heaviness, descent commences, 

though slowly because of the opposition_of the impressed 

force, a good part of which still remains in the moveable. And 

since this continues to diminish, and comes to be overpowered 

in ever-greater ratio by the heaviness, the continual accel- 

eration of the motion arises therefrom." 

Simp. The idea is clever, but more subtle than sound; for 

if it were valid, it would explain only those natural motions 

which had been preceded by violent motion, in which some 

part of the external impetus still remained alive. But where 

there is no such residue, and the moveable leaves from long- 

standing rest, the whole argument loses its force. 

Sagr. I believe you are mistaken, and that the distinction of 

cases made by you is superfluous, or rather, is idle. For tell 

me: can the thrower impress on the projectile sometimes much 

force, and sometimes little, so that it may be driven upward a 

hundred braccia, or twenty, or four, or only one? 

Simp. No doubt he can. 

Sagr. No less will the force impressed be able to overcome 

the resistance of heaviness by so little that it would not raise 

[the body] more than an inch. And finally, the force of pro- 

jection may be so small as just to equal the resistance of the 

heaviness, so that the moveable is not thrown upward, but 

merely sustained. Thus, when you support a rock in your hand, 

what else are you doing but impressing on it just as much of 

that upward impelling force as equals the power of its heavi- 

ness to draw it downward? And do you not continue this 

force of yours, keeping it impressed through the wholétime 

peels Bide dt your hand’? Does the force 

perhaps dimimis ing the Tength of time that you support 

the rock? Now, as to this sustaining that prevents the fall of 

the rock, what difference does it make whether it comes from 

your hand, ora table, or a rope tied to it? None whatever. You 

must conclude, then, Simplicio, that it makes no difference at 

all whether the fall of the rock is preceded by a long rest, or a 

short one, or one only momentary, and that the rock always 

starts with just as much of the force contrary to its heaviness 
as was needed to hold it at rest. 

Salv. The present does not seem to me to be an opportune 

time to enter into the investigation of the cause of the accel- 

11. What Sagredo presents here was Galileo’s own first approach to 
the question of natural acceleration by seeking its cause; cf. On Motion, 
pp. 89-91 (Opere, I, 319-20) and note 12, below. 
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eration of natural motion, concerning which various philoso- 
phers have produced various opinions, some of them reducing 

this to approach to the center; others to the presence of 

successively less parts of the medium [remaining] to be divided ; 

and others to a certain extrusion by the surrounding medium 

which, in rejoining itself behind the moveable, goes pressing 

and continually pushing it out. Such fantasies, and others like 

them, would have to be examined and resolved, with little 

gain. For the present, it suffices our Author that we understand 
him to want us to investigate and demonstrate some attributes 

[passiones| of a motion so accelerated (whatever be the cause 

of its acceleration) that the momenta of its speed go increasing, 

after its departure from rest, i simple ratio with which the 
Bop ace tay enstaswtc hone neem 
that in e imes, equal additions of speed are made. And if 

it shall be found that the events that then shall have been 

demonstrated are verified in the motion of naturally falling and 

accelerated heavy bodies,’* we may deem that the definition 

assumed includes that motion of heavy things, and that it is 

true that their acceleration goes increasing as the time and the 

duration of motion increases. 

Sagr. By what I now picture to myself in my mind, it appears 

to me that this could perhaps be defined with greater clarity, 

without varying the concept, [as follows]: Uniformly accele- 

rated motion is that in which the speed goes increasing 

according to the increase,of space traversed. Thus for ex- 

ample, the degree of speed acquired by the moveable in the 

descent of four braccia would be double that which it had after 

falling through the space of two, and this would be the double 

of that resulting in the space of the first braccio. For there 

seems to me to be no doubt that the heavy body coming from a 

height of six braccia has, and strikes with, double the impetus 

that it would have from falling three braccia, and triple that 

which it would have from two, and six times that had in the 

space of one.'* 
Saly. It is very comforting to have had such a companion in . 

12. Note the similarity to the statement of Hertz cited in the Intro- 
duction. Rejection of causal inquiries was Galileo’s most revolutionary 

proposal in physics, inasmuch as the traditional goal of that science was the 

determination of causes. 
13. It is true that impact is proportional to the height of fall, but this 

does not apply to the speed acquired, as Sagredo assumes; cf. note 17, 
below. Galileo had made this assumption in 1604, in effect using it to define 
“velocity” physically (Opere, X, 115; VIII, 373). 
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error, and I can tell you that your reasoning has in it so much 

of the plausible and probable, that our Author himself did not 

deny to me, when I proposed it to him, thathe had labored for 

some time-under the-samefatacy But what made me marvel 

then was to see revealed, in a few simple words, to be not only 

false but impossible, two propositions which are so plausible 

that I have propounded them to many people, and have not 

found one whg did not freely concede them to me. 
Simp. Truly, I should be one of those who concede them. 

That the falling heavy body vires acquirat eundo [acquires 

force in going],!* the speed increasing in the ratio of the space, 
while the momentum of the same percussent is double when it 

comes from double height, appear to me as propositions to be 

granted without repugnance or controversy. 

Salv. And yet they are as false and impossible as [it is] that 

clear proof of it. When speeds havethe same ratio as the spaces 

passed or to be passed, those spaces come to ssed in 

equal times;'° if therefore the speeds with which the falling 
body passed the space of four braccia were the doubles of the 

speeds!© with which it passed the first two braccia, as one space 
is double the other space, then the times of those passages are 

equal; but for the same moveable to pass the four braccia and 

the two in the Some type-cannot ake pace except ip mstanta- 
neous motion. But-wé see that the falling heavy body makes 

its motion in time, and passes the two braccia in less [time] 

than the four; therefore it is false that its speed increases as the 
space. 

The other proposition is shown to be false with the same 

clarity. For that which strikes being the same body, the 

difference and momenta of the impacts must be determined 

only by the difference of the speeds;'’ if therefore the per- 

14. Virgil, Aeneid iv.175, where the reference is to rumor. 

15. Cf. Prop. II and notes 3, 5, above. The ensuing argument may be 
an application of this rule to instantaneous velocities, whereas it had pre- 
viously been proved only for finite motions. 

16. The plurals are essential to Galileo’s concept, which is that of es- 
tablishing a one-to-one correspondence between all possible speeds in the 
whole motion and all possible speeds in the first half of it. For speeds 
proportional to distances, this leads to a contradiction of experience, though 
for speeds proportional to time it does not. 

17. If “determined by”? means “proportional to,” this inference is incorrect, 
since impact is proportional not to velocity but to its square; cf. note 13, 
above. Fall through doubled height does in fact double the impact, but this 
results from speed increased as the square root of two, and not from doubled 
speed. Galileo appears here to believe the apparent doubling of impact 
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cussent coming from a double height delivers a blow of double 

momentum, it must strike with double speed; but double 

speed passes the double space in the same time, and we see the 

time of descent to be longer from the greater height.'® 

Sagr. Too evident and too easy is this [reasoning] with which 

you make hidden conclusions manifest. This great facility 

renders the conclusions less prized than when they were under 

seeming contradiction. I think that people generally will little 

esteem ideas gained with so little trouble, in comparison with 

those over which long and unresolvable altercations are waged. 

Salv. Things would not be so bad if men who show with 

great brevity and clarity the fallacies of propositions that have 

commonly been held to be true by people in general received 

only such bearable injury as scorn in place of thanks. What is 

truly unpleasant and annoying is a certain other attitude that 

some people habitually take. Claiming, in the same studies, 

at least parity with anyone that exists, these men see that 

the conclusions they have been putting forth as true are later 

exposed by someone else, and shown to be false by short and 

easy reasoning. I shall not call their reaction envy, which then 

usually transforms itself into rage and hatred against those 

who reveal such fallacies, but I do say that they are goaded bya 

desire to maintain inveterate errors rather than to permit 

newly discovered truths to be accepted. This desire sometimes 

induces them to write in contradiction to those truths of which 
they themselves are only too aware in their own hearts, merely 

to keep down the reputations of other men in the estimation of 

the common herd of little understanding. I have heard from 

our Academician not a few such false conclusions, accepted as 

true and [yet] easy to refute; and I have kept a record of some 

of these. 

Sagr. And you must not keep them from us, but must share 

them with us some time, even if we need a special session for 

the purpose. But now, taking up our thread again, it seems to 

me that we have at this point fixed the definition of uniformly 

accelerated motion, of which we shall treat in the ensuing 

discussion; and it is this: 

to be illusory; cf. note 18, below. 

18. The logical conclusion here is that the blow delivered is not one of 
doubled momentum, since it cannot be of doubled speed (denial of 
consequent). The argument is so elliptical as to suggest a confusion of 

terminal speed with overall speed, which in the context is improbable. More 
likely, Galileo expected the reader to review the preceding argument in full. 
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[DEFINITION] 

We shall call that motion equably or uniformly accelerated 

which, abandoning rest, adds on to itself equal momenta of 

swiftness in equal times. 

Salv. This definition established, the Author requires and 

takes as true one single assumption; that is: 

[POSTULATE] 

I assume that the degrees of speed acquired by the same 

moveable over different inclinations of planes are equal 

whenever the heights of those planes are equal.'° 

He calls the “‘height’’ of an inclined plane that vertical from 

the upper end of the plane which falls on the horizontal line 

extended through the lower end of the said inclined plane. For 

an understanding of this, take line AB parallel to the horizon, 

upon which are the two inclined planes CA and CD; the ver- 

tical CB, falling to the horizontal BA, is called by the Author 

the height [or altitude, or elevation] of planes CA and CD. 

Here he assumes that the degrees of speed of the same move- 

able, descending along the inclined planes CA and CD to 

points A and D, are equal, because their height is the same CB; 

and the like is also to be understood of the degree of speed that 

the same body falling from the point C would have at B. 

Sagr. This assumption truly seems to me to be so probable 

as to be granted without argument, supposing always that 

all accidental and external impediments are removed, and 

that the planes are quite solid and smooth, and that the move- 

able is of perfectly round shape, so that both plane and move- 

able alike have no roughness. With all obstacles and 

impediments removed, my good sense [// /ume naturale] tells 

me without difficulty that a heavy and perfectly round ball, 

descending along the lines CA, CD, and CB, would arrive at 

the terminal points A, D, and B with equal impetus. 

Salv. You reason from good probability. But apart from 

mere plausibility, I wish to increase the probability so much 

by an experiment that it will fall little short of equality with 

necessary demonstration. Imagine this page to be a vertical 

wall, and that from a nail driven into it, a lead ball of one or 

two ounces hangs vertically, suspended by a fine thread 

19. An attempted demonstration of this postulate was added at Galileo’s 
request to editions after 1638, and was placed immediately before Prop. 
III, below, for reasons explained in note 26, below. 
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two or three braccia in length, AB. Draw on the wall a 
horizontal line DC, cutting at right angles the vertical AB, 

which hangs a couple of inches out from the wall; then, moving 

the thread AB with its ball to AC, set the ball free. It will be 

seen first to descend, describing the arc CB, and then to pass 

the point B, running along the arc BD and rising almost up to 

the parallel marked CD, falling short of this by a very 

small interval and being prevented from arriving there 

exactly by the impediment of the air and the thread.?° 
From this we can truthfully conclude that the impetus acquired 

by the ball at point B in descent through arc CB was sufficient 

to drive it back up again to the same height through a similar 

arc BD. Having made and repeated this experiment several 

times, let us fix in the wall along the vertical AB, as at E or F, 

a nail extending out several inches, so that the thread AC, 

moving as before to carry the ball C through the arc CB, is 

stopped when it comes to B by this nail, E, and is constrained 

to travel along the circumference BG, described about the 

center E. We shall see from this that the same impetus can be 

made that, when reached at B before, drove this same move- 

able through the arc BD to the height of horizontal CD, but 

now, gentlemen, you will be pleased to see that the ball is 

conducted to the horizontal at point G. And the same thing 

happens if the nail is placed lower down, as at F, whence the 

ball will describe the arc B/, ending its rise always precisely at 

the same line, CD. If the interfering nail is so low that the 

thread advancing under it could not get up to the height CD, 

as would happen when the nail was closer to point B than to the 

intersection of AB with the horizontal CD, then the thread will 

ride on the nail and wind itself around it. 
This experiment leaves no room for doubt as to the truth of 

our assumption, for the two arcs CB and DB being equal and 

similarly situated, the acquisition of momentum made by 

descent through the arc CBis the same as that made by descent 
through the arc DB; but the momentum acquired at B through 

arc CB is able to drive the same moveable back up through arc 

BD, whence also the momentum acquired in the descent DB 

is equal to that which drives the same moveable through the 

same arc from Bto D. So that in general, every momentum ac- 

quired by descent through an arc equals one which can make 

20. Mention of the thread shows that Galileo continued to adhere to his 

belief that even in the absence of any medium, a flexible pendulum would 

eventually stop; see Dialogue, pp. 230-31 (Opere, VII, 257). 
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the same moveable rise through that same arc; and all the 

momenta that make it rise through all the arcs BD, BG, and 

Blare equal, because they are created by the same momentum 

acquired through the descent CB, as experiment shows. 

Hence all the momenta acquired through descents along arcs 

DB, GB, and IB are equal. 
Sagr. The argument appears to me conclusive, and the 

experiment is so well adapted to verify the postulate that it 

may very well be worthy of being conceded as if it had been 

proved. 
Salv. I do not want any of us to assume more than need be, 

Sagredo; especially because we are going to make use of this 

assumption chiefly in motions made along straight surfaces, 

and not curved ones, in which acceleration proceeds by 

degrees very different from those that we assume it to take 

when it proceeds in straight lines.*? The experiment adduced 
thus shows us that descent through arc CB confers such 

momentum on the moveable as to reconduct it to the same 

height along any of the arcs BD, BG, or BI. But we cannot 

show on this evidence that the same would happen when 

[even] a most perfect sphere is to descend along straight 

planes inclined according to the tilt of the chords of those arcs. 

Indeed, we may believe that since straight planes would form 

angles at point B, a ball that had descended along the incline 

through the chord CB would encounter obstruction from 

planes ascending according to chords BD, BG, or BI; and in 

striking against those, it would lose some of its impetus, so 

that in rising it could not get back to the height of line CD. 

But if the obstacle that prejudices this experiment were 

removed, it seems to me that the mind understands that the 

impetus, which in fact takes [its] strength from the amount of 

the drop, would be able to carry the moveable back up to 
the same height. 

Hence let us take this for the present as a postulate, of which 

the absolute truth will be later established for us by our seeing 

that other conclusions, built on this hypothesis, do indeed 

correspond with and exactly conform to experience.?? 

21. Galileo had known this as early as 1602 from the fact that a body 
descends more swiftly along conjugate chords of a circular arc than along 
its chord, though the latter path is the shorter (Opere, X, 100). Cf. the scholium 
to Prop. XXXVI, below, and note 48. 

22. The reference here is not to the attempted demonstration preceding 
Theorem III, below, which was composed later (notes 19, above, 26, 27, 

below). The certainty referred to here derives from observed agreements 
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This postulate alone having been assumed by the Author, 

he passes on to the propositions, proving them demonstra- 

tively; and the first is this: i 

PROPOSITION I. THEOREM I P | ee ff 

The time in which a certain space is ere eG amo ome 

in uniformly accelerated movement from rest is equal to the 

time in which the same space would be traversed by the same 

moveable carried in uniform motion whose degree 

is one-half the maxi egree of speed of the 

previous, ormly accelerated, motion.2> — 

Let line AB represent the time in which the space CD is tra- 

versed by a moveable in uniformly accelerated movement from Gun 

rest at C. Let EB, drawn in any way upon AB, represent the 

maximum and final degree of speed increased in the instants of 

the time AB. All the lines reaching AE from single points of the 

line AB and drawn parallel to BE will represent the increasing 

degrees of speed after the instant A. Next, I bisect BE at F, 

and I draw FG and AG parallel to BA and BF ; the parallelogram EF 8B 

AGFB will [thus] be constructed, equal to the triangle AEB, its 0 

side GF bisecting AE at I. 

Now if the parallels in triangle AEB are extended as far as 

IG, we shall have the aggregate of all parallels contained in the 

Preset delctera qualita qiowappteyare of these included 
triangle AEB, for those in triangle \EF are matched by t 

contained in triangle GIA, while those which are in the trapezium 

AIFB are common. Since each instant and all instants of time 

AB correspond to each point and all points of line AB, from 

which points the parallels drawn and included within triangle 

AEB represent increasing degrees of the increased speed, while 

the parallels contained within the parallelogram represent in the 
same way just as many degrees of speed not increased but 

Cc 

in accordance with the Hertzian principle cited in the Introduction; cf. 
also notes 8, 9, 12, above, and note 25, below. 

23. Characteristic of Galileo’s concern with actual events (note 8, above) 
is his utilization of one-half the terminal speed, which could be measured 

by observing horizontally deflected bodies. Medieval writers assumed an 
ideal mean-speed to measure every uniformly accelerated motion directly. 

Galileo’s proof matched elements in two infinite aggregates for each instant 

and all instants, conceiving that in uniform motion there is not one single 

speed but infinitely many, all equal, and corresponding to the infinitely many 

speeds, all different, in accelerated motion. 
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equable, it appears that there are just as many momenta of speed 

consumed in the accelerated motion according to the increasing 

parallels of triangle AEB, as in the equable motion according to 

the parallels of the parallelogram GB. For the deficit of mo- 

menta in the first half of the accelerated motion ( the momenta 

represented by the parallels in triangle AGI falling short) is 

made up by the momenta represented by the parallels of triangle 

IEF. 
It is therefore evident that equal spaces will be run through 

in the same time by two moveables, of which one is moved with a 

motion uniformly accelerated from rest, and the other with 

equable motion having a momentum one-half the momentum of 

the maximum speed of the accelerated motion ; which was | the 

proposition] intended. 

PROPOSITION II. THEOREM II 

If a moveable descends from rest in uniformly accelerated 

motion, the spaces run through in any times whatever are 

to each other as the duplicate ratio of their times ; that is, 

are as the squares of those times. 

Let the flow of time from some first instant A be represented 

by the line AB, in which let there be taken any two times, AD and 

AE. Let HI be the line in which the uniformly accelerated move- 

able descends from point H as the first beginning of motion; 

let space HL be run through in the first time AD, and HM be 

the space through which it descends in time AE. I say that space 

MH is to space HL in the duplicate ratio of time EA to time AD. 

Or let us say that spaces MH and HL have the same ratio as do 

the squares of EA and AD. 

Draw line AC at any angle with AB. Fom points D and E 

draw the parallels DO and EP, of which DO will represent the 

maximum degree of speed acquired at instant D of time AD, and 

PE the maximum degree of speed acquired at instant E of time 

AE. Since it was demonstrated above that as to spaces run 

through, those are equal to one another of which one is traversed 

by a moveable in uniformly accelerated motion from rest, and 

the other is traversed in the same time by a moveable carried in 

equable motion whose speed is one-half the maximum acquired 

in the accelerated motion, it follows that spaces MH and LH 

are the same that would be traversed in times EA and DA in 
equable motions whose speeds are as the halves of PE and OD. 
Therefore if it is shown that these spaces MH and LH are in 

the duplicate ratio of the times EA and DA, what is intended will 
be proved. 
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Now in Proposition IV of Book I [‘‘On Uniform Motion,”’ 
above] it was demonstrated that the spaces run through by 
moveables carried in equable motion have to one another the ls : ft Dermot 
ratio compounded from the ratio of speeds and from the ratio of liad 
times. Here, indeed, the ratio of speeds is the same as the ratio 

of times, since the ratio of one-ha or of 
> . > \ 

PE12.0D ence the ratio of space¥ run \ 

through is the duplicate ratio of the times; which was to be 

demonstrated. ye at 
It also follows from this that this same ratio of spaces is the Ae ' A Y Compt, 

duplicate ratio of the maximum degrees of speed ; that is, of lines 

PE and OD, since PE is to OD as EA is to DA. 

= 

COROLLARY | 

From this it is manifest that if there are any number of 

equal times taken successively from the first instant or 

beginning of motion, say AD, DE, EF, and FG, in which 

spaces HL, LM, MN, and NI are traversed, then these 

spaces will be to one another as are the odd numbers from | fay 

unity, that is, as 1, 3, 5, 7; but this is the rule [ratio] for i 

excesses of squares of lines equally-exceeding one another 2 

[and] whose [common] excess is equal tothe least-of- the 

same lines, or, let us say, of the squares successively from 

unity. Thus when the degrees of speed are increased in equal of +) 

times according to the simple series of natural numbers, the 

spaces run through in the same times undergo increases 

according with the series of odd numbers from unity. 

> 

Sagr. Please suspend the reading for a bit, while I develop a 

fancy that has come to my mind about a certain conception. To 

explain this, and for my own as well as for your clearer under- 

standing. I’ll draw a little diagram. I imagine by this line A/ 

the progress of time after the first instant at A; and going from 

A at any angle you wish, I draw the straight line AF. And 

joining points 7 and F, I divide the time A/ at the middle in 

C, and I draw CB parallel to /F, taking CB to be the maximum 

degree of the speed which, commencing from rest at A, grows 

according to the increase of the parallels to BC extended in 

triangle ABC; which is the same as to increase laceprdia | 

as the time increases. 
I assume without argument, from the discussion up to this 

point, that the space passed by the moveable falling with its 

speed increased in the said way is equal to the space that would 

Paks [@) 
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be passed by the same moveable if it were moved during the 

same time AC in uniform motion whose degree of speed was 

equal to EC, one-half of BC. I now go on to imagine the move- 

able [to have] descended with accelerated motion and to be 

found at instant C to have the degree of speed BC. It is manifest 

that if it continued to be moved with the same degree of speed 

BC, without accelerating further, the j the ensuin ecl 

Bar But since the moveable descends with speed always 

uniformly increased in all equal times, it will add to the 

degree CB, in the ensuing time C/, those same momenta of 

speed growing according to, the parallels of triangle BFG, 

equal to triangle ABC; so that to the degree of speed G/ there 
being added_one- tee FG. t aximum of thoSe 

[speeds] acquired in the accelerated motion governed by the 

parallels of triangle BFG, we shall have the degree of speed /N, 

With Whiehrt- would-be moved with wnilorm-motion-Gurine 
time CI. That degree /N is triple the degree EC convinces [us] 

that the space passed in the second time C/ must be triple that 

[which was] passed in the first time CA. 

And if we assume added to A/a further equal part of time 

JO, and enlarge the triangle out to APO, then it is manifest 

that if the motion continued through the whole time JO with 
the degree of speed /F acquired in the accelerated motion 

during time A/, this degree /F being quadruple EC, the space 

passed in time JO would be quadruple that passed in the first 

equal time AC. Continuing the growth of uniform acceleration 

in triangle FPQ, simlar to that of triangle ABC which, reduced 

to equable motion, adds the degree equal to EC, and adding 

QR equal to EC, we shall have the entire equable speed 

exercised over time /O quintuple the equable [speed] of the 

first time AC; and hence the space passed [will be] quintuple 

that [which was] passed in the first time AC. 

Thus you see also, in this simple calculation, that the spaces 
passed in equal times by a moveable which, parting from rest, 

acquires speed in agreement with the growth of time, are to 

one another as the odd numbers from unity, 1, 3, 5; and taking 

jointly the spaces passed, that which is passed in double the 

time is four times that passed in the half [i.e., in the given time], 

24. This “double-distance” rule was in fact not found by Galileo until 

after his odd-number rule, so that here the order of presentation follows his 

order of discovery. Cf. scholium to Prop. XXIII, below, and Prop. XXV. 
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and that passed in triple the time is nine times [as great.] And 

in short, the spaces passed are in the duplicate ratio of the 

times; that is, are as the squares of those times. 

Simp. Really I have taken more pleasure from this simple 

and clear reasoning of Sagredo’s than from the (for me) more 

obscure demonstration of the Author, so that I am better able 

to see why the matter must proceed in this way, once the 

definition of uniformly accelerated motion has been postulated 

and accepted. But I am still doubtful whether this is the accel- 

eration employed by nature in the motion of her falling heavy 

bodies. Hence, for my understanding and for that of other 

people like me, I think that it would be suitable at this place 

[for you] to adduce some experiment from those (of which you 

have said that there are many) that agree in various cases with 

the demonstrated conclusions. 

Salv. Like a true scientist, you make a very reasonable 

demand, for this is usual and necessary in those sciences which 

apply mathematical demonstrations to physical conclusions, 

as may be seen among writers on optics, astronomers, mechan- 

ics, musicians, and others who confirm their principles with 

sensory experiences, those being foundations of all the resulting 

structure. I do not want to have it appear a waste of time 

[superfluo] on our part, [as] if we had reasoned at excessive 

length about this first and chief foundation upon which rests 

an immense framework of infinitely many conclusions—of 

which we have only a tiny part put down in this book by the 

Author, who will have gone far to open the entrance and 

portal that has until now been closed to speculative minds. 

Therefore as to the experiments: the Author has not failed to 

make them, and in order to be assured that the acceleration of 

heavy bodies falling naturally does follow the ratio expounded 

above, I have often made the test [prova] in the following 

manner, and in his company. 

In a wooden beam or rafter about twelve braccia long, 

half a braccio wide, and three inches thick, a channel was 

rabbeted in along the narrowest dimension, a little over an 

inch wide and made very straight; so that this would be clean 

and smooth, there was glued within it a piece of vellum, 

as much smoothed and cleaned as possible. In this there was 

made to descend a very hard bronze ball, well rounded and 

polished, the beam having been tilted by elevating one end of 

it above the horizontal plane from one to two braccia, at will. 

As I said, the ball was allowed to descend along [per] the 

213 
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said groove, and we noted (in the manner I shall presently tell 

you) the time that it consumed in running all the way, repeating 

the same process many times, in order to be quite sure as to 

the amount of time, in which we never found a difference of 

even the tenth part of a pulse-beat.?° 

This operation being precisely established, we made the 

same ball descend only one-quarter the length of this channel, 

and the time of its descent being measured, this was found 

always to be precisely one-half the other. Next making the 

experiment for other lengths, examining now the time for the 

whole length [in comparison] with the time of one-half, or 

with that of two-thirds, or of three-quarters, and finally with 

any other divison, by experiments repeated a full hundred 

times, the spaces were always found to be to one another as the 

squares of the times. And this [held] for all inclinations of the 

plane; that is, of the channel in which the ball was made to 

descend, where we observed also that the times of descent for 

diverse inclinations maintained among themselves accurately 

that ratio that we shall find later assigned and demonstrated 

by our Author. 

As to the measure of time, we had a large pail filled with 

water and fastened from above, which had a slender tube 

affixed to its bottom, through which a narrow thread of water 

ran; this was received in a little beaker during the entire time 

that the ball descended along the channel or parts of it. 

The little amounts of water collected in this way were weighed 

from time to time on a delicate balance, the differences and 
ratios of the weights giving us the differences and ratios of the 

times, and with such precision that, as I have said, these 

operations repeated time and again never differed by any 
notable amount. 

Simp. It would have given me great satisfaction to have 

been present at these experiments. But being certain of your 

diligence in making them and your fidelity in relating them, I 

am content to assume them as most certain and true. 

Salv. Then we may resume our reading, and proceed. 

COROLLARY II 

It is deduced, second, that if at the beginning of motion 

25. Actual results obtained by procedures similar to Galileo’s vindicate 
his claim as to their reliability. His manuscript records of another type of 
inclined plane experiment show him to have obtained results within one 
percent of modern theoretical values. 
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there are taken any two spaces whatever, run through in any 
[two] times, the times will be to each other as either of 

these two spaces is to the mean proportional space between 
the two given spaces. 

From the beginning of motion, S, take two spaces, ST and sy) 

of which the mean proportional shall be SX; the time of fall 

through ST will be to the time of fall through SV as ST is to SX; 

or let us say that the time through SV is to the time through ST 

as VS is to SX. Since it has been demonstrated that the spaces 

run through are in the duplicate ratio of the times (or what is 

the same thing, are as the squares of the times), the ratio of 

space VS to space ST is the doubled ratio of VS to SX, or is the 

same as that of the squares of VS and SX. It follows that the 
ratio of times of motion through SV and i are as the spaces, 
or the lines, VS and SX. 

SCHOLIUM 

What we have demonstrated for movements run through 

along verticals is to be understood also to apply to planes, 

however inclined; for these, it is indeed assumed that the 

degree of increased speed [accelerationis] grows in the same 

ratio; that is, according to the increase of time, or let us 

say according to the series of natural numbers from unity.?° 

Salv. Here, Sagredo, I want permission to defer the present reading 

for a time, though perhaps I shall bore Simplicio, in order that I may 

explain further what has been said and proved up to this point. At the 

same time it occurs to me that, by telling you of some mechanical 

conclusions reached long ago by our Academician, I can add new 

confirmation of the truth of that principle which has already been 

examined by us with probable reasonings and by experiments. More 

important, this will be geometrically proved after the prior demon- 

stration of a single lemma that is elementary in the study of impetuses. 

Sagr. When you promise such gains, there is no amount of time 

I should not willingly spend in trying to confirm and completely 

establish these sciences of motion. For my part, I not only grant per- 

mission to you to satisfy us on this matter, but I even beg you to allay 

as swiftly as possible the curiosity you have aroused in me. I think 

Simplicio feels the same way about this. 

26. The ensuing section was added later (note 19, above) without dis- 
turbing the original text order. Dictated by the blind Galileo about October 
1638 and revised in November 1639, it was put into dialogue form by Viviani 

and inserted in the 1655 edition. It was placed at this point rather than with 
the earlier statement of the postulate because it requires prior demonstration 
of Prop. II, in which the postulate was not uscd. 

Nee 

[215] 
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Simp. How can I say otherwise? ou! 
Salv. Then, since you give me leave, consider it in the first place 

as a well-known effect that the momenta or speeds of the same moveable 

are different on diverse inclined planes, and that the greatest [speed] 

is along the vertical. The speed diminishes along other inclines accord- 

ing as they depart more from the vertical and are more obliquely 

tilted. Whence the impetus, power [talento], energy, or let us say 

momentum of descent, comes to be reduced in the underlying plane 

on which the moveable is supported and descends. 

The better to explain this, let the line AB be assumed to be erected 

vertically on the horizontal AC, and then let it be tilted at different 

inclinations with respect to the horizontal, as at AD, AE, AF, etc. 

I say that the impetus of the heavy body for descending is maximal 

and total along the vertical BA, is less than that along DA, still less 

along EA, successively diminishes along the more inclined FA, and 

is finally completely extinguished on the horizontal CA, where the 

moveable is found to be indifferent to motion and to rest, and has 

in itself no inclination to move in any direction, nor yet any resis- 

tance to being moved. Thus it is impossible that a heavy body (or 

combination thereof) should naturally move upward, departing 

from the common center toward which all heavy bodies mutually 

converge [conspirano]; and hence it is impossible that these be moved 

spontaneously except with that motion by which their own center 

of gravity approaches the said common center.?’ Whence, on the 

horizontal, which here means a surface [everywhere] equidistant from 

the said [common] center, and therefore quite devoid of tilt, the impetus 

or momentum of the moveable will be null. 

This change of impetus assumed, I must next explain something 

that our Academician, in an old treatise on mechanics written at 

Padua for the use of his pupils,*® demonstrated at length and conclu- 
sively in connection with his treatment of the origin and character of 

that marvelous instrument, the screw; namely, the ratio in which this 

change of impetus along planes of different inclinations takes place. 

Given the inclined plane AF, for example, and taking as its elevation 

above the horizontal the line FC, along which the impetus of a 

heavy body and its momentum in descent is maximum, we seek the 

ratio that this momentum has to the momentum of the same moveable 

along the incline FA, which ratio, I say, is inverse to that of the said 

27. This conception became a fundamental principle in Torricelli’s 
continuation of Galileo’s work; cf. E. Torricelli, Opere (Faenza, 1919), 

II, 105 ff. Comparison with Galileo’s dictated text (note 26, above) suggests 
that this sentence was interpolated by Viviani when he put the argument 
in dialogue form. 

28. Galileo’s treatise On Mechanics was first published in a French 
translation by Marin Mersenne (1588-1648) in 1634. The original Italian, 
of which three manuscript forms exist (1593, 1594, and ca. 1600), was 
posthumously published in 1649. 
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lengths. This is the lemma to be put before the theorem that I hope 

then to be able to demonstrate. 

It is manifest that the impetus of descent of a heavy body is as 

great as the minimum resistance or force that suffices to fix it and 

hold it [at rest]. I shall use the heaviness of another moveable for 

that force and resistance, and [as] a measure thereof. Let the move- 

able G, then, be placed on plane FA, tied with a thread which rides 

over F and is attached to the weight H; and let us consider that the 

space of the vertical descent or rise of this [H] is always equal to the 

whole rise or descent of the other moveable, G, along the incline 

AF—not just to the vertical rise or fall, through which the moveable 

G (like any other moveable) exclusively exercises its resistance. That 

much is evident. For consider the motion of the moveable G in the 

triangle AFC (for example, upward from A to F) as composed of 

the horizontal transversal AC and the vertical CF. As before, there 

is no resistance to its being moved along the horizontal, since by 

means of such a motion no loss or gain whatever is made with regard 

to its distance from the common center of heavy things, that being 

conserved always the same on the horizontal [as defined above]. 

It follows that the resistance is only with respect to compulsion to 

go up the vertical CF. Hence the heavy body G, moving from A to F, 

resists in rising only the vertical space CF; but that other heavy body 

H must descend vertically as much as the whole space FA. And 

this ratio of ascent and descent remains always the same, being as 

little or as great as the motion of the said moveables by reason of 

their connection together. Thus we may assert and affirm that when 

equilibrium (that is, rest)is to prevail between two moveables, their 

[overall] speeds or their propensions to motion—that is, the spaces 

they would pass in the same time—must be inverse to their weights 
[gravitu], exactly as is demonstrated in all cases of mechanical move- 

ments. 
Thus, in order to hinder the descent of G, it will suffice that H be 

as much lighter than G as the space CF is proportionately less than 

the space FA. Hence if the heavy body G is, to the heavy body H, 

as FA is to FC, equilibrium will follow; that is, the heavy bodies H 

and G will be of equal moments, and the motion of these moveables 

will cease. Now, we have agreed that the impetus, energy, momentum, 

or propensity to motion of a moveable is as much as the minimum 

force or resistance that suffices to stop it; and it has been concluded 

that the heavy body H suffices to prohibit motion to the heavy body 

G; hence the lesser weight H, which exercises its total [static] moment 

in the vertical FC, will be the precise measure of the partial moment 

that the greater weight G exercises along the inclined plane FA. But 

the measure of the total moment of heavy body G is G itself, since 

to hinder the vertical descent of a heavy body, there is required the 

opposition of one equally heavy when both are free to move vertically. 

Therefore the partial impetus or momentum of G along the incline 

[217] 
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FA will be, to the maximum and total impetus of G along the vertical 

FC, as the weight H is to the weight G, which is (by construction) 

as the vertical FC (the height of the incline) is to the incline FA itself. 

This is what was proposed to be demonstrated as the lemma; and 

as we shall see, it is assumed by our Author as known in the second 

part of Proposition VI of the present treatise. 

Sagr. It seems to me that from what you have concluded thus far, 

it can be easily deduced, arguing by perturbed equidistance of ratios, 

that the momenta of the same moveable along differently inclined 

planes having the same height, such as FA and FI, are in the inverse 

ratio of those same planes. 

Saly. A true conclusion. This established, I go on next to demonstrate 

the theorem itself; that is: 

[ADDED THEOREM] 

The degrees of speed acquired by a moveable in descent with 

natural motion from the same height, along planes inclined in 

any way whatever, are equal upon their arrival at the horizontal, 

all impediments being removed. 

Here you must first note that it has already been established that 

along any inclinations, the moveable upon its departure from rest 

increases its speed, or amount of impetus, in proportion to the time, 

in accordance with the definition given by the Author for naturally 

accelerated motion. Whence, as he has demonstrated in the last 

preceding proposition, the spaces passed are in the squared ratio of 

the times, and consequently of the degrees of speed. Whatever the 

[ratio of] impetuses at the beginning [nella prima mossa], that propor- 

tionality will hold for the degrees of the speeds gained during the same 

time, since both [impetuses and speeds] increase in the same ratio 

during the same time. 

Now let the height of the inclined plane AB above the horizontal 

be the vertical AC, the horizontal being CB. Since, as we concluded 

earlier, the impetus of a moveable along the vertical AC is, to its impetus 

along the incline AB, as AB is to AC, [then] in the incline AB take AD 

as the third proportional of AB and AC; the impetus [to move] along 

AC is, to the impetus [to move] along AB (that is, [to move] along AD), 

as [AB is to AC or as] AC is to AD. Hence the moveable, in the same 

time that it passes the vertical space AC, would also pass the space 

AD along the incline AB (the momenta being as the spaces); and the 

degree of speed at C will have to the degree of speed at D the same ratio 

that AC has to AD. But the speed at B is to the speed at D as the time 

through AB is to the time through AD, by our definition of accelerated 

motion; and the time through AB is to the time through AD as AC 

(the mean proportional between BA and AD) is to AD, by the last 

corollary to Proposition II. Therefore the speeds at B and C [both] 

have to the speed at D the same ratio that AC has to AD, and hence 

[the speeds at B and C] are equal; which is the theorem intended to 
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be demonstrated. 

From this we may more conclusively prove the Author’s ensuing 

Proposition III, in which he makes use of the [earlier] postulate; this 
[theorem] states that the time along the incline has to the time along 

the vertical the same ratio that the incline has to the vertical. So let 

us say: If BA is the time along AB,”° the time along AD will be the 

mean proportional between these [AB and AD], that is, AC, by the 

second corollary to Proposition II. But if AC is the time along AD, 

it will also be the time along AC, since AD and AC are run through 

in equal times. And since if BA is the time along AB, AC will be the time 

along AC, then it follows that as AB is to AC, so is the time along AB 

to the time along AC. 

By the same reasoning it will be proved that the time along AC is 

to the time along some other incline, AE, as AC is to AE; therefore, 

by equidistance of ratios, the time along incline AB is to the time 
along incline AE homologously as AB is to AE, etc. 

As Sagredo will readily see [later], the Author’s Proposition VI 

could be immediately proved from the same application of this 

theorem. But enough for now of this digression, which has perhaps 

turned out to be too tedious, though it is certainly profitable in these 

matters of motion. 

Sagr. And not only greatly to my taste, but most essential to a 

complete understanding of that principle. 

Salv. Then I shall resume the reading of the text. 

PROPOSITION III. THEOREM Ill 

If the same moveable is carried from rest on an inclined 

plane, and also along a vertical of the same height, the times 

of the movements will be to one another as the lengths of the 

plane and of the vertical. 

Let the inclined plane AC and the vertical AB each have the 

same altitude above the horizontal CB, that is, the line BA. I say 

that the time of descent along plane AC has, to the time of fall of 

the same moveable along the vertical AB, the same ratio that the 

length of plane AC has to the length of vertical AB. Assume any 

lines DG, EI, and FL parallel to the horizontal CB; it follows 

from our postulate that the degrees of speed acquired by the 

moveable from the first beginning of motion, A, to the points G 

and D, are equal, since their approaches to the horizontal are 

equal ; likewise, the speeds at points | and E are the same, as are 

29. Galileo employs a single line to represent both distances and times 
frequently in the remaining propositions, using bisection for halving 
distances and mean proportionals for halving times, without further ex- 

planation; see, for example, Prop. XII, below, and see further at pp. 287-88. 

[219] 
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the speeds at L and F. Now, if not only these, but parallels from 

all points of the line AB are supposed drawn as far as line AC, the 

momenta or degrees of speed at both ends of each parallel are 

always matched with each other. Thus the two spaces AC and 

AB are traversed at the same degrees of speed. But it has been 

shown that if two spaces are traversed by a moveable which is 

carried at the same degrees of speed, then whatever ratio those 

spaces have, the times of motion have the same [ratio].°° There- 
fore the time of motion through AC is to the time through AB as 

the length of plane AC is to the length of vertical AB; which 

was to be demonstrated. 

Sagr. It appears to me that the same can be very clearly and 

briefly concluded, since it has already been shown that the 

overall [somma del] accelerated motion?! of passage through 

AC (and AB) is that of the equable motion whose degree of 

speed is one-half the maximum degree, [at] CB. Therefore, the 

two spaces AC and AB being [considered as] passed with the 

same equable motion, it is manifest by Proposition I of 

Book I that the times of [these] passages will be as the spaces 

themselves. 

[ Sa/v. (resuming his reading) :] 

COROLLARY 

From this it is deduced that the times of descent over 

differently inclined planes of the same height are to one 

another as their lengths. For if we suppose another plane 

AM from A, terminated at the same horizontal CB, it will 

be proved likewise that the time of descent through AM is 

to the time through AB as line AM is to AB; also, as the 

time AB is to the time through AC, so is line AB to AC; 

therefore, by equidistance of ratios, as AM is to AC, so is 

30. The plural, “degrees of speed,” shows that reference is not directly 
to Prop. I on uniform motion; rather, this appears to be an extension of 
that proposition to instantaneous speeds by reasoning similar to the 

argument used in rejecting proportionality of speeds to distances in free 
fall (p. 203 and note 15, above). Strictly speaking, the extension had not been 

“shown,” though it follows easily from such an argument and the general 

definition of equal speeds as those in which proportional distances are 
traversed in proportional times; cf. Dialogue, p. 24 (Opere, VII, 48). 

31. The notion of a “total” or ‘overall’? motion employed here in 
reference to Theorem I, above, had been preceded in Galileo’s thought by 
a notion of total or overall speed; see Dialogue, p. 229 (Opere, VII, 256). 
Traces of that earlier concept survive in the scholium to Prop. XXIII, below; 
see also note 20 to the Added Day on percussion, below. 
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the time through AM to the time through AC. 

PROPOSITION IV. THEOREM IV 

The times of motion over equal planes, unequally inclined, 

are to each other inversely as the square root of the ratio 
of the heights of those planes. 

Let BA and BC be equal planes from the same terminus, B, 

but unequally inclined; and let horizontal lines AE and CD be 

drawn to the vertical BD, plane BA having height BE and plane 

BC height BD. And let BI be the mean proportional of these 

elevations DB and BE, it follows that the ratio of DB to BI is 

the square root of the ratio of DB to BE. I now say that the ratio* 

of the times of descent or movement over planes BA and BC is 

the same as the inverse ratio of DB to BI, that is, the homologue _ 

of the time through BA is the height of the other plane, BC, which 

[height] is BD, and the homologue of the time through BC is 

BI. It is therefore to be demonstrated that the time through BA 

is to the time through BC as DB is to BI. 

Draw MS parallel to DC; as already demonstrated, the time 

of descent through BA is to the time of fall through the vertical 

BE as BA is to BE, while the time through BE is to the time 

through BD as BE is to BI; and the time through BD is to the 

time through BC as BD is to BC, or BI to BS. Therefore, by 

equidistance of ratios, the time through BA will be to the time 

through BC as BA is to BS, or CB to BS, and also CB i. 

as DB is to BI; therefore the proposition holds. 

PROPOSITION V. THEOREM V 

The ratio of times of descent over planes differing in inctine 

and length, and of unequal heights, is compounded from the 

ratio of lengths of those planes and from the inverse ratio 

of the square roots ef their heights.>* 
Let planes AB and §C be differently inclined, of unequal 

lengths, and of unequal heights ; I say that the ratio of the time 

of descent through AC to the time through AB is compounded 

from the ratio of AC to AB and from [the ratio of] the square 

roots of their heights taken inversely. 

Draw the vertical AD, meeting the horizontals BG and CD, 

and let AL be the mean proportional between heights DA and 

AG. From point L draw a parallel to the horizontal, meeting 

32. Mathematical functions of two variables had been similarly stated 

by Archimedes, using compound ratios; cf. Introduction, and note 9 to 

Second Day. 
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plane AC at F; then AF will be the mean proportional between 

CA and AE. And since the time through AC is to the time 

through AE as line FA is to AE, and the time through AE ts to 

to the time through AB as AE is to AB, it follows that the time 

through AC is to the time through AB as AF is to AB. Thus it 

remains to be proved that the ratio of AF to AB is compounded 

from the ratio of CA to AB and from the ratio of GA to AL, 

which [latter] is the ratio of the square roots of heights DA and 

AG taken inversely. But this is also evident: if CA is taken with 

respect to FA and AB, the ratio of FA to AC is the same as the 

ratio of LA to AD, or GA to AL, which is the square root of the 

ratio of the heights GA and AD; and the ratio of CA to AB is 

the ratio of the |corresponding| lengths; therefore the pro- 

position holds. 
\ 

ui 

PROPOSITION VI. THEOREM VI 

If, from the highest or lowest point of a vertical circle, any 

V inclined planes whatever are drawn to its circumference, 

the times of descent through these will be equal. 8 
cre Let a circle be erect to the horizontal GH, and from its lowest 

point (that is, from its contact with the horizontal) let the 

diameter FA be erected. From the highest point, A, draw any 

inclined planes AB and AC out to the circumference ; I say that 

the times of descent through these are equal. 

Draw BD and CE perpendicular to the diameter, and let Al 

be the mean proportional between the heights of the planes EA 

and AD. Since the rectangles FA—AE and FA—AD are equal 

to the squares on AC and AB; and since also as rectangle FA- 

AE is to rectangle FA—AD, so EA is to AD; then as square CA 

is to square AB, so line EA is to AD. But as line EA is to DA, 

so square 1A is to square AD; hence the squares on lines CA 

and AB are to each other as the squares on lines 1A and AD. 

Therefore as line CA is to AB, so IA is to AD. Now, it was 

demonstrated in the preceding [proposition] that the ratio of 

the time of descent through AC to the time of descent through 
AB is compounded from the ratios of CA to AB and of DA to 
AI, which [latter] is the same as the ratio of BA to AC; therefore 
the ratio of the time of descent through AC to the time of descent 
through AB is compounded from the ratios of CA to AB and of 
BA to AC. Therefore the ratio of their times is the ratio of 
equality*? ; hence the proposition holds. 

33. The ‘‘ratio of equality” (x :x) remained a ratio and was not taken to 
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The same is demonstrated another way from mechanics ; that 

in the next diagram the moveable passes through CA and DA in 
equal times. 

Let BA be equal to DA, and draw the verticals BE and DF. 

From the elements of mechanics** it follows that the [static] 
moment of weight upon the plane elevated along line ABC is to 

the total moment [of that weight] as BE is to BA; and the 

similar moment of weight upon the incline AD is to its total 

moment as DF is to DA, or BA; therefore the moment of the 

same weight upon the plane inclined as DA, to its moment upon 

the incline ABC, is as line DF is to BE. Hence the spaces which 

the same weight passes through in equal times along the inclines 

CA and DA will be to each other as the lines BE and DF, by 

Proposition II of Book I.°° It can indeed be demonstrated that 
as BE is to DF, so AC is to DA; therefore the same moveable 

passes through CA and DA in equal times. 

That CA is to DA as BE is to DF is demonstrated thus: Join 

C and D, and through D and B, parallel to AF, draw DGL 

cutting CA at 1, and [draw] BH; angle ADI will be equal to 

angle DCA, since they stand on the equal arcs LA and AD. 

Angle DAC is common to the similar triangles CAD and DAI; 

therefore the sides around equal angles in them will be pro- 

portional, and as CA is to AD, so DA is to AI; that is, BA is to 

AI, or HA to AG, which is [as] BE to DF; which was to be 

proved. } 
This is also, and more quickly, demonstrated thus: Let there 

be a vertical circle whose diameter CD is erect to the horizontal 

AB, and let there be any inclined plane DF from the highest 

point D to the circumference ; I say that descent through plane 

DF and fall through the diameter DC will be finished [absolvi] 

in the same time by the same moveable. 

Draw FG parallel to the horizontal AB. which will be per- 

be a unit or magnitude as we take it to be; no ratio was identified with any 
single number. 

34. The proposition is found in Galileo’s treatise On Mechanics, pp. 
173-75 (Opere, II, 181-83), then unpublished in Italy (note 28, above). 

Here he speaks of the result as commonly known; it had been established 
during the Middle Ages. In the preceding paragraph, the word Mechanicis 
was capitalized, as if referring to a specific book, presumably Galileo’s 
own, but here the phrase “elements of mechanics” is not capitalized, and 

no particular text seems to be meant. 
35. This rather inconclusive argument ‘from mechanics” belongs to an 

early stage of Galileo’s work, and is found in very similar form in a manu- 
script written at Padua probably about 1607. The reference to Prop. II of 

Bk. I was added for this book; cf. note 5, above. 
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pendicular to the diameter DC; and join F and C. Since the 

time of fall through DC is to the time of fall through DG as the 

mean proportional between CD and DG is to DG; and since 

the mean proportional between CD and DG is DF; [and] since 

angle DFC is a right angle, being in a semicircle, and FG is 

perpendicular to DC, the time of fall through DC is to the time 

of fall through DG as line FD is to DG. But it was already 

demonstrated that the time of descent through DF is to the time 

of fall through DG as line DF is to DG.*° Therefore the times 

of descent through DF and of fall through DC [both] have 

the same ratio to the time of fall through DG, and hence they 

are equal. Likewise it may be proved that if from the lowest 

point C the chord CE is raised, EH being drawn parallel to the 

horizontal and E joined to D, the time of descent through EC 

will equal the time of fall through the diameter DC. 

COROLLARY | 

From this it is deduced that the times of descent through 

all chords drawn from the terminals C and D are equal 

to one another. 

COROLLARY II 

It is also deduced that if from the same point there descend 

a vertical and an inclined plane, over which descents are 

made in equal times, they are | inscribable] in a semicircle 

of which the diameter is the vertical. 

COROLLARY III 

From this it is deduced that the times of movements over 

inclined planes are equal when the heights of equal parts of 

those planes are to one another as the lengths of the planes 

themselves. For it has been shown that, in the penultimate 

diagram, the times through AC and AD are equal when 

the height of part AB (which equals AD), or BE, is to 

height DF as CA is to DA. 

Sagr. Please put off reading what follows for a time, until 
I have resolved a certain idea that is now turning over in my 
mind. If it is not a fallacy, then it borders on a sprightly prank, 
as are all pranks of nature or necessity. 

36. This was proved as Proposition III above, and is extended in Proposition 
X to cases in which fall begins not from rest, but from any attained speed. 
Further implications of the present theorem are developed in Proposition VIII 
and used later for minimum-time theorems such as Proposition XXX. 
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It is manifest that if, from a point marked in a horizontal 

plane, there were to be extended over that plane infinitely 

many straight lines, going in all directions, on each of which 

e imaging a point to move in equable motion, [and assuming 

that] all these points commence to move at the same instant 

of time from the designated point and that all their speeds are 

equal, these movable points would consequently mark out 

circumferences of ever-widening circles, all concentric around 

the original designated point. It is in just this way that we see 

little waves made in still water after a pebble has fallen into it 

from above, its impact serving to start motion in all directions 

and remaining as the center of all the circles that come to be 

made by these wavelets, ever larger and larger. But if we 

suppose a vertical plane in which some very high point is 

marked, from which are drawn infinitely many lines inclined in 
every direction; and upon these, we imagine heavy moveables 

descending, each with naturally accelerated motion at those 

speeds that suit the different slopes; then, supposing that these 

moveables are continually visible, in what sorts of lines would 

we see them continually arranged? This aroused my wonder 

when the preceding demonstrations assured me that they would 

all be seen ever in the same circumference of successively 

widening circles, in which the moveables would descend 

successively farther from the high point at which their fall 

began. 

In order to explain myself better, I mark the high point 4, 

from which lines AF and AH descend at whatever inclinations ; 

and the vertical AB, in which points C and D are taken, around 

which are described circles passing through point A and 

cutting the inclined lines at points F, H, B, and E, G, /. It is 

evident from the preceding demonstrations that if moveables 

leave from terminus A at the same time and descend along 

these lines, then when one [moveable] is at E, another will be 

at G, and another at /; continuing to descend thus, they will 

[later] be found at the same instant of time at F, H, and B. 

And these, together with infinitely many more, continuing to 
move along the infinitely many different inclinations, will 

ever be found successively on the same circumferences, which 

become greater and greater in infinitum. 

Thus from the two species of motion that nature employs,*’ 

37. That is, the only entirely natural motions are uniform rectilinear 
motion and uniform acceleration, both of which are here made responsible 

for the production of circular effects. This passage throws light on Galileo’s 
conception of inertia; cf. note 46, below. 
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there arises, with wonderfully corresponding diversity, the 

production of infinitely many circles. The first [generating 

motion] is situated at the center of infinitely many concentric 

circles, as its seat and originating principle; the second is 

located at the upper contact of infinitely many circumferences 

of circles, all of which are eccentric. The former are born from 

motions that are all equal and equable; the latter from motions 

always non-uniform within themselves, and each unequal to 

any of the rest that are carried out along infinitely many 

different inclinations. 
But there is more. From the two points assigned for these 

emanations, let us imagine lines not only in two dimensions, 

horizontal and vertical, but in all directions, so that those 

which commenced at a single point and went to produce 

circles, from least to greatest, now commence from a single 

point and go to produce infinitely many spheres. Or let us 

say, one sphere might go amplifying itself into infinitely many 

magnitudes, and in two ways, by placing the origin of such 

spheres at the center, or else on the circumference. 

Salv. The reflection is truly very beautiful, as befits the mind 
of Sagredo. 

Simp. For my part, I can at least grasp this idea of the manner 

of production of circles and spheres by the two different 

natural motions, although I [still] do not completely under- 

stand some of the results that depend on accelerated motion, 

and some of its demonstrations. Yet since we can assign as 

the site of such emanations the lowest center, as well as the 

highest spherical surface, I believe that some great mystery 

may perhaps be contained in these true and admirable con- 

clusions—I mean a mystery that relates to the creation of the 

universe, which is supposed to be spherical in shape, and 

perhaps [relates] to the residence of the first cause.?8 
Salv. I feel no repugnance to that same belief. But such pro- 

found contemplations belong to doctrines much higher than 

ours, and we must be content to remain the less worthy 

artificers who discover and extract from quarries that marble 

in which industrious sculptors later cause marvelous figures 

38. Simplicio speaks for those philosophers who admire mathematics 
but cannot quite follow its proofs. After Simplicio has thus deduced the 
First Cause from Sagredo’s geometrical tour de force, Salviati, probably 
speaking for the physicist Galileo, replies sympathetically but claims no 
more than to have supplied raw material for those men of higher intelligence 
who create metaphysics and theology. 
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to appear that were lying hidden under those rough and 
formless exteriors. 

Now, with your permission, we shall proceed. 

PROPOSITION VII. THEOREM VII 

If the heights of two planes have the squared ratio of their 

lengths, movements along these from rest will be made 
in equal times. 

Let the planes AE and AB be unequal and unequally inclined, 

having the heights FA and DA; and whatever ratio AE has to 

AB, let FA to DA have the square of that [ratio]; I say that the 

times of movements are equal from rest at A along planes AE 

and AB. Draw horizontal parallels EF and DB to the line of 

heights [AF]; DB cuts AE at G. Since the ratio of FA to AD is 

the square of the ratio of EA to AB, and EA is to AG as FA is 

to AD, the ratio of EA to AG is the square of the ratio of EA 

to AB. Hence AB is the mean proportional between EA and 

AG. And since the time of descent through AB is to the time 

through AG as AB is to AG, and the time of descent through 

AG is, to the time through AE, as AG is to the mean proportional 

between AG and AE (which is AB), then by equidistance of 

ratios the time through AB is to the time through AE as AB is to 

itself. Therefore the times are equal, which was to be proved. 

PROPOSITION VIII. THEOREM VIII 

For planes cut by the same vertical circle, the times of 

movements in those that terminate at the upper or lower 

end of the [vertical] diameter are equal to the time of fall 

in that diameter ; and in those [inclined planes | that do not 

reach the diameter, the times are shorter, while in those 

that cut the diameter they are longer {than the time through 

the diameter]. 

Let AB be the vertical diameter of a circle erect to the hori- 

zontal. It has already been shown that the times of movements 

are equal along planes from terminals A and B to the circum- 

ference. That the time of descent is shorter in plane DF, which 

does not reach the diameter, is shown by drawing plane DB, 

which will be longer and less [steeply] inclined than DF ; there- 
fore the time through DF is shorter than [that] through DB, 

and hence through AB. But that the time of descent is longer in 
plane CO, cutting the diameter, follows in the same way; for 

this is longer and less [steeply] inclined than CB. Therefore the 

proposition holds. 
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PROPOSITION IX. THEOREM IX 

If any two planes are inclined from a point in a horizontal 

line, and are cut by a line that makes with them angles 

alternately equal to their angles with the horizontal, then 

movements in the parts cut off by the said line are made 

in equal times. 

From point C of horizontal line X let there be any two inclined 

planes CD and CE. At any point in line CD construct angle CDF 

equal to angle XCE; line DF cuts plane CE at F so that angles 

CDF and CFD equal angles XCE and LCD, taken alternately. 

I say that the times of descent through CD and CF are equal. 

It is manifest that angle CFD is also equal to angle DCL, 

angle CDF having been drawn equal to angle XCE. Take the 

common angle DCF from the three angles of triangle CDF 

(equal to two right angles, as are all [three] angles at point C 

on line LX ), and there remain in the triangle two [angles], CDF 

and CFD, equal to the two [angles| XCE and LCD. But also 

CDF was put equal to XCE; therefore the remainder CFD 

[equals] the remainder DCL. Construct plane CE equal to 

plane CD, and drop perpendiculars DA and EB from points D 

and E to the horizontal XL; and from C to DF draw the per- 

pendicular CG. Since angle CDG is equal to angle ECB, while 

DGC and CBE are right [angles], triangles CDG and CBE are 

similar ; and as DC is to CG, so CE is to EB; also, DC is equal 

to CE; therefore CG will be equal to BE. And since in triangles 

DAC and CGF, angles [A|C[D] and [C]A[D] are [respectively ] 

equal to angles [C|F[G] and [F]G[C], then CD will be to DA as 

FC is to CG; and by permutation, as DC is to CF, so DA is to 

CG or BE. Thus the ratio of the heights of the equal planes CD 

and CEs the same as the ratio of lengths DC and CF. Therefore, 

by Corollary I to Proposition VI above, the times of descents in 

these will be equal; which was to be proved. 

Another [proof] of the same. Draw FS perpendicular to the 

horizontal AS. As triangle CSF is similar to triangle DGC, 

GC will be to CD as SF is to FC; and since triangle CFG is 

similar to triangle DCA, CD will be to DA as FC is to CG. 

Hence, by equidistance of ratios, as SF is to CG, so CG is to 

DA, whence CG is the mean proportional between SF and DA; 

and as DA is to SF, so the square of DA is to the square of CG. 

Further, since triangle ACD is similar to triangle CGF, GC 
will be to CF as DA is to DC; and by permutation, as DA is to 
CG, so DC is to CF; and as the square of DA is to the square 
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of CG, so is the square of DC to the square of CF. But it has 

been shown that the square of DA is to the square of CG as 

line DA is to line FS, whence as the square of DC is to the 
square of CF, so line DA is to FS. Hence, by Proposition VII 

above, since the heights DA and FS of planes CD and CF are 

in the squared ratio of those planes, the times of movements 

along these will be equal. 

PROPOSITION X. THEOREM X 

Along planes of different inclines whose heights are equal, 

the times of movements are to each other as the lengths of 

those planes, whether [both] the movements start from rest 

or [both] are preceded by movement from the same height. 

Let movements through ABC and ABD to the horizontal DC 

be made in such a way that movement through AB precedes the 

movements through BD and through BC ; I say that the time of 

movement through BD is [always] to the time through BC as 

length BD is to BC. 

Draw AF parallel to the horizontal, meeting DB extended at 

F ; let FE be the mean proportional of DF and FB. Draw EO 

parallel to DC, whence AO will be the mean proportional 

between CA and AB. Now assuming that the time through AB 

is represented by [ut] AB, the time through FB will be as FB, 

and the time through all AC will be as the mean proportional 

AO, while [the time] through all FD will be [as] FE. Hence the 

time through the remainder BC will be BO, and [that] through 

the remainder BD will be BE. But as BE is to BO, so BD is to 

BC. Therefore the times through BD and BC, after fall through 

AB and FB (or, what is the same thing, through AB in common), 

will be to one another as lengths BD and BC. But it has been 

demonstrated above that the time through BD from rest at B 

will be to the time through BC as length BD is to BC. Therefore 

the times of movements through different planes of equal height 

are to one another as the lengths of the planes, whether motion 

is made in these from rest or whether another movement from 

a given height has preceded these movements; which was to 

be shown. 

PROPOSITION XI. THEOREM XI 

If a plane in which motion is made from rest be divided in 

any way, the time of movement through the first part is, to 

the time of movement through that which follows, as the 

first part is to the excess by which that part is exceeded 
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by the mean proportional between the whole plane and its 

first part. 
Let there be movement from rest at A through all AB, divided 

at any point C, and let AF be the mean proportional between all 

AB and its first part AC. The excess of the mean proportional 

FA over the part AC will be CF ; I say that the time of movement 

through AC to the time of the subsequent movement through CB 

is as AC is to CF. This is clear because the time through AC is 

to the time through all AB as AC is to the mean proportional AF ; 

therefore, by division [of ratio AF:CF], the time through AC 

is to the time through the remainder CB as AC is to CF. If, then, 

we assume the time through AC to be [represented by| AC 

itself, the time through CB will be CF ; which is the proposition. 

And if motion is made, not continually through ACB, but 

through the inflection ACD as far as [to] the horizontal BD, to 

which FE is drawn parallel from F, it is similarly demonstrated 

that the time through AC is, to the time through the diversion 

[reflexam] CD, as AC is to CE. For the time through AC is to 

the time through CB as AC is to CF; but it has been demon- 

strated that the time through CB after [fall through] AC is, to 

the time through CD after that same descent through AC, as 

CB is to CD; that is, as CF is to CE. Therefore, by equidistance 

of ratios, the time through AC will be to the time through CD 

as line AC is to CE. 

PROPOSITION XII. THEOREM XII 

Ifa vertical and a plane however inclined intersect between 

given horizontal lines, and mean proportionals are taken 

between [each of] these and its part contained between the 

intersection and the upper horizontal, the time of movement 

in the vertical line will have, to the time of movement made 

in the upper part of the vertical and then in the lower part 

of the cutting plane, the same ratio as that which the entire 

vertical has to the line made up of the mean proportional 

taken in the vertical and the excess of the entire inclined 

plane over its mean proportional [of whole to upper part}. 

Let the horizontals be AF, above, and CD, below; between 

these, the vertical AC and the inclined plane DF intersect at B. 

And let AR be the mean proportional between the entire vertical 

CA and its upper part AB, while FS is the mean proportional 
between all DF and its upper part BF. I say that the time of fall 
through the whole vertical AC has, to the time through its upper 

part AB plus the lower part of the plane, BD, the same ratio 
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that AC has to AR (the mean proportional in the vertical) plus 

SD, the excess of the whole plane DF over its mean propor- 
tional FS. 

Join R and 8S, which [line] will be parallel to the horizontal. 

Since the time of fall through all AC is to the time through the 

part AB as CA is to the mean proportional AR, then if we 

assume AC to be the time of fall through AC, the time of fall 

through AB will be AR, and RC [will be] that through the 

remainder BC. But if the time through AC is assumed to be AC 

itself, as was done, then the time through FD will be FD; and 

it will likewise be concluded that DS is the time through BD after 

[fall through| FB, or after AB.*° Therefore the time through 

all AC is AR plus RC, while that through the inflection ABD 

will be AR plus SD; which was to be proved. 

The same holds if, in place of the vertical, any other plane is 

assumed, as for example NO ; and the demonstration is the same. 

PROPOSITION XIII. PROBLEM 149 

Given the vertical, to divert from it a plane having the same 

height as the given vertical, in which motion after fall in 

the vertical is made in the same time as [motion] in the 

given vertical from rest. 

Let the given vertical be AB, extended to C [by] an equal 

distance BC, and draw the horizontals CE and AG, it is required 

to divert from B a plane reaching to the horizontal CE, in which 

motion is made after fall from A in the same time as [motion] 

in AB from rest at A. 

Let CD be equal to CB, and draw BD; let BE be constructed 

[applicetur] equal to the sum of [utrisque] BD and DC; I say 

that BE is the required plane. 

Extend EB to meet the horizontal AG at G, and let GF be 

the mean proportional of EG and GB; EF will be to FB as EG 
is to GF, and the square of EF will be to the square of FB as the 

square of EG is to the square of GF ; that is, as line EG is to GB. 

But EG is double GB; hence the square of EF is double the 
square of FB. But also the square of DB is double the square of 

BC;; therefore as line EF is to FB, so DB is to BC. And by 

composition and permutation, as EB is to the sum of DB and 

BC, so BF is to BC. But BE is equal to the sum of DB and BC, 

39. Cf. note 29, above. 5 
40. Problems, as distinguished from theorems, require the construction 

of an assigned unknown magnitude. 
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whence BF is equal to BC, or BA. Hence if it is assumed that 

AB is the time of fall through AB, then GB will be the time 

through GB, and GF the time through all GE. Therefore BF 

will be the time through the remainder BE, after fall from G, 

or from A; which was proposed. 

PROPOSITION XIV PROBLEM II 

Given a vertical and a plane inclined to it, to find the part 

in the upper vertical which is traversed from rest in a time 

equal to that in which, after fall in the part found in the 

vertical, the inclined plane is traversed. 

Let the vertical be DB and the plane inclined to it AC; it is 

required to find a part in the vertical AD which is traversed 

from rest in a time equal to that in which, after that fall [post 

casum in ea], the plane AC is traversed. 

Draw the horizontal CB ; and as BA plus double AC is to AC, 

let CA be to AE, and let EA be to AR as BA is to AC. From R, 

draw RX perpendicular to DB; I say that X is the point sought. 

Since BA plus double AS is to AC as CA is to AE, then by 

division [of these ratios] CE will be to EA as BA plus AC is to 

AC; and since EA is to AR as BA is to AC, then by composition, 

as BA plus AC is to AC, so ER is to RA. But as BA plus AC 

is to .\C, so CE is to EA; therefore, as CE is to EA, so ER is 

to RA, and the combined antecedents [are in this same ratio] 

to the combined consequents ; that is, so CR is to RE. Hence 

CR, RE, and RA are [continued] proportionals. 

Next, since by construction EA is to AR as BA is to AC, 

and by similarity of triangles, XA is to AR as BA is to AC, 

then as EA is to AR, so XA is to AR; and thus EA and XA 

are equal. But if we assume the time through RA to be as RA, the 

time through RC will be [as] RE, the mean proportional between 

CR and RA; and AE will be the time through AC after [fall 

through] RA or XA. But the time through XA is XA when 
RA is the time through RA, and it was shown that XA and 

AE are equal; therefore the proposition is evident. 

PROPOSITION XV. PROBLEM III 

Given a vertical and a plane diverted from it, to find the 

part in the vertical extended downward which is traversed 

in the same time as the diverted plane is traversed after 
fall through [ex] the given vertical. 

Let the vertical be AB and the plane diverted therefrom be 
BC; it is required to find in the vertical, extended below [B], a 
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part which is traversed after fall from [rest at) A in the same 
time as is BC after the same fall from A. 

Draw the horizontal AD meeting CB extended at D, and 
let DE be the mean proportional of CD and DB. Make BF 
equal to BE, finally, let AG be the third proportional of BA 
and AF; I say that BG is the space which, after the fall AB, 

is traversed in the same time as [is] plane BC after the same 

fall [AB]. For if we assume the time through AB to be as AB, 
the time [through] DB will be as DB; and since DE is the 

mean proportional between BD and DC, the time through all 

DC will be DE, and BE [will be] the time through the remainder 

BC from rest at D or after fall [through| AB. And it is similarly 

concluded that BF is the time through BG after the same fall; 

also, BF is equal to BE; therefore the proposition is evident. 

PROPOSITION XVI. THEOREM XIII 

Given portions of an inclined plane and of the vertical for 

which the times of movements from rest are equal; if 

these meet at the same point, a moveable coming from 

any higher point will cover the portion of the inclined 

plane more quickly than the portion of the vertical. 

Let the vertical EB and the inclined plane CE meet at the 

same point E, in which the times of movements from rest at 

E are equal. Take any higher point in the vertical, A, from 

which moveables are released; I say that after the fall AE, the 

inclined plane EC is passed over in a shorter time than {is} 

the vertical EB. 

Join C and B, and draw the horizontal AD; let CE be ex- 

tended to meet this at D, and let DF be the mean proportional 

of CD and DE, while AG is the mean proportional of BA and 

AE; draw FG and DG. Since the times of movements through 

EC and EB from rest at E are equal, C will be a right angle, 

by Corollary II of Proposition VI. Also A is a right angle, 
and the vertex angles at E are equal, whence triangles AED 

and CEB are similar, and the sides around [their] equal angles 

are proportional ; hence as BE is to EC, so DE is to EA. There- 

fore the rectangle BE-EA is equal to the rectangle CE-ED; 

and since rectangle CD-DE exceeds rectangle CE-ED by 

the square ED, while rectangle BA—AE exceeds rectangle 

BE-EA by the square EA, the excess of rectangle CD-DE 

over rectangle BA-AE (that is, the [excess of] square FD 

over square AG) will be the same as the excess of square DE 

over square AE, which excess is the square DA. Therefore 
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square FD is equal to the two squares GA and AD, to which 

the square GD is also equal. Hence line DF is equal to DG, 

and angle DGF is equal to angle DFG, and angle EGF is less 

than angle EFG, and the opposite side EF is less than side 

EG. But if we assume the time of fall through AE to be as 

AE, the time through DE will be as DE; and since AG is 

the mean proportional between BA and AE, the time through 

all AB will be AG, and the remainder EG will be the time 

through the remainder EB from rest at A. And likewise it 

is concluded that EF is the time through EC after the descent 

DE, or after fall AE. But it has been shown that EF is less 

than EG, whence the proposition is evident. 

COROLLARY 

It also follows from this and the preceding [proposition] 
that the space traversed in the vertical after fall from on 

high, during the same time as that in which the inclined 

plane is traversed, is less than that [space] traversed in 

that same time in the incline without a preceding fall from 

on high, though greater than the inclined plane itself. 

It has been demonstrated that for moveables coming from 
the high point A, the time accumulated [conversi] through 

EC is shorter than the time before [procedentis] through EB; 

hence it follows that the space traversed through EB in a time 

equal to the time through EC is less than the whole space EB. 

Now, that this same vertical space [EB in the previous diagram] 

is greater than EC is manifest from the diagram used for the 

preceding proposition, in which the part BG of the vertical is 

shown to be traversed in the same time as is BC after the fall 

AB. But that BG is greater than BC is deduced as follows. 

Since BE and FB are equal, and BA is less than BD, FB has 

a greater ratio to BA than EB has to BD; and by composition, 

FA has a greater [ratio] to AB than ED has to DB. Hence as 

FA is to AB, so GF is to FB (for AF is the mean proportional 

between BA and AG) ; likewise as ED is to BD, so CE is to 

EB; therefore GB has a greater ratio to BF than CB has to 

BE, and hence GB is greater than BC. 

PROPOSITION XVII. PROBLEM IV 

Given a vertical and a plane diverted from it, to mark a 

part in the given plane through which, after fall in the 

vertical, motion is made in a time equal to that in which the 

moveable traversed the vertical from rest. 
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Let AB be the vertical and BE the plane diverted from it; 

it is required to mark in BE the space through which a moveable, 

after fall in AB, will be moved in a time equal to that in which 

it traversed the vertical AB from rest. Let AB be a horizontal 

line meeting the plane extended at D, and take FB equal to 

BA, and as BD is to DF, make FD to DE; I say that the 

time through BE after fall in AB will be equal to the time 

through AB from rest at A. 

If AB is assumed to be the time through AB, the 

time through DB will be DB; and since FD is to DE as BD is 

to DF, the time through the whole plane DE will be DF, and 

BF [will be the time] through the part BE from D. But the time 

through BE after DB is the same as [that] after AB; therefore 

the time through BE after AB will be BF; that is, [it will be] 

equal to the time [through] AB from rest at A; which was 

the problem. 

PROPOSTION XVIII. PROBLEM V 

Given in the vertical any space marked from the beginning 

of movement, and given the time in which this is traversed, 

and given another smaller time, to find another space in 

the vertical which is traversed in the given smaller time. 

Let the vertical be A[{D], in which let the space AB be given, 

for which the time from the beginning A is AB; and let the 

horizontal be CBE; and let a time less than AB be given, 

which is marked in the horizontal as equal to BC. It is required 

to find in the same vertical a space equal to AB which is traversed 

in the time BC. 

Draw line AC; since BC is less than BA, angle BAC will 

be less than angle BCA. Draw CAE equal to the latter, and 

line AE meeting the horizontal at point E; perpendicular to 

this, draw ED cutting the vertical at D,; and mark DF equal to 

BA. J say that FD is the part in the vertical which, in movement 

from the beginning of motion at A, is passed over in the given 

time BC. 

Since in the right triangle AED, EB is drawn perpendicular 

to the side AD opposite the right angle at E, AE will be the 
mean proportional between DA and AB, and BE the mean 

proportional between DB and BA, or between FA and AB 

(for FA is equal to DB). And since AB is assumed to be the 
time through A[B], the time through all AD will be AE or 

EC, and EB [will be] the time through AF. Therefore the 
remainder BC will be the time through the remainder FD; 

which was the intent. 
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PROPOSITION XIX. PROBLEM VI 

Given any space whatever in the vertical, run through 

from the beginning of motion, and given the time of fall; 

to find the time in which another equal space, taken some- 

where in the same vertical, will be traversed by the same 

moveable. 

Let any space AC be taken from the beginning of motion 

at A in the vertical AB, to which is equal another space DB 

taken anywhere; and given the time of motion through AC, 

let this be AC; it is required to find the time of movement 

through DB after fall from A. Describe the semicircle AEB 

around all AB, and let CE be perpendicular to AB from C; 

join A and E, which [line] will be longer than EC. Let EF be 

cut equal to EC; I say that the remainder FA is the time of 

movement through DB. 

For since AE is the mean proportional between BA and AC, 

and AC is the time of fall through AC, the time of fall through 

all AB will be AE. And since CE is the mean proportional 

between DA and AC (for DA is equal to BC), CE (that is, 

EF) will be the time through AD. Therefore the remainder AF 

is the time through the remainder DB; which is the proposition. 

COROLLARY 

From this it is deduced that if any space is assumed, the 

time through this after some adjoined space will be [as] 
the excess of the mean proportional between the combined 

spaces and the original space, over the mean proportional 

between the original [space] and that added. 
Thus, supposing that the time through AB from rest at A is 

AB, [then] when AS is added, the time through AB after SA 

will be the excess of the mean proportional between SB and 

SA over the mean proportional between BA and AS. 

PROPOSITION XX. PROBLEM VII 

Given any space, and a part therein from [post] the 

beginning of movement, to find another part at [versus] the 

end which is traversed in the same time as the part first given. 

Let there be the space CB, and in this the part CD after the 

beginning of movement at C; it is required to find another 
part toward the end, B, which is traversed in the same time as 
the given [part] CD. 

Take the mean proportional between BC and CD, which is 
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to be put equal to BA, and let CE be the third proportional to 

BC and CA; I say that EB is the space which, after fall from 

C, will be traversed in the same time as CD. For if we assume 

the time through all CB to be as CB, then BA (that is, the 

mean proportional between BC and CD) will be the time through 

CD, and since CA is the mean proportional between BC and 

CE, the time through all CE will be CA; also, BC is the time 

through all CB. Therefore the remainder BA will be the time 

through the remainder EB after fall from C. But BA was the 

time through CD; therefore CD and EB will be traversed in 

equal times from rest at C;*' which was to be done. 

PROPOSITION XXI. THEOREM XIV 

If fall in the vertical occurs from rest, of which a part 

is taken at the beginning of movement that is run through 

in a given time, after which there follows motion diverted 

through a plane however inclined, the space which is 

traversed in that plane during a time equal to the time of 

fall already run through in the vertical will be more than 

double, but less than triple, [that space already run]. 

Below the horizontal [line] AE let there be the vertical AB, 

in which let fall take place from the beginning, A, in which there 

is taken a part, AC; then from C let some plane CG be inclined 

on which motion continues after fall in AC. I say that the 

space run through in that motion through CG, in a time equal 

to the time of fall through AC, is more than double but less 

than triple that same space AC. 

Take CF equal to AC, and extending plane CG to the hori- 

zontal at E, make FE to EG as CE is to EF. Then if the time 

of fall through AC is taken as the line AC, the time through 

EC will be CE, and CF (or CA) [will be] the time of motion 

through CG. It is to be shown that space CG is more than 

double, but less than triple, CA. Now since FE is to EG as 

CE is to EF, CF will be [in] the same [ratio] to FG; but EC is 

less than EF, whence CF will be less than FG, and therefore 

GC will be more than double FC or AC. Further, since FE is 

less than double EC (for EC is greater than CA or CF), GF 

will also be less than double FC, and GC [will be] less than 

triple CF or CA; which was to be demonstrated.*? 

41. The 1638 text has A for C, an error corrected in Weston’s translation. 

42. This noteworthy theorem calls attention to the role of the integers 
2 and 3 as limits governing speeds naturally conserved or acquired during 
the second of two equal times. That Galileo did not insert any dialogue 
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The same can be still more universally stated; for what 

happens in vertical and inclined planes also happens if, after 

motion in some inclined plane, there is deflection through a 

greater incline, as seen in this second diagram; and the 

demonstration is the same. 

PROPOSITION XXII. PROBLEM VIII 

Given two unequal times, and given the space traversed in 

the vertical (from rest) during the shorter of the given times, 

to divert a plane from the highest point of the vertical 

out to the horizontal, upon which the moveable descends 

in a time equal to the longer of the given [times].43 

Let A be the greater and B the lesser of the unequal times, 

and let CD be the space traversed from rest along the vertical 

in time B;; it is required to divert from end C to the horizontal 

a plane which is traversed in time A. 

As B is to A, let CD be to some other line equal to CX, 

descending from C to the horizontal. It is manifest that the 

plane CX is that along which the moveable descends in the 

given time A, for it was demonstrated [in Theorem III\ that 

the time along an inclined plane has to the time along its height 

the ratio that the length of the plane has to its height. Therefore 

the time along CX is to the time along CD as CX is to CD; 

that is, as the time A is to the time B. But time B is that in which 

the vertical CD is traversed from rest; therefore time A is 

that in which the plane CX is traversed. 

PROPOSITION XXIII. PROBLEM IX 

Given the space run through in any time along the vertical 

from rest, to divert a plane from the lower end of this 

space, upon which, after fall in the vertical and in equal 

time [thereto], a given space is traversed that is more 

than double but less than triple the space run through in 
the vertical. 

discussing this is most surprising if, as some say, he had Platonist leanings. 
A manuscript copy exists in the hand of Mario Guiducci of a draft probably 
made in 1618, to which Galileo added this remark: ‘Note that if motion 

along the incline CG is accelerated in infinitum, it seems one might demon- 
strate that along the horizontal, [motion] must extend equably in infinitum; 
now it is also clear that if equable, it will also be infinite.” Thus rectilinear 
inertia and an infinite universe must stand or fall together; cf. note 46, below. 

43. This is one of the problems that Galileo had tried to solve nearly 
fifty years earlier, before he realized the importance of acceleration in fall; 
cf. On Motion, p. 69 (Opere, I, 301). 



Galileo, Opere, VIII (241-242) 195 

In the vertical AS let space AC be run through in time AC 
from rest at A, to which [space AC] IR is more than double but 
less than triple; it is required to divert a plane from terminus 

C, upon which the moveable shall, in this same time AC, traverse 

a space equal to IR after fall through space AC. 

Let RN and NM be equal to AC; and whatever ratio the 

remainder IM has to MN, let AC have the same to another 
line equal to CF, drawn from C to the horizontal AE. Extend 

this toward O, and let CF, FG, and GO be equal [respectively | 

to RN, NM, and MI. / say that the time along the diversion 

CO, after fall AC, is equal to the time [through] AC from 

rest at A. For since FC is to CE as OG is to GF, then by com- 

position, as OF is to FG or FC, so FE will be to EC, and as 

one antecedent is to one consequent, so is the sum of [omnia] 

antecedents to the sum of consequents ; hence the whole of OE 

is to EF as FE is to EC. And thus OE, EF, and FC are continued 
proportionals ; and since it was assumed that the time through 

AC is as AC, the time through EC will be CE, and EF [will 

be] the time through all EO, and the remainder CF [will be 

that] through the remainder CO. But CF is equal to CA; 

therefore what was required has been done. For time CA is 

the time of fall through AC from rest at A, while CF (which 

equals CA) is the time through CO after descent through 

EC, or after fall through AC; which was the thing proposed. 

It is to be noted here that the same happens if the preceding 

motion is made not vertically, but along an inclined plane, as 

in the next diagram; there the initial [praecedens] motion is 

made along the inclined plane AS, below the horizontal line 

AE, and the demonstration is exactly the same. 

SCHOLIUM 

If due attention is paid, it will be manifest that the less the 

given line IR falls short of triple AC, the closer the diverted 

plane CO, on which the second motion is made, comes to the 

vertical, in which ultimately, in a time equal to AC, a space 

triple AC is run through. For if [cum] IR is almost triple AC, 

IM will be nearly equal to MN; and since, by construction, 
AC is made to CE as IM is to MN, it is clear that CE will be 

found to be little more than CA, and consequently that the 

point E will be found close to point A, while CO and CS will 

contain a very acute angle, and will nearly coincide. On the 

other hand, if IR is the minimum that is greater than double 

AC, then IM will be a very short line, whence it comes about 
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that AC will be very short with respect to CE, which will become 

very long, and nearly parallel to the horizontal drawn through 

C. And we may then deduce that if, in the above diagram, 

after descent through the inclined plane AC, there is diversion 

along a horizontal line such as CT, the space through which 

the moveable will next [consequentur] be moved, in a time 

equal to that of descent through AC, would be exactly double 

the space AC. 

Further, it is seen that this fits with [other] like reasoning. 

For from the fact that OE is to EF as FE is to EC, it appears 

that FC determines the time through CO. For if the horizontal 

part TC, double CA, is bisected at V, its extension toward 

X will be prolonged indefinitely in seeking to meet with AE 

produced ; and the ratio of an infinite TX to an infinite VX 

will not be different from the ratio of an infinite VX to an 

infinite XC. 

We may reach the same conclusion by another approach, 

taking up again an argument like that which we used in the 

demonstration of Proposition I.4* For take again the triangle 

ABC, and by its parallels to the base BC let us represent to 

ourselves the degrees of speed continually increased according 

to the increments of time. From those, which are infinitely 

many (as the points in line AC are infinitely many, and [so 

are] the instants in any [interval of] time), there arises [exurget ] 

the surface of the triangle [ABC] ; and if we assume the motion 

to be continued for another equal time, no longer in accelerated 

but in equable motion at the maximum degree of speed acquired 

(which degree is represented by line BC), then from these 

degrees [of speed] a like parallelogram ABCD will be produced 

[conflabitur], double the triangle ABC. Hence the space which 

is traversed in the same time with similar degrees [of speed] 

will be double the space run through with the degrees of speed 
represented by triangle ABC. 

But motion in the horizontal plane is equable, as there is no 

cause of acceleration or retardation ; therefore it is to be con- 
cluded that the space CT,*> run through in time equal to the 

44. See note 31, above. 

45. With the exception of the 1638 original and Weston’s translation, 
all editions erroneously read CD here in place of CT. Galileo’s reference 
is to CT in the previous diagram, here (though not in the original) repeated 
in part for convenience of reference. The erroneous CD, a plausible editorial 
emendation made in 1655, has ever since made it seem that Galileo in this 
one place had had used an area to represent a distance traversed. We do this, 
but it would be incongruous for a strict Euclidean mathematician. Compare 
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time AC, is double the space AC. Indeed, the former motion, 
accelerated, is made from rest according to the parallels of 

the triangle, while the latter [equable, is made] according to 

the parallels of the parallelogram, which, being infinitely 

many, are doubles to the infinitely many parallels of the triangle. 

@\ It may also be noted that whatever degree of speed is found 

in the moveable, this is by its nature [suapte natura] indelibly 

impressed on it when external causes of acceleration or retarda- 

tion are removed, which occurs only on the horizontal plane ; 

for on declining planes there is cause of more [maioris] accel- 

eration, and on rising planes, of retardation. From this it 

likewise follows that motion in the horizontal is_also eternal, 
since if it is indeed equable it is not [even] weakened or remitted, 

much less removed. 
‘Furthermore, one must consider the existing degree of speed 

acquired by the moveable in natural descent to be naturally 

indelible and eternal; but if after descent along a declining 
plane it is diverted through another upward plane, a cause of 
retardation presents itself there, for on such a plane the same 

moveable would naturally descend. Wherefore a certain mixture 

of contrary influences [affectionum] arises—that of the degree 

of speed acquired in the preceding descent, which by itself 

would carry the moveable away uniformly in infinitum, and 

[that of] a natural propensity to downward motion according 

to that same ratio of acceleration in which it is always moved. 

Whence it is seen to be quite reasonable if, in inquiring what 

events take place when a moveable is diverted through some rise 

after descent through some inclined plane, we assume that 

that maximum degree acquired in descent is_jn itself perpetually 

“aed [server] in he ascending Plane, but [that] in the ascent 
there supervenes the natural tendency downward ; that is, to a 

motion from rest accelerated in the ratio always assumed. 

Theorem I, above, where a seemingly superfluous line was introduced into 
Galileo’s diagram to represent distances traversed. The area which for us 
would represent distance was seen by Galileo only as representing an overall 

speed. 
We Cf. note 42, above. Here, and in the ensuing argument, is to be found 
everything of significance in Galileo’s restricted inertial concept, which he 

limited to phenomena of heavy bodies near the earth’s surface. His remark 

that interference with uniformity of motion is always present except in 

supported horizontal motion is a simple statement of fact, as is his subsequent 

declaration that no truly horizontal plane exists, though there are surfaces 
on earth on which uniform motion would ideally be conserved. Cf. Dialogue, 
p. 148 (Opere, VII, 174), and see further, pp. 273-75, below. 
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But lest perhaps this be understood but darkly, it is explained 

more clearly by another depiction. 
Let it be understood, then, that descent is [first] made through 

the downward plane AB, from which reflected motion is con- 

tinued upward through BC ; and first let these be equal planes, 

elevated at equal angles to the horizontal GH. It follows that 

the moveable descending along AB from rest at A acquires 

speed according to the increase of time itself; the degree at 

B is the maximum acquired, and this is naturally impressed 

immutably—any cause of new acceleration or retardation 

being removed. [There would be a cause] of acceleration, I 

say, if it were to continue its progress further on the [same] 

plane extended, and of retardation if diverted to the rising 

plane BC. But on the horizontal plane GH, it would go in 

infinitum in equable motion at the degree of speed acquired 

[in descent] from A-to B, and this speed would be such that, 

in a time equal to the time of descent along AB, it would traverse 

in_the horizontal_a louble t 

However, let us suppose the same moveable to be moved 

equably at the same degree of speed along plane BC, so that 

also in this [case], in a time equal to the time of descent along 

AB, it would traverse on BC extended a space double that of 

AB. Truly, we understand that as soon as the ascent begins, 

there naturally supervenes that which happens to it from A 

on,the plane AB; namely, a certain descent from rest according 
to those same degrees of acceleration, by force of which [vi 

quorum],*” as happened on AB, it descends the same amount 

in the same time on the diverted plane [BC] that it descended 

along AB. It is manifest that from this_kind of mixture of 

equable ascending and accelerated descending motion.—the 
moveable is carried to terminus C, along plane BC, at the same 

degrees of speed, which will be equal [in ascent and descent]. 

And indeed, we can deduce that assuming any two points D 

and E, equally distant from angle B, the transit through DB 

is made in a time equal to the time of reflection through BE. 

Draw DF parallel to BC; it is evident that the descent through 
AD will be reflected through DF; now if, after [reaching] D, 

the moveable is carried along the horizontal DE, its impetus 
at E will be the same as its impetus at D; therefore from E 

47. It was unusual for Galileo to introduce acceleration in terms of force, 
his customary procedures being kinematic rather than dynamic. The essen- 
tial idea here is that inertial motion is found in bodies supported on planes 
other than the horizontal, but is cloaked by continual deceleration. 
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it ascends to C, whence the degree of speed at D is equal to 
the degree at E. 

From eT ag mae 

is made through some inclined plane, after which there follows 
reflection through some rising plane, the moveable ascends, 

by the Tmpetus 7e0etved, all the wayrto Tie same altitude or 
height from the horizontal. Thus if the descent is along AB, 

the moveable is carried along the diverted plane BC to the 

horizontal ACD;; and not only if the inclinations of the planes 

are equal, but also if they are unequal, as is plane BD. For it 

was assumed earlier that the degrees of speed acquired over 

unequally inclined planes are equal whenever the planes are 

of the same height above the horizontal. But if the same inclin- 

ation exists for planes EB and BD, descent through EB suffices 

to impel the moveable along plane BD all the way to D, as 

such an impulse is made on account of the received impetus 

of speed at point B; and there is the same impetus at B whether 

the moveable descends through AB or through EB. It follows 

that the moveable is pushed out likewise along BD after descent 

along AB or along EB. It happens indeed that the time of ascent 

through BD will be longer than that through BC, inasmuch 

as descent through EB also takes a longer time than through 

AB;; and the ratio of these times has already been shown to 

be the same as that of the lengths of the planes. 

Next we shall inquire into the ratio of the spaces passed 

in equal times on planes of whatever different inclinations, but 

of the same heights; that is, those which are included between 

the same horizontal parallels. And this takes place according 

to the following ratio. 

PROPOSITION XXIV. THEOREM XV 

Given a vertical, and a plane elevated from its lower end, 

lying between given horizontal parallels; the space tra- 

versed by a moveable on the inclined plane, after fall 

through the vertical, in a time equal to its time of (vertical] 

fall, is greater than in the vertical but less than double that 

in the vertical. 
Between the same horizontal parallels BC and HG let there 

be the vertical AE and the inclined plane EB; over EB, after 
fall along the vertical AE, let deflection be made toward B 

from the point E; I say that the space through which the move- 
able ascends, in a time equal to the time of descent AE, is greater 

than AE but less than double AE. Take ED equal to AE, and 
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make DB to BF as EB is to BD;; it is to be shown, first, that F 

marks the point to which the moveable comes, moved by 

reflection along EB, in a time equal to the time of AE; and 

next, that EF is greater than EA but less than its double. If 

we understand that the time of descent along AE is as AE, 

the time of descent along BE, or of ascent along EB, will be 

as the line BE; and since DB is the mean proportional between 

EB and BF, and BE is the time of descent through all BE, 
BD will be the time of descent through BF, and the remainder 

DE [will be] the time of descent through the remainder FE. 

But the time through FE from rest at B is the same as the time 

of ascent through. EF, when the degree of speed at E is that 

acquired through the descent BE (or AE). Therefore the 

same time DE will be that in which the moveable arrives at 
point F after fall from A through AE and reflected motion 

along EB. But it was assumed that ED is equal to AE; whence 

the first [part] has been shown. 

And since as all EB is to all BD, so the removed part DB 

is to the removed part BF, [likewise] as all EB is to all BD, so 
will the remainder ED be to DF; whence EB is greater than 

BD. Therefore ED is greater than DF, and also EF is less than 

double DE, or AE; which was to be shown. The same holds if 

the precedent motion is made not in the vertical, but on an 

inclined plane; and the proof is the same when the plane of 

reflection is less steep and hence longer than the declining plane. 

PROPOSITION XXV. THEOREM XVI 

If, after fall through some inclined plane, there follows 

motion through the horizontal plane, the time of fall through 

the inclined plane will be, to the time of motion through 

any horizontal line, as double the length of the inclined 

plane is to that horizontal line. 

Let CB be the horizontal line and AB the inclined plane ; and, 

after fall through AB, let motion follow through the horizontal, 

in which any space BD is taken. I say that the time of fall 

through AB is to the time of motion through BD as double 
AB is to BD. For take BC double AB, and it follows from 
what was demonstrated above that the time of fall through 
AB equals the time of motion through BC; but the time of 
motion through BC is to the time of motion through DB as 
line CB is to line BD. Therefore the time of motion through 
AB is to the time through BD as double AB is to BD; which 
was to be proved. 
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PROPOSITION XXVI. PROBLEM X 

Given a vertical between parallel horizontal lines, and 

a space greater than that vertical, but less than its double ; 

to raise a plane from the lower terminus of the vertical 

between the parallels, upon which in reflected motion 

after descent in the vertical, a moveable will traverse a 

space equal to that given, in a time equal to the time of 
descent through the vertical. 

Let the vertical be AB, and between the parallels AO and 

BC, let FE be greater than BA but less than its double ; it is 

required to erect a plane from B, between the horizontals, 

on which the moveable, after fall from A to B, in reflected 

motion during a time equal to the time of descent through AB, 

traverses in ascent a space equal to EF. Make ED equal to 

AB; the remainder DF will be less [than DE], since all EF is 

less than double AB. Let DI equal DF, andas EI is to ID, make 

DF be to FX; and from B reflect BO equal to EX. I say that 

the plane through BO is that on which, after fall AB, in a time 

equal to the time of fall through AB, the moveable in rising 

will pass through a space equal to the given space EF. Put 

BR and RS equal to ED and DF ;; then since as EI is to ID, so 

DF is to FX; and by composition, as ED is to DI, DX will 

be to XF; that is, as ED is to DF, DX is to XF, and EX is 
to XD, whence as BO is to OR, RO is to OS. Now if we assume 

the time through AB to be AB, the time through OB will be 

OB, and RO will be the time through OS; and the remainder 

BR will be the time through the remainder SB in descent from 

O to B. But the time of descent through SB from rest at O is 

equal to the time of ascent from B to S after the descent AB; 

therefore BO is the plane, raised from B, upon which, after 

descent through AB, the space BS, equal to the given space 

EF, is traversed in the time BR, or BA; which was required 

to be done. 

PROPOSITION XXVII. THEOREM XVII 

If a moveable descends on unequal planes of the same 
height, the space traversed in the lower part of the longer 

[plane], in a time equal to that in which all the shorter 

plane is traversed, is equal to the space made up of the 
shorter plane and that length to which the shorter plane 

has the same ratio as the longer plane has to the excess 

by which the longer surpasses the shorter. 
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Let AC be the longer plane and AB the shorter, of which 

each is of height AD; and in the lower part of AC, take CE 

equal to AB. Let the ratio of all CA to AE (that is, to the 

excess of plane CA over AB) be [the ratio] of CE to EF; I 

say that the space FC is that which is traversed after departure 

from A in a time equal to the time of descent through AB. 

For since all CA is to all AE as the part CE is to the part EF, 

the removed part EA will be to the removed part AF as all 

CA is to all AE; and thus the three [magnitudes] CA, AE, 

and AF are in continued proportion. Now, if the time through 

AB is assumed to be as AB, the time through AC will be as 

AC;; but the time through AF will be as AE, and [that] through 

the remainder FC, as EC; whence EC is equal to AB; there- 

fore the proposition is evident. 

PROPOSITION XXVIII. PROBLEM XI 

Let the horizontal line AG be tangent to a circle at its 

diameter AB, and draw any two chords, AE and EB; it 

is required to find the ratio of the time of fall through 

AB to the time of descent through both AE and EB 

[combined]. 

Extend BE to the tangent at G, and draw AF, bisecting 

angle BAE; I’ say that the time through AB is, to the time through 

AE and EB, as AE is to AE plus EF. Since angle FAB is equal 

to angle FAE, and angle EAG to angle ABF, all GAF will 

be equal to the sum of FAB and ABF, to which also angle 

GFA is equal; therefore line GF is equal to GA. And since 

the rectangle BG-GE is equal to the square on GA, it is also 

equal to the square on GF; and the three lines BG, GF, and 

GE are [continued] proportionals. Now, if AE is assumed to 

be the time through AE, GE will be the time through GE; 

GF the time through all GB; and EF the time through EB 

after descent from G (or from A through AE); therefore 

the time through AE (or through AB) is, to the time through 

AE and EB, as AE is to AE and EF; which was to be found. 

Otherwise, more briefly. Make GF equal to GA, it is evident 

that GF is the mean proportional between BG and GE. The 
rest as above. 

PROPOSITION XXIX. THEOREM XVIII 

Given any horizontal distance, from the end of which is 

erected a perpendicular, in which is taken a part equal to 

one-half the distance given in the horizontal; a moveable 
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descending from this altitude and being turned to the 
horizontal will traverse the [given] horizontal space 

together with the vertical in a shorter time than any other 

vertical distance together with that same horizontal space. 

Take any distance BC in the horizontal plane, and from B 
let there be the vertical in which BA is one-half of BC; I say 

that the time in which a moveable sent from A will traverse 

both distances, AB and BC, is the shortest time of all during 

which the same distance BC is traversed together with any 

part of the vertical, whether greater or less than the part AB. 

Let EB be taken as greater [than AB], as in the first diagram, 

or as less, as in the second. It is to be shown that the time in 

which distances EB and BC are traversed is longer than the 

time in which AB and BC are traversed. It is assumed that 

the time through AB is as AB, and [that this is| also the time 

of motion in the horizontal BC, since BC is double AB ; and 

through both distances, AB and BC, the time will be double BA. 

Let BO be the mean proportional between EB and BA; BO 

will be the time of fall through EB. Further, let the horizontal 

distance BD be double BE;; it follows that the time after fall 

EB is BO. Make OB to BN as DB is to BC, or as EB is to BA; 
and since motion in the horizontal is equable, and OB is the 

time through BD after fall from E, NB will be the time through 

BC after fall from the same height E. From this it follows that 

OB plus BN is the time through EB and BC; and since double 

BA is the time through AB and BC, it remains to be shown 

that OB plus BN is more than double BA. But since OB is the 

mean proportional between EB and BA, the ratio of EB to BA 

is the square of the ratio of OB to BA; and since EB is to BA 

as OB is to BN, the ratio of OB to BN will also be the square 

of the ratio of OB to BA. Now, the ratio of OB to BN is com- 

pounded from the ratios of OB to BA and of AB to BN ; therefore 

the ratio of AB to BN is the same as the ratio of OB to BA. 

Hence BO, BA, and BN are three [magnitudes] in continued 

proportion, and OB plus BN is greater than double BA; from 

which the proposition is evident. 

PROPOSITION XXX. THEOREM XIX 

If a vertical is let fall from some point of a horizontal line, 

and from another point in the same horizontal a plane is 

drawn that meets the vertical, along which [plane] a 

moveable will descend in the shortest time [from that point] 

to the vertical, that plane will be such that it cuts off on 
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the vertical a distance equal to that from the other point 

in the horizontal to the origin of the vertical. 

Drop the vertical BD from a point B in the horizontal line 

AC, in which take any point C; and in the vertical, take a 

distance BE equal to the distance BC, drawing CE. I say that 

of all inclined planes from point C to the vertical [BD], CE 

is that along which descent will be made to the vertical [BD] 

in the shortest time of all. For take planes CF and CG, above 

and below it [CE], and draw IK tangent at C to the radius of 

the circle BC, which [tangent] will be parallel to the vertical. 

Draw CF parallel to EK, which extends to the tangent and 

which cuts the circumference of the circle at L. It is evident 

that the time of fall through LE is equal to the time of fall 

through CE, but the time through KE is longer than that 

through LE; therefore the time through KE is longer than that 

through CE. But the time through KE equals the time through 

CF, as these are equal and are drawn at the same inclination ; 

likewise, since CG and EI are equal and at the same inclination, 

the times of movements through them will be equal. But the 

time through HE, shorter than IE, is briefer than the time 

through IE; whence also the time through CE (which is equal 

to the time through HE) is briefer than the time through IE. 

Hence the proposition holds. 

PROPOSITION XXXI. THEOREM XX 

If to a straight line inclined in any way above the horizontal 

there is drawn to the incline, from any given point in the 

horizontal, that plane on which descent [from any point 

on the incline] is made in the shortest time of all, this 

[plane] will bisect the angle between two perpendiculars 

from the given point, one [perpendicular] to the horizontal, 

and the other to the inclined {line}. 

Let CD be a line inclined in any way above the horizontal 

AB; and given in the horizontal some point, A, draw from this 

AC, perpendicular to AB, and AE, perpendicular to CD; 

bisect the angle CAE by line FA. I say that of all inclined 

planes from any point on line CD to point A, that incline which 

is extended through FA is the one in which the time of descent 

will be briefest of all. Draw FG parallel to AE; the alternate 

angles GFA and FAE will be equal, and also EAF is equal 
to FAG; therefore the sides FG and GA of the triangle [FGA] 
will be equal. Now, if with center G and radius GA a circle is 
described, it will pass through F and will be tangent to the 
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horizontal and to the inclined [line] at points A and F [respec- 
tively], whence angle GFC is a right angle, since GF is parallel 

to AE. From this it follows that all lines from point A to the 

inclined [line] extend beyond the circumference, and con- 
sequently, movements through these are passed over in longer 

times than through FA; which was to be demonstrated. 

LEMMA 

If two circles are internally tangent, and the inner { circle] 

is tangent to some straight line that cuts the outer [circle]; 

and if three lines are drawn from the point of tangency of 

the circles to three points of the tangent line, [one] to its 

point of tangency with the inner circle, and [the others] 

to its intersections with the outer [circle]; these [lines] 

will contain equal angles at their contact with the circles. 

Let two circles be tangent internally at point A, the center 

of the smaller circle being B, and that of the larger, C; and 

let the inner circle be tangent at point H to some straight line 

FG which cuts the larger [circle] at points F and G. Draw 

lines AF, AH, and AG; I say that angles FAH and GAH 

contained by these [lines] are equal. Extend AH to the circum- 

ference at 1, and from the centers draw BH and Cl. Draw BC 

through the centers, which extended will fall on the point of 

tangency A and on the circumferences of the circles atO andN. 

Since angles \CN and HBO are equal, each being double the 

angle IAN, lines BH and CI will be parallel. And since BH, 
from center to point of tangency, is perpendicular to FG, CI 

will also be perpendicular to the same [FG]; and arc FI is 

equal to arc 1G, and consequently angle FAI [is equal] to 

angle IAG; which was to be shown. 

PROPOSITION XXXII. THEOREM XXI 

If two points are taken in the horizontal, and from one 

of them some line is inclined toward the other, from which 

[in turn] a line is drawn that cuts off on it a part equal 

to the distance between the two points on the horizontal, 

then fall is finished more swiftly through this drawn [line] 

than through any other line extending from the same point 

to the same incline. Furthermore, in other lines made at 

equal angles on either side of this line, falls take place 

in equal times. 

Let A and B be two points on the horizontal, and from B 

let the straight line BC be inclined, in which BD is taken from 
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B, equal to BA; and A and D are joined. I say that fall is made 

more swiftly through AD than through any [other | line extending 

from A to the incline BC. 
For from points A and D draw AE and DE, intersecting at 

E and perpendicular [respectively] to BA and BD. Since in the 

isosceles triangle ABD, angles BAD and BDA are equal, their 

complements, DAE and EDA, will be equal; hence if a circle 

is described with center E and radius EA, it will pass through 
D and will be tangent to lines BA and BD at points A and D. 

And since A is an end of the vertical AE, fall will be finished 

more swiftly through AD than through any other [line] from 

the end A to the line BC extended beyond the circumference 

of the circle; which was to be shown first. 

Now if the vertical AE is extended, and some center F is 

taken for a circle AGC described with radius FA and cutting 

the tangent line at points G and C, then when AG and AC are 

drawn, they will be divided into equal angles by the median 

AD, as previously demonstrated. Hence the times of motions 

along these [lines] will be equal, since they are bounded by 

the high point A and the circumference of the circle AGC. 

PROPOSITION XXXII]. PROBLEM XII 

Given a vertical and a plane inclined to it, of the same 

height and having the same upper terminus; to find a 

point, vertically above the common point, from which a 

moveable, falling and then deflected along the inclined 

plane, consumes the same time in this plane as [in fall] 

from rest through the [given] vertical. 

Let AB be the vertical and AC the inclined plane having 

the same height; it is required to find in the vertical, BA, 

extended in the direction of A, a point from which the descending 

moveable traverses the space AC in the same time as it traverses 
the given vertical AB from rest at A. 

Draw DCE at right angles to AC, and CD equal to AB, 

and join A and D; angle ADC will be greater than angle CAD, 

since CA is greater than AB or CD. Make angle DAE equal 

to angle ADE, and extend EF perpendicular to AE until it 

meets the inclined plane at F. Make both AI and AG equal to 

CF, and draw GH through G parallel to the horizontal. I say 

that H is the point sought. Let AB be assumed to be the time 

of fall through the vertical AB, and the time through AC from 

rest at A will be AC; and since in the right triangle AEF, EC 
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is drawn from the right angle E perpendicular to the base AF, 

AE will be the mean proportional between FA and AC, while 
CE is the mean proportional between AC and CF (that is, 

between CA and AI). And since AC is the time from A through 

AC, the time through all AF will be AE, and EC [will be] 

the time through AI. But since in the isosceles triangle AED, 

the side AE is equal to the side ED, the time through AF will 

be ED, and CE is the time through AI. Hence CD (that is, AB) 

will be the time through IF from rest at A, which is the same 

as to say that AB is the time through AC from G or from H; 
which was to be done. 

PROPOSITION XXXIV. PROBLEM XIII 

Given an inclined plane and a vertical, both with the same 

high point; to find in the vertical extended upward a 

higher point from which a moveable that descends and is 

then deflected into the inclined plane traverses both in 

the same time as the inclined plane alone [is traversed] 

from rest at its high point. 

Let AB and AC be the inclined plane and the vertical whose 

[common] terminus is A; it is required to find a higher point 

in the vertical extended beyond A, from which the moveable 

falling, and being deflected through the plane AB, traverses 

that part of the vertical and [all] the plane AB in the same 

time as AB alone from rest at A. 

Let BC be a horizontal line, and draw AN equal to AC; 

and as AB is to BN, make AL to LC. Draw AI equal to AL, 

and let CE be the third proportional to AC and BI, marked 

in the vertical AC extended. I say that CE is the distance 

sought, such that the vertical being extended above A, and a 

part AX [being] taken [in it] equal to CE, the moveable from 

X would traverse both distances XA and AB [combined] in 

equal time with AB alone from A. Draw the horizontal XR 

parallel to BC, meeting BA extended at R; then, AB being 

extended to D, draw ED parallel to CB, and describe a semi- 

circle on AD. From B, perpendicular to DA, draw BF to the 

circumference. It is evident that FB is the mean proportional 

between AB and BD, and FA [is that] between DA and AB. 

Draw BS equal to BI, and FH equal to FB. Since AC is to 
CE as AB is to BD, and since BF is the mean proportional 

between AB and BD (as is BI between AC and CE), FB will 

be to BS as BA is to AC. And since BA is to AC (or to AN) 
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as FB is to BS, then by conversion of ratios BF will be to FS 

as AB is to BN; that is, as AL is to LC. Hence rectangle 

FB-—CL is equal to rectangle AL—SF. But rectangle AL-SF 

is the excess of rectangle AL—FB (or AI-BF) over rectangle 

AI-BS (or AI-IB), while rectangle FB—LC is the excess of 

rectangle AC-BF over rectangle AL-BF. And rectangle 

AC-BF will equal rectangle AB-BI, for as BA is to AC, so 

FB is to BI. Therefore the excess of rectangle AB—BI over 

rectangle AI-BF (or AI-FH) will equal the excess of rectangle 

AI-FH over rectangle AI-IB. Hence twice rectangle Al-FH 

equals the two [rectangles| AB—BI and AI-IB;; that is, twice 

AI-—IB plus the square on BI. Make the square on Al common 

to both, and twice rectangle AI—-IB plus the squares on AI 

and 1B (that is, the square of AB itself) will be equal to twice 

the rectangle AI-FH plus the square on AI. Again, make the 

square on BF common to both, and the squares of AB and BF 

(or the square of AF) will equal twice the rectangle AI-FH 

plus the squares on AJ and FB; that is, [the squares on] AI 

and FH. But the square of AF is equal to twice the rectangle 

AH-HF plus the squares on AH and HF, whence twice the 

rectangle AI—FH plus the squares on AI and FH will be equal 

to twice the rectangle AH—HF plus the squares on AH and 

HF. Taking away the common square on HF, twice the rectangle 

AI-FH plus the square on AI will equal twice the rectangle 

AH-HF plus the square on AH. And since FH is a common 

side to all the rectangles, line AH will equal line AI; for if it 

were greater or less, the [double] rectangle FH—HA plus the 

square on HA would be greater or less than the [double 

rectangle] FH-IA plus the square on IA, against that which 

has been demonstrated. 

Now assuming the time of fall through AB to be as AB, the 

time through AC will be as AC; and 1B, the mean proportional 

between AC and CE, will be the time through CE, or through 

XA from rest at X. And since AF is the mean proportional 

between DA and AB (or RB and BA), and BF is the mean 
proportional between AB and BD (that is, RA and AB), and 
[BF] is equal to FH, then, from the above, the excess AH will 
be the time through AB from rest at R, or after fall from X; 
while the time through AB from rest at A is AB. Therefore the 
time through XA is IB, but through AB after RA or XA it 
is Al; whence the time through XA and AB will be as AB; 
that is, the same as through AB alone from rest at A; which 
was proposed. 
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PROPOSITION XXXV. PROBLEM XIV 

Given a line at an angle [inflexa] to a given vertical, to 

find a part therein through which alone, from rest, motion 

is made in the same time as through it and the vertical 

together. 

Let AB be the vertical, and BC be at an angle with it; it is 

required to find a part in BC through which motion is made 

from rest in the same time as through that part together with 

vertical AB. Draw the horizontal AD, which the incline CB 

extended meets at E, and draw BF equal to BA; with center E 

and radius EF, describe the circle FIG, extending FE to meet 

the circumference at G; make BH to HF as GB is to BF. 

Draw HI tangent to the circle at 1; then from B, erect BK 

perpendicular to FC, meeting line EIL at L; finally, draw 

LM perpendicular to EL, meeting BC at M. I say that motion 

in line BM from rest at B will be made in the same time as 

[motion] from rest at A through both AB and BM. Take EN 

equal to EL; and since BH is to HF as GB is to BF, then by 

permutation, as GB is to BH, BF is to FH; and by division, 

GH is to HB as BH is to HF. Hence rectangle GH—HF equals 

the square on HB; but the same rectangle also equals the 

square on HI; therefore BH is equal to HI. And since in the 

quadrilateral 1LBH the sides HB and HI are equal, and angles 

B and | are right angles, side BL is also equal to [side] LI. 

Then EI equals EF, whence all LE (or NE) is equal to LB 
plus EF. Take away the common [part] EF, and the remainder 

FN will be equal to LB. But FB was assumed equal to BA, 

whence LB is equal to AB plus BN. Further, if it is assumed 

that the time through AB is AB itself, the time through EB 

will be equal to EB; but the time through all EM will be EN, 

that is, the mean proportional between ME and EB, whence 

the time of fall through the remainder BM after EB (or AB) 

will be BN. Now it was assumed that the time through AB 

is AB; therefore the time of fall through both AB and BM is 

AB plus BN. But since the time through EB from rest at E 

is EB, the time through BM from rest at B will be the mean 

proportional between BE and EM, which is BL. Therefore the 

time through both AB and BM from rest at A is AB plus BN, 

while the time through BM alone from rest at B is BL. But it 

was shown that BL is equal to AB plus BN; whence the 
proposition holds. 

Another, more direct, proof: Let BC be the inclined plane 

and BA the vertical. Draw a perpendicular through B to EC, 
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and on its extension mark BH equal to the excess of BE over 

BA. Draw angle BHE equal to angle HEL, and let EL extended 

meet BK at L; from L, erect a perpendicular LM to EL, 

meeting BC at M. I say that BM is the distance sought in the 

plane BC. For since MLE is a right angle, BL is the mean 

proportional between MB and BE, as LE is between ME and 

EB. Make EN equal to EL; the three lines NE, EL, and LH 

will be equal, and HB will be the excess of NE over BL. But 

the same HB is also the excess of NE over NB plus BA; 

therefore NB plus BA is equal to BL. Now if EB is assumed 

to be the time through EB, the time through BM from rest at 

B will be BL, and BN will be the time of the same after EB 

(or AB); and AB will be the time through AB. Therefore the 

time through AB plus BM is equal to AB plus BN, which is 

equal to the time through BM alone from rest at B; which was 

the intent. 

[FIRST] LEMMA 

Let DC be perpendicular to the diameter BA, and from 

end B draw BED in any direction, and connect F and B. 

I say that FB is the mean proportional between DB and 

BE. Connect E and F, and through B draw the tangent 

BG, which will be parallel to CD, whence angle DBG 

will be equal to angle FDB. But GBD is also equal to 

angle EFB in the alternate part; therefore the triangles 

FBD and FEB are similar; and as BD is to BF, FB is 

to BE. 

[SECOND] LEMMA 

Let line AC be greater than DF, and let AB have to BC 

a greater ratio than DE has to EF ; I say that AB is greater 

than DE. For since AB has to BC a greater ratio than 

DE has to EF, whatever ratio AB has to BC, DE will 

have [that ratio] to some smaller [magnitude] than EF. 

Let it have this to EG. Since AB is to BC as DE is to EG, 

then by composition and conversion of ratios, as CA is 

to AB, GD will be to DE; but CA is greater than GD; 

hence BA is greater than DE. 

[THIRD] LEMMA 

Let ACIB be one quadrant of a circle, and from B draw 

BE parallel to AC. From some center taken in this 

[BE], describe the circle BOES, tangent to AB at B and 
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cutting the arc of the quadrant { ACIB] at I. Join C and B, 

and extend CI to §; I say that Cl is always less than line 

CO. Draw AI, tangent to circle BOE. Now if DI is drawn, 

it will be equal to DB, since indeed DB is tangent to the 

quadrant, and DI is also tangent to it and perpendicular 

to the diameter AI, for AI is also tangent to circle BOE 

at I. And since angle AIC is greater than angle ABC, 

because it stands on a longer arc, angle SIN will also be 

greater than ABC; whence arc IES is greater than arc 

BO. And line CS, closer to the center, is greater than CB, 

so that CO is greater than Cl, for SC is to CB as OC is 
to Cl. 

The same would apply even more if, as in the second 

diagram, BIC were less than a quadrant. For the vertical 

DB will cut the circle CIB, whence DI also [would cut it], 

being equal to DB, and angle DIA would be obtuse, and 

AIN would cut the circumference BIE. And since angle 

ABC is less than angle AIC, which equals SIN, this 

[angle] is still less than [that which] S1 would form with 

the tangent at 1; hence the arc SEI is much longer than 

the arc BO; therefore, etc. ; which was to be demonstrated. 

PROPOSITION XXXVI. THEOREM XXII 

From the lowest point of a vertical circle, let an inclined 

plane be raised, subtending an arc no greater than one 

quadrant, from the ends of which two other planes are 

inclined, meeting at any point on the arc; descent in both 

these planes will be finished in a shorter time than [descent] 

in the first inclined plane alone, or in only the lower of 

these planes. 
Let circumference CBD be no more than one quadrant of 

the vertical circle with its lowest point at C, to which is raised 

the plane CD; and let two planes be deflected from the ends 

D and C to some point B taken on the circumference; I say 

that the time of descent through both the planes DB and BC 
is briefer than the time of descent through DC alone, or through 

BC alone from rest at B. Draw the horizontal MDA through 

D, meeting CB extended at A ; make DN and MC perpendicular 

to MD, and BN [perpendicular] to BD. Around the right 

triangle DBN describe the semicircle DFBN, cutting DC at 

F; DO is the mean proportional of CD and DF, while AV 

is the same of CA and AB. Let PS be the time of running 

through all DC, or BC (it is evident that these times of traversal 
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are equal) and let the time SP have to the time PR the ratio 

that CD has to DO; PR will be the time in which a moveable 

from D runs through DF, and RS [will be] that in which the 

remainder FC [is passed]. Since PS is also the time in which 

a moveable from B runs through BC, if SP is made to PT as 

BC is to CD, then PT will be the time of fall from A to C, 

since DC is the mean proportional between AC and CB, as 

shown above. Finally, make TP to PG as CA is to AV; PG 

will be the time in which a moveable from A comes to B, and 

GT the time of the remaining motion BC after motion from 

A toB. Now, since DN (the diameter of circle DFN) is vertical, 

lines DF and DB are run through in equal times, so if it is 

proved that the moveable goes more swiftly through BC after 

fall DB than [through] FC after running through DF, we 

have our goal. 

But the moveable coming from D through DB will traverse 

BC with the same swiftness of time as if it came from A through 

AB, since in either fall (DB or AB) it would receive equal 

momenta of speed; therefore it will be demonstrated that it 

runs through BC after AB in shorter time than [through] FC 

after DF. But it has further been made clear that GT is the 

time in which BC is run through after AB, while RS is the 

time [through] FC after DF; and thus it is to be shown that 

RS is greater than GT. This is shown thus: since CD is to 

DO as SP is to PR, then by conversion of ratios and inverting, 

as RS is to SP, OC is to CD; but as SP is to PT, so DC is to 

CA ; and since CA is to AV as TP is to PG, then by conversion 

of ratios, AC will be to CV as PT is to TG. Therefore, by 

equidistance of ratios, as RS is to GT, so OC is to CV; but 

OC is greater than CV, as is presently to be shown. Therefore 

time RS is greater than time GT, which was to be demonstrated. 

But since CF is greater than CB and FD is less than BA, 

the ratio of CD to DF is greater than the ratio of CA to AB; 

but as CD is to DF, so the square on CO is to the square on 

OF, because CD, DO, and DF are [continued] proportionals. 

And as CA is to AB, so the square on CV is to the square on 

VB; therefore CO has to OF a greater ratio than CV has to 

VB. Hence, by the foregoing lemmas, CO is greater than CV. 

Moreover it is evident that the time through DC is to the time 

through DB-BC as D-O-C is to DO plus CV. 

SCHOLIUM 

From the things demonstrated, it appears that one can deduce 

that the swiftest movement of all from one terminus to the 
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other is not through the shortest line of all, which is the straight 
line [AC], but through the circular arc.*® For in the quadrant 
BAEC, of which side BC is the vertical, arc AC [may be] 

divided into any equal parts AD, DE, EF, FG, and GC, and 

straight lines [may be] drawn from C to points A, D, E, F, and 

G, as well as straight lines AD, DE, EF, FG, and GC; and 

it is manifest that movement through the two [lines] AD—DC 

is finished more quickly than through AC alone, or [through] 

DC from rest at D. But from rest at A, DC is finished more 

quickly than the two AD-DC. Yet it seems true that from rest 

at A, descent is finished more quickly through the two DE-EC 

than through CD only; therefore descent through the three 

AD-DE-EC is finished more quickly than through the two 

AD-DC. It is likewise true that with prior descent through 

AD-DE, movement is made more quickly through the two 

EF-FC than through EC alone ; hence motion is swifter through 

the four AD-DE-EF-FC than through the three AD-DE- 

EC. And ultimately, after prior descent through A-D-E-F, 

movement is finished more quickly through the two FG—GC 

than through FC alone. Therefore descent is made in still 

shorter time through the five AD-DE-EF-FG-GC than 

through the four AD-DE-EF-FC. Hence motion between 

two selected points, A and C, is finished the more quickly, the 

more closely we approach the circumference through inscribed 

polygons. 
What has been explained for the quadrant happens also in 

arcs less than the quadrant; and the reasoning is the same. 

PROPOSITION XXXVII. PROBLEM XV 

Given a vertical and an inclined plane of the same height, 

to find a part in the incline that is equal [in length] to the 

vertical and is traversed in the same time as this vertical 

[always starting from rest at the intersection]. 

Let AB be the vertical and AC the inclined plane; it is 

required to find a part in AC, equal to the vertical AB, which 
is traversed from rest at A in the same time as that in which 

the vertical is traversed. 
Take AD equal to AB, and bisect the remainder DC at I; 

as AC is to CI, make CI to some other [line] AE, put [in turn] 

equal to DG. It is evident that EG equals AD and AB. I say, 

moreover, that EG is that [part] which is traversed by a 

48. All that could properly be deduced was that the shortest descent 
is along some kind of curve. The curve is in fact only approximately circular, 
and was later shown to be cycloidal; cf. note 21, above. 
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moveable coming from rest at A in a time equal to the time in 

which the moveable falls through AB. For since Cl is to AE, 

or ID to DG, as AC is to CI, then by inversion of ratios, as 

CA is to Al, so DI is to IG; and since as all CA is to all AI, 

so the removed part Cl is to the removed part IG, the remainder 

IA will be to the remainder AG as all CA is to all Al. Thus AI 
is the mean proportional between CA and AG, as is CI between 

CA and AE. Thus if we put the time through AB to be as AB, 

the time through AC will be AC, and CI (or ID) will be the 

time through AE. And since AI is the mean proportional 

between CA and AG, and CA is the time through all AC, the 

time through AG will be AI, and the remainder IC [will be 

the time] through the remainder GC. But DI was the time 

through AE, so DI and IC are the times through both AE and 

CG. Therefore the remainder DA will be the time through 

EG, equal to the time through AB; which was to be done. 

COROLLARY 

From this it is evident that the required distance lies 

between those upper and lower parts [of the inclined plane | 

which are traversed in equal times. 

PROPOSITION XXXVIII. PROBLEM XVI 

Given two horizontal planes cut by a vertical; to find a 

point on high in the vertical from which falling moveables, 

deflected into horizontal planes, will, in times equal to 

their times of [vertical] fall, traverse distances in these 

horizontals (that is, in both upper and lower) that have 

to one another any given ratio of lesser to greater.*° 
Let the horizontal planes CD and BE be cut by the vertical 

ACB, and let the given ratio of lesser to greater be N to FG. 

It is required to find a high point in the vertical AB from which 

a moveable, falling and deflected into plane AC, will, in a 

time equal to its time of fall, traverse a distance which, compared 

with the distance traversed by a second moveable coming 

from the same high point [and moving] through plane BE 

[for] a time equal to the time of its fall, shall have the same 
ratio as the given N to FG. 

Make GH equal to N, and make BC to CL as FH is to HG; 

I say that L is the required high point. For assume that CM 

is double CL and draw LM meeting plane BE at O; BO will 

49. Cf. Fourth Day, pp. 283-85, below. 
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be double BL. And since BC is to CL as FH is to HG, then 
by composition and conversion, as HG (that is, N) is to GF, 

CL will be to LB; that is, CM [will be] to BO. But since CM 

is double LC, it follows that the distance CM is that which 

will be traversed in plane CD by a moveable coming from L 

after fall LC; and for the same reason, BO is that which is 

traversed after fall LB, ina time equal to the time of fall through 

LB, since BO is double BL; whence the proposition is evident. 

Sagr. It appears to me that we may grant that our Academi- 

cian was not boasting when, at the beginning of this treatise, 

he credited himself with bringing to us a new science con- 

cerning a most ancient subject. When I see with what ease 

and clarity, from a single simple postulate, he deduces the 

demonstrations of so many propositions, I marvel not a 

little that this kind of material was left untouched by 

Archimedes, Apollonius, Euclid, and so many other illustrious 

mathematicians and philosophers; especially seeing that many 
and thick volumes have been written on motion. 

Saly. There is a little fragment of Euclid concerning 

motion,°° but in it one finds no indication that he went on 

to investigate the ratio of acceleration, and of its diversities 

along different slopes. Thus one may truly say that only now 

has the door been opened to a new contemplation, full of 

admirable conclusions, infinite in number, which in time 

to come will be able to put other minds to work. 

Sagr. Truly, I believe that just as those few properties of 

the circle (I mean this by way of example) demonstrated by 

Euclid in the third book of his Elements are the gateway 

to innumerable others, more recondite, so these [of motion] 

which have been produced and demonstrated in this brief 

treatise, when they have passed into the hands of others of 

a speculative turn of mind, will become the path to many 
others, still more marvelous. This is likely to be the case 

because of the preéminence of this subject above all the rest 

of physics. 
This has been a long and laborious day, in which I have 

enjoyed the bare propositions more than their demonstrations, 

many of which I believe are such that it would take me more 

than an hour to understand a single one of them. That study 

50. The fragment, of very doubtful authenticity, was known in the Middle 
Ages and was printed with Euclid’s works in many editions beginning in 1537. 
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I reserve to carry out in quiet, if you will leave the book in 

my hands after we have seen this part that remains, which 

concerns the motion of projectiles. This will be done 

tomorrow, if that suits you. 

Salv. I shall not fail to be with you. 

The Third Day Ends 



Fourth Day 

Salv. Simplicio is just arriving now, so let us begin on 

motion without delay. Here is our Author’s text: 

On the Motion of Projectiles 

We have considered properties existing in equable motion, 

and those in naturally accelerated motion over inclined planes 

of whatever slope. In the studies on which I now enter, I shall 

try to present certain leading essentials, and to establish them 

by firm demonstrations, bearing on a moveable when its motion 

is compounded from two movements ; that is, when it is moved 

equably and is also naturally accelerated. Of this kind appear 

to be those which we speak of as projections, the origin of 

which I lay down as follows. 

I ngentally conceive of some moveable projected on a hori- 

zontal plane, all impediments being put aside. Now it is evident 

from what has been said elsewhere at greater length that 

equable motion on this plane would be perpetual if the plane 

were of infinite extent;' but if we assume it to be ended, and 

[situated] on high, the moveable (which I conceive of as being 

endowed with heaviness), driven to the end of this plane and 

going on further, adds on to its previous equable and indelible 

motion that downward tendency which it has from its own 

heaviness. Thus there emerges a certain motion, compounded 

ward [mation], which I call “‘projection.” We shall demonstrate 

some of its properties [accidentia], of which the first is this: 

PROPOSITION I. THEOREM I 

When a projectile is carried in motion compounded from 

equable horizontal and from naturally accelerated down- 

ward [motions], it describes a Gemiparabolicyjine in its 

movement. 

Sagr. As a favor to me, Salviati, and I believe also to 

Simplicio, it is necessary to pause here for a moment. I did 

not go so deeply into geometry as to make a study of 

1. See pp. 243-45. 
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Apollonius,” beyond my knowing that he deals with these 
parabolas and other conic sections. Without my knowing 

about these and their properties, I do not believe that the 

demonstrations of further propositions pertaining to them 

can be understood. And since already in this very first 

proposition proposed to us by the Author, it must be 

demonstrated that the line described by a projectile is para- 

bolic, then even if we need not deal with lines other than 

those, I suppose it is absolutely necessary to have a complete 

understanding, if not of all the properties of such figures 

demonstrated by Apollonius, at least of those that are required 

for the present science. 
Salv. You are too humble, wishing thus to make something 

new of things [cognizioni] that you assumed not long ago 

as well known. I refer to the matter of resistances, for when 

we there needed knowledge of a certain proposition of 

Apollonius, you made no difficulty concerning it.* 

Sagr. | may have happened to know that one, or may have 

assumed it for the moment because it was required of me 

throughout that treatment. But here, where I suppose that 

all the demonstrations I am about to hear concern such 

lines, there is no point in my gulping them down, as people 

say, throwing away time and effort. 

Simp. And for my part, I believe that although Sagredo 

is well enough supplied for his needs, these very first terms 

already begin to strike me as novel. For although our 

philosophers have treated this matter of projectile motion, 

I don’t recall that they felt themselves obliged to define the 

lines described thereby, other than in very general terms— 

that these are curved lines, except for things thrown vertically 
upward. And unless that little that I have learned of geometry 

from Euclid, after our other discussions a long time ago, 

will be sufficient to render me capable of what is required 

for understanding the demonstrations to come, I shall have 

to content myself with merely believi ropositions 
without comprehen 

Salv. But I want you to know them through the Author 

of the treatise himself. Now, when he allowed me to see this 

work of his, neither had I at that time mastered the books 

of Apollonius; but he took the trouble to demonstrate to me 

2. Apollonius of Perga (262—190 B.c.) was the author of the most complete 
ancient treatise on conic sections. 

3. See Second Day, Prop. [XII] (p. 177) 
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two principal properties of the parabola without [assuming] 

any previous knowledge [on my part]. Those are all we will 

need in the present treatise. They are indeed also proved by 

Apollonius, after many preliminaries that it would take a 

long time to see. My wish is that we much shorten the 

journey, deducing the first [proposition] immediately from 

the pure and simple generation of the parabola, from which in 

turn immediately [follows] the demonstration of the second. 

Taking up the first, then, imagine a right cone whose base 

is the circle IBKC and whose vertex is the point L. When 

cut by a plane parallel to the side LK, this yields the section 

BAC, called a parabola, whose base cuts at right angles the 

diameter /K of circle IBKC. The axis AD of the parabola is 
parallel to the side LK. Taking any point F in line BFA, 

draw the straight line FE parallel to BD. Now I say that: 

[FIRST LEMMA] 

The square of BD has to the square of FE the same ratio 

that the axis DA has to the part AE. 

Suppose a plane parallel to the circle JBKC and passing 

through point £; this makes a circular section in the cone, 

of which the diameter will be the line GEH. Since BD is 

perpendicular to the diameter /K of circle BK, the square 

of BD will be equal to the rectangle of sides JD and DK. 
Likewise in the upper circle, assumed to pass through points 

G, F, and H, the square of line FE is equal to the rectangle 

of sides GE-EH. Therefore the square of BD has to the 

square of FE the same ratio that rectangle /D—DK has to 

rectangle GE—EH. And since line ED is parallel to HK, EH 

will be equal to DK [these being] also parallel; whence 

rectangle D-DK will have to rectangle GE-EH the same 

ratio that JD has to GE, that is, that which DA has to AE. 

Hence rectangle /D-DK has to rectangle GE—EH (that is, 

the square BD has to the square FE) the same ratio that the 

axis DA has to the part AE; which was to be proved. 

The other proposition necessary to the present treatise we 

shall make manifest thus. 

[SECOND LEMMA] 

Draw a parabola with its axis CA extended to D, and 

take any point B [on the parabola], drawing through 

this the line BC parallel to the base of this parabola. 

Take DA equal to the part CA of the axis, and draw a 

7 ef | 
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straight line from D to B. I say that line DB does not 

fall within the parabola, but touches it on the outside 

only, at point B. 
For if possible, let it [DB] fall within and cut [the parabola] 

above [B], or below when extended. Take in it [extended] 

some point G, through which draw the line FGE. Since the 

square of FE is greater than the square of GE, the square of 
FE will have a greater ratio to the square of BC than the 

square of GE has to [that of] BC. And since by what preceded, 

the square of FE is to the square of BC as line EA is to AC, 

then EA has a greater ratio to AC than the square of GE 

has to the square of BC (that is, than the square of ED has 

to the square of DC), seeing that in triangle DGE, ED is to 

DC as GE is to the parallel BC. But line EA has to AC (that 

is, to AD) the same ratio that four rectangles EA—AD have 

to four squares on AD—or to the square of CD, which is 

{\\ equal to four squares on AD. Then four rectangles EA—AD 

_j would have a greater ratio to the square of CD than the 

Uy #0; square of ED has to the square of DC; and four rectangles 

2iz 

EA-AD would be greater than the square of ED. But this 

is false; these four [rectangles] are less, inasmuch as parts 

EA and AD of line ED are not equal. Hence line DB touches 

the parabola at B and does not cut it; which was to be 

demonstrated. 

Simp. You proceed too grandly in your demonstrations; 

it seems to me that you always assume that all Euclid’s 
propositions are as familiar and ready at hand for me as his 

very first axioms. That is not the case. You have just now 

tossed it at me, over your shoulder, that four rectangles 

EA-—AD are less than the square of DE because the parts 

EA and AD of line ED are unequal. This does not satisfy 

me, but leaves me up in the air. 

Salv. Well, all mathematicians worthy of the name take 

it for granted that the reader has ready at hand at least the 

Elements of Euclid. Here, to supply your need, it will suffice 

to remind you of a proposition in the second [book],* where 

it is proved that when a line is cut into equal and unequal 

parts, the rectangle of unequal parts is less than the rectangle 

of equal parts—that is, [less] than the square of the halff-line] 

—by as much as the square of the line comprised between 

the points of section. Hence it is manifest that the square of 

4. Euclid, Elements I.5 



Galileo, Opere, VIII (272—273) 221 

the whole [line], which contains four squares of the half]-line], 

is greater than four rectangles of the unequal parts. 

Now, we must keep in mind these two propositions just 

demonstrated, taken from the elements of conics, in order to 

understand the things to follow in the present treatise; for 

the Author makes use of these, and no more. So let us take 

up his text again, and see how he demonstrates his first 

proposition, in which his purpose is to prove to us that: 

[THEOREM I, restated] 

The line described by a heavy moveable, when it descends 

with a motion compounded from equable horizontal 

and natural falling [motion], is a semiparabola.° 

Imagine a horizontal line or plane AB situated on high, 

upon which the moveable is carried from A to B in equable 

motion, but at B lacks support from the plane, whereupon 

there supervenes in the same moveable, from its own heaviness, 

a natural motion downward along the vertical BN. Beyond the 

plane AB imagine the line BE, lying straight on, as if it were 

the flow or measure of time, on which there are noted any 

equal parts of time BC, CD, DE; and from points B, C, D, 

and E imagine lines drawn parallel to the vertical BN. In the 

first of these, take some part CI; in the next, its quadruple 

DF ; then its nonuple EH, and so on for the rest according to 

the rule of squares of CB, DB, and EB; or let us say, in the 

duplicate ratio of those lines. 

If now to the moveable in equable movement beyond B 

toward C, we imagine to be added a motion of vertical descent 

according to the quantity CI, the moveable will be found after 

time BC to be situated at the point \. Proceeding onwards, 
after time DB (that is, double BC), the distance of descent 

will be quadruple the first distance, CI; for it was demonstrated 

in the earlier® treatise that the spaces run through by heavy 

things in naturally accelerated motion are in the squared ratio 

of the times. And likewise the next space, EH, run through 

in time BE, will be as nine times [CI]; so that it manifestly 

5. This was discovered by Galileo late in 1608 in connection with a very 
precise experimental test of his belief that horizontal motion would remain 
uniform in the absence of resistance. The test required observations like 
those described in the ensuing paragraph. Cf. note 30 to First Day. 

6. The text reads primo, but the proposition meant is Theorem II in the 

second Latin treatise of the Third Day. 
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appears that spaces EH, DF, and Cl are to one another as 

the squares of lines EB, DB, and CB. Now, from points I, F, 

and H, draw straight lines 10, FG, and HL parallel to EB; 

line by line, HL, FG, and 10 will be equal to EB, DB, and 

CB respectively, and BO, BG, and BL will be equal to CI, DF, 

and EH. And the square of HL will be to the square of FG 

as line LB is to BG, while the square of FG [will be] to the 

square of 1O as GB is to BO; therefore points 1, F, and H lie 

in one and the same parabolic line. 

And it is similarly demonstrated, assuming any equal parts 

of time, of any size whatever, that the places of moveables 

carried in like compound motion will be found at those times 

in the same parabolic line. Therefore the proposition is evident. 

Salv. This conclusion is deduced from the converse of the 

first of the two lemmas given above. For if the parabola is 

described through points B and H, for example, and if either 

of the two [points], F or J, were not in the parabolic line 

described, then it would lie either inside or outside, and 

consequently line FG would be either less or greater than 

that which would go to terminate in the parabolic line. 

Whence the ratio that line LB has to BG, the square of HL 

would have, not to the square of FG, but to [the square 

of] some other [line] greater or less [than FG]. But it [the 

square of HL] does have [that ratio] to the square of FG. 

Therefore point F is on the parabola; and so on for all the 
others, etc. 

Sagr. It cannot be denied that the reasoning is novel, 

ingenious, and conclusive, being argued ex suppositione; 

that is, by assuming that the transverse mot motlonaedeonte aa: 

equable, and that the natural-downward. {motion}_likewise 

maintains its tenor of always accelerating.according to_the 

squared ratio of the times; also that such motions, or their 

speeds, in mixing together do not alter, disturb, or impede 

one another. In this way, the line of the projectile, continuing 
its motion, will not finally degenerate into some other kind 

[of curve]. But this seems to me impossible; for the axis of 

our parabola is vertical, just as we assume the natural motion 

of heavy bodies to be, and it goes to end at the center of 

the earth. Yet the parabolic line goes ever widening from its 

axis, so that no projectile would ever end at the center [of 

the earth],’ or if it did, as it seems it must, then the path of 

7. In general it would not reach the center, but would take an elliptical 
path around it. In the ensuing discussion, Galileo wishes to distinguish 
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the projectile would become transformed into some other 
line, quite different from the parabolic. 

Simp. To these difficulties I add some more. One is that 

we assume the [initial] plane to be horizontal, which would 

be neither rising nor falling, and to be a straight line—as if 

every part of such a line could be at the same distance from 

the center, which is not true. For as we move away from its 

midpoint towards its extremities, this [line] departs ever 

farther from the center [of the earth], and hence it is always 

rising. One consequence of this is that it is impossible that 

the motion is perpetuated, or even remains equable through 

any distance; rather, it would be always growing weaker. 

Besides, in my opinion it is impossible to remove the im- 

pediment of the medium so that this will not destroy the 

equability of the transverse motion and the rule of acceleration 

for falling heavy things.® All these difficulties make it highly 

improbable that anything demonstrated from such fickle 

assumptions can ever be verified in actual experiments. 

Salv. All the difficulties and objections you advance are so 

well founded that I deem it impossible to remove them. For 

my part, I grant them all, as I believe our Author would 

also concede them. I admit that the conclusions demonstrated 

in the abstract are altered in the concrete, and are so falsified 

that horizontal [motion] is not equable; nor does natural 

acceleration occur [exactly] in the ratio assumed; nor is the 

line of the projectile parabolic, and so on. But on the other 

hand, I ask you not to reject in our Author what other very 

great men have assumed, despite its falsity. The authority of 

Archimedes alone should satisfy everyone; in his book On 

Plane Equilibrium |Mecaniche}, as in the first book of his 
Quadrature of the Parabola, he takes it as a true principle 

that the arm of a balance or steelyard lies in a straight line 

equidistant at all points from the common center of heavy 

things, and that the cords to which [balance-]weights are 

attached hang parallel to one another. These liberties are 

pardoned to him by some for the reason that in using our 

instruments, the distances we employ are so small in com- 

parison with the great distance to the center of our terrestrial 

sharply between purely speculative results and actual phenomena near 

the surface of the earth. 
8. Note that while Sagredo had objected to a theoretical implication of 

Salviati’s assumption, Simplicio rejects that assumption as departing from 
actual conditions realizable in practice. 
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globe that we could treat one minute of a degree at the 

equator as if it were a straight line, and two verticals hanging 

from its extremities as if they were parallel. Indeed, if such 

minutiae had to be taken into account in practical operations, 

we should have to commence by reprehending architects, 

who imagine that with plumb-lines they erect the highest 

towers in parallel lines. 
Here I add that we may say that Archimedes and others 

imagined themselves, in their theorizing, to be situated at 

infinite distance from the center. In that case their said 

assumptions would not be false, and hence their conclusions 

were drawn with absolute proof.’ Then if we wish later to put 

to use, for a finite distance [from the center], these conclusions 

proved by supposing immense remoteness [therefrom], we 

must remove from the demonstrated truth whatever is 

significant in [the fact that] our distance from the center is 

not really infinite, though it is such that it can be called 

immense in comparison with the smallness of the devices 

employed by us. The greatest among these will be the 

shooting of projectiles, and in particular, artillery shots; and 

[even] these, though great, do not exceed four miles, in 

comparison with about that many thousand miles for our 

distance from the center. And these shots coming to end on 

the surface of the terrestrial globe may alter in parabolic 

shape only insensibly, whereas that shape is conceded to be 

enormously transformed in going on to end at the center. 

Next, a more considerable disturbance arises from the 

impediment of the medium; by reason of its multiple varieties, 

this [disturbance] is incapable of being subjected to firm rules, 

understood, and made into science. Considering merely the 

impediment that the air makes to the motions in question 

here, it will be found to disturb them all in an infinitude of 

ways, according to the infinitely many ways that the shapes 

of the moveables vary, and their heaviness, and their speeds. 

As to speed, the greater this is, the greater will be the 

Opposition made to it by the air, which will also impede 
bodies the more, the less heavy they are. Thus the falling 

heavy thing ought to go on accelerating in the squared ratio 

of the duration of its motion; yet, however heavy the move- 

able may be, when it falls through very great heights the 

impediment of the air will take away the power of increasing 

9. Cf. note 8, above; Salviati stresses the validity of an argument inde- 
pendently of the truth of the assumptions behind it. 
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its speed further, and will reduce it niform and equable 
motion. And this EsriniubAe RPI OScuE mere aUtenTaatld 
at lesser heights as the moveable shall be less heavy. 

Also that motion in the horizontal plane, all obstacles 

being removed, ought to be equable and perpetual; but it 
will be altered by the air, and finally stopped; and this again 

happens the more quickly to the extent that the moveable 
is lighter. 

No firm science can be given of such events of heaviness, 

speed, and shape, which are variable in infinitely many ways. 

Hence to deal with such matters scientifically, it is necessary 

to abstract from them. We must find and demonstrate con- 

clusions abstracted from the impediments, in order to make 

use of them in practice under those limitations that experience 

will teach us. And it will be of no little utility that materials 

and their shapes shall be selected which are least subject to 

impediments from the medium, as are things that are very 

heavy, and rounded. Distances and speeds will for the most 

part not be so exorbitant that they cannot be reduced to 
management by good accounting [fara]. Indeed, in projectiles 

that we find practicable, which are those of heavy material 

and spherical shape, and even in [others] of less heavy 

material, and cylindrical shape, as are arrows, launched 

[respectively] by slings or bows, the deviations from exact 

parabolic paths will be quite insensible.'° 

Indeed I shall boldly say that the smallness of devices 

usable by us renders external and accidental impediments 

scarcely noticeable. Among them that of the medium is the 

most considerable, as I can make evident by two experiences. 

I shall consider movements made through air, since it is 

principally of these that we shall be speaking. The air 

exercises its force against them in two ways: one is by im- 

peding less heavy moveables more than [it does] the heaviest 

ones; the other is by opposing a greater speed more than a 

lesser speed in the same body. 

As to the first, experience shows us that two balls of equal 

size, one of which weighs ten or twelve times as much as 

the other (for example, one of lead and the other of oak), 

both descending from a height of 150 or 200 braccia, arrive 

at the earth with very little difference in speed. This assures 
us that the [role of] the air in impeding and retarding both 

10. Circumstances in which even this is not true are discussed later on; 

see p. 279. 
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is small; for if the lead ball, leaving from a height at the 

same moment as the wooden ball, were but little retarded, 

and the other a great deal, then over any great distance the 

lead ball should arrive at the ground leaving the wooden 

ball far behind, being ten times as heavy. But this does not 

happen at all; indeed, its victory will not be by even one 

percent of the entire height; and between a lead ball and 

a stone ball that weighs one-third or one-half as much, the 

difference in time of arrival at the ground will hardly be 

observable. Now the impetus that a lead ball acquires in 

falling from a height of 200 braccia is so great that, continuing 

in equable motion, it would run 400 braccia in as much time 

as it spent in falling, a very considerable speed with respect 

to that which we confer on our projectiles with bows or 

other devices (except for impetus depending on firing). 

Hence we can conclude without much error, by treating as 

absolutely true those propositions that are to be demonstrated 

without taking into account the effect of the medium. 

As to the other point, we must show that the impediment 

received from the air by the same moveable when moved 

with great speed is not very much more than that which the 

air opposes to it in slow motion. The following experiment 

gives firm assurance of this. Suspend two equal lead balls 

from two equal threads four or five braccia long. The threads 
being attached above, remove both balls from the vertical, 

one of them by 80 degrees or more, and the other by no more 

than four or five degrees, and set them free. The former 

descends, and passing the vertical describes very large [total] 

arcs of 160°, 150°, 140°, etc., which gradually diminish. The 

other, swinging freely, passes through small arcs of 10°, 8°, 

6°, etc., these also diminishing bit by bit. I say, first, that 
in the time that the one passes its 180°, 160°, etc., the other 
will pass its 10°, 8°, etc.'' From this it is evident that the 

[overall] speed of the first ball will be 16 or 18 times as great 
as the [overall] speed of the second; and if the greater speed 

were to be impeded by the air more than the lesser, the 

oscillations in arcs of 180°, 160°, etc. should be less frequent 

11. That is, total time of accumulated swings through many of these succes- 
sively diminishing arcs will be the same for the two pendulums, one started 
through 90° and one through 5°. The statement is modified at the end of the 
paragraph. 
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than those in the small arcs of 10°, 8°, 4°, and even 2° or one 

degree. But experiment contradicts this, for if two friends 

shall set themselves to count the oscillations, one counting 

the wide ones and the other the narrow ones, they will see 

that they may count not just tens, but even hundreds, without 

disagreeing by even one; or rather, by one single count.!” 

This observation assures us of both [the above] proposi- 

tions at once; that is, that the greatest and least oscillations 

all are made, swing by swing, in equal times, and that the 

impediment and retardation of the air does no more in the 
swiftest [of these] motions than in the slowest, contrary to 

what all of us previously believed. 

Sagr. Yet since it cannot be denied that the air does 

impede both, because both [motions] go weakening and 

finally stop, we must say that the retardations are made in 

the same ratio in both cases. But how? How can the air 
make greater resistance at one time than another? Can this 

happen except by its being assailed at one time with greater 

impetus and speed, and at another with less? Now_if that is 

ee both 
the cause and the measure of the amount of resistance. Thus 
all motions, slow or fast, are retarded and impeded in the 

same ratio [to their speeds], which seems to me an idea not 

to be scorned. 
Salv. Hence we can conclude, in this second case, that the 

[practical] fallacies in conclusions that are to be demonstrated 

by abstracting from external accidents, matter little respecting 

motions of great speed in devices which we usually deal with, 

or over distances that are small in relation to the radius of 

the earth.!* 
Simp. 1 should like to hear your reason for sequestering 

things projected by the impetus of firing [fuoco], which I 

take it is the force of gunpowder, from other projections as 

by slings, bows, or catapults, [treating these] as not subject 

in the same way to alteration and impediment by the air. 

12. A disagreement of one beat after about the first thirty occurs with pen- 

dulums of the length and amplitudes here described as isochronous. It is a 

remarkable fact, observable in the experiment described, that this difference of 

one single count remains the same thereafter; the arcs are then so small as to 

be isochronous. 

13. Literally, “in relation to the magnitude of the semidiameter of great 

circles of the terrestrial globe.” 
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Salv. Here I am influenced by the excessive, or I might say 

supernatural,'* violence [furia] with which these projectiles 

are shot. It seems to me no exaggeration to say that the 

speed with which the ball is shot from musket or cannon 

may be called “supernatural,” for in natural fall through air 

from some immense height, the speed of the ball—thanks to 

opposition from the air—will not go on increasing forever. 

Rather, what will happen is seen in bodies of very little 

weight falling through no great distance; I mean, a reduction 

to equable motion, which will occur also in a lead or iron 

ball after the descent of some thousands of braccia. This 

bounded terminal speed may be called the maximum that 

such a heavy body can naturally attain through air, and I 

deem this speed to be much smaller than that which can be 
impressed on the same ball by exploding powder. 

A very suitable [acconcia] experiment can assure us of 

this. From a height of one hundred braccia or more, fire a 

lead bullet from an arquebus vertically downward on a stone 

pavement.'* Then shoot with the same [gun] against a like 

stone from a distance of one or two braccia, and see which 

of the two bullets is more badly smashed. If the one which 

came from on high is found to be less flattened than the 

other, it will be a sign that the air impeded the first [bullet] 

and diminished the speed conferred on it at the beginning of 
its motion by the firing, and that consequently the air does 

not permit this [second] speed ever to be gained by a bullet 

coming from as great a height as you please. For if the speed 

impressed on it by firing did not exceed that which it could 

acquire by itself in falling naturally, its thrust [botta] down- 

ward ought to be more effective, rather than less so. I have 
not made such an experiment, but I am inclined to believe 

that the ball from an arquebus or a cannon, coming from 

any height whatever, will not strike the blow that it makes 

against a wall a few braccia distant; that is, when so close 

that the short penetration, or we might say ‘‘cut,” to be 

made in the air is insufficient to take away the excess of the 

supernatural violence impressed on it by firing. 

14. The word “supernatural” does not mean miraculous, but simply 
“not natural”; that is, incapable of being acquired in natural acceleration 
(free fall) through a given medium, from any height whatever. Thus the 
muzzle velocity of a cannonball may be greater than the speed it gains in 
any fall through air, where a terminal velocity is ultimately reached. 

15. See note 65 to First Day. 
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This excessive impetus of violent shots can cause some 

deformation in the path of a projectile, making the beginning 

of the parabola less tilted and curved than its end. But this 

will prejudice our Author little or nothing in practicable 

operations, his main result being the compilation of a table 

of what is called the “‘range” of shots, containing the distances 

at which balls fired at [extremely] different elevations will 

fall. Since such shots are made with mortars charged with 

but little powder, the impetus is not supernatural in these, 

and the [mortar] shots trace out their paths quite precisely.!® 

Meanwhile we have got ahead of the treatise, where the 
Author [next] wants to introduce to us the contemplation 

and investigation of the impetus of a moveable when it moves 

with one motion compounded from two; and first, of the 

composition of two equable [motions], one horizontal and 

the other vertical.'’ eS 

Cr PROPOSITION II. THEOREM II. 

If some moveable is equably moved in double motion, that 

is, horizontal and vertical, then the impetus or momentum 

of the movement compounded from both will be equal 

in the square'® to both momenta of the original motions. 

Let some moveable be equably moved in double motion, the 

vertical displacements [mutationi] corresponding to space AB, 

and let the horizontal movement traversed in the same time 

correspond to BC. Since spaces AB and BC are traversed in 

the same time, in equable motions, the momenta of those 

motions will be to one another as AB is to BC, and the moveable 

that is moved according to these displacements will describe 

the diagonal AC, while its momentum of speed will be as AC. 

16. It had long been known that artillery shots descend more sharply 
near the end to their flight; cf. Tartaglia’s diagrams (1537), Mechanics in 
Italy, pp. 78-94 passim. Galileo here restricts his later tables (pp. 304, 307) 
to low-speed mortar shots on the grounds that long-range artillery is never 

fired at great elevations. 
17. The composition of velocities of this type had been noted in antiquity, 

at least so far as the direction of the resultant motion was concerned; see 
Questions of Mechanics, 1 (Loeb ed., pp. 337-39). But strict Aristotelians 
clung to the idea that only one motion could act on a body at one time, 
whence disparate motions must impede one another (Physica 202a.34). 
A moving body was thought to obey the motion that was the more power- 
ful at a given instant; cf. Mechanics in Italy, p. 80, and Galileo’s counter 

arguments, Dialogue, pp. 176-79 (Opere, VII, 203-5). 
18. See Glossary. The terminology is antiquated, but the idea is that of 

vector addition. See further, pp. 288-89. 
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Truly AC is equal in the square to AB and BC; therefore the 

momentum compounded from both momenta of AB and BC 

is equal in the square to both of them taken together ; which 

was to be shown. 

Simp. You must remove a little doubt that is aroused in 

me. It seems to me that what has just been concluded con- 

tradicts another proposition, in the foregoing treatise, where 

it was affirmed that the impetus of the moveable coming 

from A to B is equal to that [of a moveable] coming from 

A to C.!? But now it is concluded that the impetus at C is 

greater than that at B. 

Salv. Both propositions are true, Simplicio, but quite 

different from one another. Here, a single moveable is spoken 

of, moved by a single motion compounded from two, both 

equable; whereas there, two moveables were concerned, 

moved by naturally accelerated motions, one through the 

vertical AB and the other through the inclined plane AC. 

Besides, there the times were not assumed to be equal, but 

the time through the incline AC was greater than the time 

through the vertical AB. In the motion of which we are now 

speaking, all motions through AB, BC, and AC are meant 

to be equable and to be made in the same time. 

Simp. Excuse me, and go on, for I am satisfied. 

Salv. The Author next undertakes to lead us to understand 

what happens with the impetus of a moveable moved by one 

motion compounded from two, one horizontal and equable, 

and the other vertical and naturally accelerated; from which 

finally are compounded the motion of the projectile, and the 

parabolic line is described. It is sought to demonstrate the 

magnitude of the impetus of the projectile at every point in — 

this [curve].2° For an understanding of this, the Author 
shows us the way, or let us say gives us the method, of 

finding a rule for and measuring that impetus along the 

line in which a falling heavy body descends with naturally 

accelerated motion starting from rest. He says: 

PROPOSITION III. THEOREM III 

Let motion take place from rest at A through line AB, 

19. Simplicio refers to the Postulate, Third Day (pp. 205, 218). 
20. An earlier attempt to analyze the impetus of a projectile (as distin- 

guished from its path) was made by Tartaglia; cf. Mechanics in Italy, pp. 
81, 91-93. 
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and take therein some point C. Assume AC to be the 

time, or measure of the time, of fall through space AC, 

as well as the measure of the impetus or momentum at 

point C acquired from descent AC. And take in the same 

line AB some other point such as B, at which is to be 

determined the impetus acquired by the moveable from 

descent AB, as a ratio to the impetus obtained at C, of 

which the measure was assumed to be AC. Let AS be 
the mean proportional between BA and AC; we shall 

demonstrate that the impetus at B is to the impetus at 

C as line SA is to AC. 

Draw the horizontal lines CD (double AC ) and BE (double 

BA); it follows from what has been demonstrated that [a 

moveable] falling through AC, turned into the horizontal CD 

and carried in equable motion according to the impetus acquired 

at C, traverses space CD in a time equal to that in which AC 

was traversed in accelerated motion. Similarly, BE is traversed 

in the same time as AB. But the time of fall AB is AS; there- 
fore the horizontal BE is traversed in time AS. Make EB to 

BL as time SA is to time AC. Since motion through BE is 

equable, space BL will be run through in time AC with the 

momentum of swiftness [acquired] at B. But in the same time, 

AC, the space CD is traversed with the momentum of swiftness 

[acquired| at C; and the momenta of swiftness are to each 

other as the spaces traversed in the same time with these 

momenta. Therefore the momentum of swiftness at C is to the 

momentum of swiftness at B as DC is to BL. Now, as DC is 

to BE, so are their halves, that is, so CA is to AB, while as 
EB is to BL, so BA is to AS. Hence, by equidistance of ratios, 

as DC is to BL, so CA is to AS; that is, as the momentum 

of swiftness at C is to the momentum of swiftness at B, so 
CA is to AS; that is, as the time through CA is to the time 

through AB. 
This makes evident the rule for measuring the impetus or 

momentum of swiftness over the line in which motion of descent 

takes place, which impetus is assumed to increase in the ratio 

of the times. But here, before we proceed, it is first to be noted 

that we are going to speak of motion compounded from equable 

horizontal and naturally accelerated downward [motions]. 

From such a mixture is produced {conflatur] the path of pro- 

jectiles; that is, the parabola is traced; and we must define 

some common standard according to which we may measure 

the speed, impetus, or momentum of both motions. Now, there 
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are innumerable degrees of speed for equable motions, and 

one of these is to be taken, not at random from the indefinitely 

many, but rather one [is to be selected] that is compatible and 
connected with a degree of speed acquired through naturally 

accelerated motion. 
I can think of no easier way to select and determine this 

than by taking some motion of that same kind. To explain 

myself more clearly; I imagine the vertical AC and the hori- 

zontal CB, AC being the altitude and BC the amplitude of the 

semiparabola described by the compounding of two motions, 

one of which is that of a moveable descending through AC in 

naturally accelerated motion from rest at A, and the other is 

that of equable transverse motion through the horizontal AD. 

The impetus acquired at C by descent through AC is determined 

by the quantity of height AC; for the impetus of a moveable 

falling from the same height is ever one and the same. But 

innumerable degrees of speed may be assigned to equable 

motion in the horizontal, not just one. From that multitude I 

may select one and segregate it from the rest, as if pointing 

a finger at it, by extending upward the altitude CA, in which, 

whenever necessary, I shall fix the ‘“‘sublimity’”’ AE.*' 
Now if I mentally conceive something falling from rest at 

E, it is evident that the impetus it acquires at terminus A is 

identical with that with which I conceive the same moveable 

to be carried when [it is] turned through the horizontal AD. 

This is that degree of swiftness with which, in the time of fall 

through EA, it would traverse double that distance EA in the 

horizontal. This prefatory remark I consider necessary. 

It is further to be noted that I call the horizontal {line] CB 

the “‘amplitude’’ of semiparabola AB; [I call] the axis of this 

parabola, AC, its “altitude’’; and the line EA, from descent 

through which the horizontal impetus is determined, I call the 
“sublimity’’ [of the parabola}. 

These things explained and defined, I now go on to the 
things to be demonstrated. 

Sagr. Pause, I pray you, because it seems to me proper to 

adorn the Author’s thought here with its conformity to a 

conception of Plato’s regarding the determination of the 

various speeds of equable motion in the celestial motions of 

21. Galileo’s “sublimity” is equivalent to the distance from apex to the 
point of intersection of axis and directrix of a vertical parabola. 
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revolution. Perhaps entertaining the idea that a moveable 

cannot pass from rest to any determinate degree of speed, 

in which it must then equably perpetuate itself, except by 

passing through all the other lesser degrees of speed (or let 

us say of greater slowness) that come between the assigned 

degree and the highest [degree] of slowness, which is rest, 

he said that God, after having created the movable celestial 

bodies, in order to assign to them those speeds with which 

they must be moved perpetually in equable circular motion, 

made them depart from rest and move through determinate 

spaces in that natural straight motion in which we sensibly 

see our moveables to be moved from the state of rest, 

successively accelerating. And he added that these having 

been made to gain that degree [of speed] which it pleased 

God that they should maintain forever, He turned their 

straight motion into circulation, the only kind [of motion] 

that is suitable to be conserved equably, turning always 

without retreat from or approach toward any pre-established 

goal desired by them. The conception is truly worthy of 

Plato, and is to be the more esteemed to the extent that its 

foundations, of which Plato remained silent, but which were 

discovered by our Author in removing their poetical mask 

or semblance, show it in the guise of a true story. 

And since, through very competent astronomical doctrines, 

we have data about the sizes of the planetary orbs and the 
distances from the center about which they turn, as well as 

about their speeds, it seems very credible to me that our 

Author, from whom the Platonic concept did not remain 

hidden, may at some time have had the curiosity to try 

whether he could assign a determinate sublimity from which 

the bodies of the planets left from a state of rest, and were 

moved through certain distances in straight and naturally 

accelerated motion, and were then turned at the acquired 

speeds into equable motions. This might be found to corres- 

pond with the sizes of their orbits and the times of their 

revolutions. 

Salv. Indeed, I seem to remember that he told me he had 

once made the computation, and also that he found it to 

answer very closely to the observations.”” But he did not 

22. See Dialogue, pp. 20-21, 29-30 (Opere, VII, 44-45, 53-54). 
Galileo’s cosmogonical speculation could not be reconciled with astro- 
nomical data, as shown by Marin Mersenne (Harmonie Universelle, Paris, 

1636-37, Bk. 2, pp. 103 ff.). The passage in Plato behind which Galileo 
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want to talk about it, judging that he had discovered too 

many novelties that have provoked the anger of many, and 

others might kindle still more sparks. But if anyone should 

have a similar wish, he may satisfy his taste for himself 

through the teachings of the present treatise. So let us get 

on with our material, which is to demonstrate: 

PROPOSITION IV. PROBLEM I 

How to determine the impetus at any given point [punctis 

singulis] in a given parabola described by a projectile. 

Let BEC be the semiparabola whose amplitude is CD and 

whose altitude is DB, which [latter] extended upward meets 

the tangent CA to the parabola at A. Draw the horizontal 

BI through the vertex B and parallel to CD. Now if the 

amplitude CD is equal to the whole altitude DA, then BI will 

equal BA and BD; and if the time of fall through AB and the 

momentum of speed acquired at B through descent AB from 

rest at A are [both] assumed to be measured by this same 

AB, then DC, double BI, will be the space traversed in the 

same time when [the moveable is] turned through the horizontal 

with impetus AB. But in the same time, falling through BD 

from rest at B, it traverses the altitude BD; therefore the 

moveable falling from rest at A through AB, and turned 

through the horizontal with impetus AB, traverses a space 

equal to DC. Fall through BD supervening, the altitude BD is 

traversed and the parabola BC is traced, in which the impetus 

at terminus C is made up of the equable transverse [motion] 

whose momentum is as AB, and the other momentum acquired 

in descent BD at terminus D (or C), which momenta are 

equal. Hence if we assume AB to be the measure of either of 

these, say of the equable transverse [momentum], while BI 

(which is equal to BD) is the measure of the impetus acquired at 

D (or C), then the subtended [line] IA will be the quantity of 

the momentum compounded from both. This will therefore be 

claimed to have found his mathematical rule was probably Timaeus, 38-39, 
beginning: “‘Now, when all the stars . . .” There seems to be a contradiction 
in the discussion here. The higher speed of the inner planets, if acquired in 
this way, ought to give them larger orbits than the outer planets, even allowing 
that the Divine will converted Galileo’s parabolas into circles. Probably 
what Galileo had noted was that the planetary speeds are inversely as the 
square roots of their distances from the sun, a relation strikingly like the 
law of free fall. But the inverse proportionality is not made a direct one by 
reversing the direction of fall. 
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the quantity or measure of the combined [integri] momenta 

with which impetus is made at C by the projectile coming 

through parabola BC. 

Keeping this in mind, take in the parabola any point E at 

which the impetus of the projectile is to be determined. Draw 

the horizontal EF, and take BG as the mean proportional 

between BD and BF;; since it was assumed that AB (or BD ) 

is the measure of the time and of the momentum of speed in 

fall BD from rest at B, then BG will be the time, or measure 

of time and impetus, at F, coming from B. If, therefore, BO 

is taken equal to BG, the added diagonal AO will be the 

quantity of impetus at point E; for AB is assumed to determine 

the time and impetus at B, which [impetus] turned through 

the horizontal continues always the same, while BO determines 

the impetus at F (or E) through fall from rest at B through 

altitude BF. But AO is equal in the square to both AB and 

BO together; what was sought is therefore evident. 

Sagr. The theory of compounding these different impetuses 

and of the quantity of impetus that results from such mixing 

is so new to me as to leave no little confusion in my mind. 

I speak not of the mixing of two equable movements, one 

along the horizontal line and the other along the vertical, 

even though unequal to one another; for as to this, I quite 

understand that a motion results which is equal in the square 

to both components of it. But I am confused by the mixture 

of equable horizontal and naturally accelerated vertical 

[motion]. So I should appreciate it if we were to digest this 

matter a bit more thoroughly. 

Simp. | am even more in need of that, since I am still not 

entirely satisfied in my own mind, as is necessary, about 

these propositions which are to be the essential foundations 

of others to follow. What I mean is that even as to the mixing 

of two equable motions, horizontal and vertical, I need to 

understand better that “‘power” [that “in the square’’] of 

their compounding. You, Salviati, surely understand our 

need and our wishes. 
Salv. The wish is very reasonable, and since I have had a 

longer time than you to think it over, I shall try to ease your 

understanding if I can. But you must bear with me, and 

excuse me if in the discussion of it I repeat a good deal of 

what was already set forth by the Author. 
We can reason definitively about movements and their 
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speeds or impetuses (whether these are equable or naturally 

accelerated) only if we first determine some standard [misura] 

that we can use to measure such speeds, as also some 

measure of time. As to the measure of time, we already have 

universal agreement on hours, minutes, seconds, etc.; and 

just as the measure of time is for us that one in common 

use, accepted by everybody, so it is necessary to assign some 

measure for speeds to be commonly understood and accepted 

by all; that is, one that will be the same for everyone. 

As explained previously, the Author deemed suitable for 

such a purpose the [accelerated] speed of naturally falling 

heavy bodies, of which the growing speeds keep the same 
tenor everywhere in the world.?* Thus, for example, the 
speed acquired by a one-pound lead ball starting from rest 

and falling from a height of one pikestaff [picca] is always 

and everywhere the same, and for that reason it is very well 

suited to stand for [explicar] the impetus deriving from 

natural descent. It now remains to find the method of 

determining also the quantity of impetus in an equable 

motion, in such a way that everyone who reasons about this 

may form the same conception of its magnitude and speed. 

In this way, one man will not imagine it faster and another 

slower, with the result that in conjoining and mixing this 

[motion], originally conceived as equable, with the established 

[statuito] accelerated motion, different men shall not form 

different ideas involving divergent magnitudes of [compound] 

impetuses. 

To determine and represent this unique [particolare] 

impetus and speed, our Author has found no better means 

than to make use of the impetus acquired by the moveable 

in [a specified] naturally accelerated motion. Any acquired 

momentum, turned to equable motion, retains its limited 

speed precisely, and it is such that in another time equal to 

that of the descent, it will pass through exactly twice the 

distance of the height from which fall took place. Since this 

is a principal point in the matter we are discussing, it is 

good to make it completely understood by means of some 
particular example. 

Consider again, therefore, the speed and the impetus 

acquired by a heavy body falling from a height of one 

23. Galileo had no reason to suspect that altitude and latitude affect 
the acceleration of free fall. He was certainly the first to propose a wor!d- 
wide standard of measure based on a universally familiar phenomenon. 
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pikestaff; we wish to make use c: this speed as a measure 

of other speeds and impetuses on other occasions. Assume, 

for example, that the time of such a fall is four seconds.?* 

Now, in order to find, by this measure, the impetus of the 

body falling from any other height, greater or smaller, we 

must not argue from the ratio of this new height to the height 

of one pikestaff, and deduce the amount of impetus acquired 

through the second height by thinking, for example, that in 

falling from a quadruple height the body would acquire four 

times the speed, because that is false.2> For the speed of 

naturally accelerated motion increases or diminishes not in 

the ratio of the distances, but in that of the times; and the 

ratio of distances is greater than this in a squared ratio, as 

was already demonstrated. Thus when we have taken one 

part in a straight line for the measure of speed, and also for 

the time and for the space passed in that time—since, for 

the sake of brevity, all three of these magnitudes are often 

represented on the same line—then, in order to find the 

quantity of time and the degree of speed that the same 

moveable will have acquired at some other distance, we do 

not obtain this immediately from that second distance, but 

from the line that is the mean proportional between the two 

distances. 

I can explain myself better by an example. In the vertical 

line AC, the part AB is assumed to be the space passed by 

a heavy body falling naturally in accelerated motion. I can 

represent the time of that passage by any line I please, and 
to be brief I wish to represent this to be as much as the line 

AB. Likewise, for a measure of the impetus and of the speed 

acquired through such motion, | still take the line AB, so 

that the measure of all the spaces to be considered in the 

course of the reasoning is this segment AB. Having established 

these three measures at pleasure, under a single magnitude 
AB, {these being measures] of such diverse quantities as 

spaces, times, and impetuses, let it be proposed to determine 

the assigned distance and height AC, the amount of time of 

fall from A to C, and the amount of impetus found to be 
acquired at the terminus C, [all] in relation to the time and 

24. The picca being about 12 feet, and free fall covering 16 feet in the 
first second, Galileo’s assumption is clearly arbitary and intended only 
for the purpose of illustration, as was his earlier assumption of fall through 
100 braccia in 5 seconds (Dialogue, p. 233 (Opere, VII, 250); cf. Opere, 

XVIII, 77. 
25. Cf. note 10 to Third Day. 
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impetus measured by AB. Both questions will be determined 

by taking the mean proportional AD of the two lines AC 
and AB, affirming that the time of fall through the whole 

distance AC is as much as the time AD in relation to the 

[unit] time AB, which was assumed at the outset to be the 

quantity of time in the fall AB. Likewise, we shall say that 

the impetus, or degree of speed, that the falling body will 

attain at the terminus C, in relation to the impetus that it 

had at B, is this same line AD in relation to AB, seeing that 

the speed increases in the same ratio as does the time. This 

conclusion was taken as a postulate; yet the Author wanted 

to explain its application above, in Proposition III. 

This point being well understood and established, we 

come to the consideration of the impetus deriving from two 

motions compounded, one [instance] of which shall be 

[motion] compounded of horizontal and always equable 

[motion] together with a vertical [motion] when this is also 

always equable. The other [instance] will be [motion] com- 

pounded from the horizontal, still always equable, and the 

vertical naturally accelerated [motion]. 

When both are equable, it has already been seen that the 
resultant impetus from a compounding of both is equal in 

the square to both [components]. This, for clear under- 

standing, we shall exemplify thus: It is assumed that the 

moveable falling through the vertical AB has, for example, 

three degrees of equable impetus, while carried along BC 

[text: AB] toward C its speed and impetus are four degrees, 

so that in the time that in falling it would pass three braccia, 

for example, in the vertical, it would pass four in the 

horizontal. But in the compounding of both speeds, it comes 

in the same time from point A to terminus C, traveling 

always in the diagonal AC. This is not of length 7, as would 

be the compound of the two, AB, 3, and BC, 4; but it is [of 

length] 5, which 5 is equal in the square to the two, 3 and 4; 

for if the squares of 3 and 4 are taken, which are 9 and 16, 

and they are added together, they make 25 as the square of 
AC, and this is equal to the two squares of AB and BC; 

whence AC will be as much as the side, or let us call it the 
root, of the square 25, which is 5. 

For a firm and secure rule, then, when one must designate 

the quantity of impetus resulting from two given impetuses, 
one horizontal and the other vertical, both being equable, 
one must take the squares of both, add these together, and 
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extract the square root of their combination; this will give 

us the quantity of the impetus compounded from both. And 

thus in the example given, the moveable that in virtue of its 

vertical motion would have struck on the horizontal with 

three degrees of force, and with its horizontal motion alone 

would have struck at C with four degrees, in striking then 

with both impetuses combined, the blow will be that of a 
striker moved with five degrees of speed and force. And such 

a stroke would be of the same value at any point of the 

diagonal AC, the impetuses compounded being always the 

same and never increased or diminished. 

Now let us see what happens in compounding equable 

horizontal motion with a vertical motion, starting from rest, 

and naturally accelerating. It is already manifest that the 

diagonal which is the line of the motion compounded from 

these two is not a straight line, but a semiparabola, as has been 

shown, in which the impetus goes always growing, thanks to 

the continual growth of speed in the vertical motion. Hence in 

order to determine the impetus at an assigned point of this 

parabolic diagonal, it is first necessary to assign the quantity of 

uniform horizontal impetus, and then to investigate the 

impetus due to falling at the assigned point, which cannot be 

determined without consideration of the time elapsed from the 

beginning of the compounding of the two motions. This 

consideration of time is not required in the compounding of 

equable motions, the speeds and impetuses of which are 

always the same. But here, where there enters a mixing of 

motion that starts from the greatest slowness and increases its 

speed in accordance with the continuation of time, it is 

necessary that the quantity of time shall manifest to us the 

quantity of the degree of speed at the given point. As for the 

rest, the impetus compounded from these two is (as in uniform 

motions) equal in the square to both components. 
Here again it is best that I explain by an example. In the 

vertical AC take any part AB, which | imagine to serve as a 

measure of the space of natural motion in this vertical, and 

likewise as a measure of the time, and also of the degree of 

speed, or let us say of the impetus. Now first, it is evident that 

if the impetus at B of the [body] falling from rest at A shall be 
turned upon BD parallel to the horizontal, in equable motion, 

then the quantity of its speed will be such that in the time AB 

it will pass a distance twice the distance AB; and so much is 

the line BD. Next, taking BC equal to BA, draw CE parallel 

20 
F 
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and equal to BD, marking the parabolic line BE/ through 

points B and E. Since the horizontal BD (or CE), double AB, 

is passed in time AB with impetus AB, and in equal time the 

vertical BC is passed with the impetus acquired at C, equal to 

that same horizontal [BD], the moveable will be found to have 

come in a time equal to AB through the parabola BE from B 

to E, with a single impetus compounded from two, each 

equal to impetus AB. And since one of these is horizontal and 

the other is vertical, the impetus compounded from them will 

be equal in the square to both of them; that is, [its square will 

be] twice the square of either one. Whence BF being taken 

equal to BA, and the diagonal AF being drawn, the impetus 

and blow at E will be greater than the blow at B [dealt] by a 

body falling from height A, or than the blow of the horizontal 

impetus through BD, in the ratio of AF to AB. 

But, always keeping BA as the measure of the distance of 

fall to B from rest at A, and as a measure of the time and of the 

impetus of the falling [body] acquired at B, if the height BO is 

not equal to, but is greater than, BA, then take the mean 

proportional BG between AB and BO as the measure of time 

and impetus acquired at O by fall through height BO. The 

distance through the horizontal, passed with impetus AB in 

time AB, will be double AB; but during the time BG it will be 

greater [than AB] in proportion as BG is greater than BA. 

Next, taking LB equal to BG, draw the diagonal AL, from 

which we shall have the compounded quantity of the two 

impetuses, horizontal and vertical, by which the parabola is 

described; of these, the horizontal [impetus] is equable and is 

acquired at B by the fall AB, while the other is that acquired at 

O, or let us say at /, by the fall BO in time BG, which [latter] is 

also the quantity of its momentum. By similar reasoning we 

may investigate the impetus at the extreme end of the parabola 

when its altitude is less than the sublimity AB, taking the 

mean proportional between the two. Setting this along the 

horizontal in place of BF, and drawing the diagonal AF, we 

shall have from this the quantity of the impetus at the extreme 

end of the parabola. 

To that which has been said up to this point about these 

impetuses, blows, or let us say impacts of projectiles, we 

should add one other very necessary consideration. This is 

that it is not sufficient to have in mind just the speed of the 

projectile, in order to determine fully the force and energy of 

its impact, but it is further necessary to specify separately the 
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state and condition of that which receives the impact, in the 

effectiveness of which this [condition] has a great share and 

contribution in several respects. First, everyone understands 

that the thing struck suffers violence thereby from the speed 

of the thing striking [only] to the extent that it opposes this 

and entirely or partly restrains [frena] its motion. For if a 

blow arrives on that which yields to the speed of the striker 

without any resistance at all, there will be no blow. And he 

who runs to strike an enemy with his lance, if it happens that 

as he overtakes him the enemy moves in flight with like speed, 
will effect no blow, and the action will be a simple touching 

without wounding. If an impact is received in an object that 

does not yield to the striker entirely, but only partly, the 

impact will [do] damage, not with all its impetus, but only with 

the excess of speed of the striker over the speed of retirement 
and yielding of the thing struck. For example, if the striker 

arrives with ten degrees of speed upon the thing struck, which, 

by yielding partly, retires with four degrees, then the impetus 

and impact will be as of six degrees. And finally, the impact on 

the part of the striker will be entire and maximal when the 

struck does not yield at all, but entirely opposes itself and 

stops all the motion of the striker, if indeed this can happen.”° 

I said [impact] “‘on the part of the striker,” because if the 

struck moves with contrary motion against the striker, the 

blow and the encounter will be made so much the more 

strongly, as the two contrary speeds united are greater than 

that of the striker alone. Moreover, it must also be noticed 
that to yield more, or less, may derive not only from the 

quality of the material, harder or less hard, as of iron, or lead, 

or wool, etc., but also from the placement of the body that 

receives the impact. If this placement is such that the motion 

of the striker comes against it at right angles, the impetus of the 

impact will be maximal; but if the motion comes obliquely, 

and gives a slanting blow as we say, the blow will be weaker, 

and the more so according to the greater obliquity. For any 

object obliquely situated, though of very solid material, does 

not remove and stop all the impetus and motion of the striker, 

which escapes and passes on beyond, continuing (at least in 

part) to be moved over the surface of the opposed resistent. 

26. A perspicuous question which later was to become central in the 
development of conservation laws in physics. That Galileo rejected the 
possibility of impact without effect is evident in the Added Day; see p. 337. 
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If therefore the magnitude of the impetus of the projectile 

at the extremity of its parabolic line is determined as above, 

it must be understood as being the impact received on a line at 

right angles to the parabolic [line], or rather to its tangent at the 

said point; for although the motion is compounded of a hori- 

zontal and a vertical [motion], the impetus is not maximal 

either upon the horizontal or upon the vertical, being received 

obliquely on both. 
Sagr. Your bringing up of these blows and impacts has 

awakened in my mind a problem, or call it a question, of 

mechanics; one to which | have not found the answer in any 

writer, nor anything that lessens my marvel at it, or even 

partially satisfies my mind. This doubt and puzzlement resides 

in my inability to understand the origin and principle of the 

immense energy and force that is seen to exist in impact, when, 

with a simple blow of a hammer that weighs no more than 

eight or ten pounds, we see resistances overcome that would 

not yield to the weight of a body exerting its impetus on it 

without impact, by merely weighing down on and pressing it, 

though this heaviness may amount to many hundreds of 

pounds. I should still like to find a way of measuring this force 

of impact, which I do not believe to be infinite, but rather think 

that it has its limit of equalization with, and finally of control 

by, other forces—pressure, heaviness, levers, screws, and other 

mechanical instruments, the multiplication of force by which 
I quite understand. 

Salv. You are by no means alone in marveling at the effect of 

such puzzling events, and at the obscurity of their cause. I 

thought about these things for some time in vain, my confusion 

merely growing, until finally, meeting with our Academician, 

I received double consolation from him—first, by hearing that 

he, too, had long remained in the same shadows, and second, 

by his telling me that after he had spent thousands of hours 

during his life in theorizing and philosophizing about this, he 

had arrived at some ideas very distant from our first con- 

ceptions, and hence novel, and admirable for their novelty. 

And, since I now know that your curiosity will make you glad 

to hear those thoughts—which are far from easy to believe—I 

shall not await your request, but shall tell you of them. As 

soon as we have read this treatise on projectiles, I shall explain 

to you all those fantasies, or let us say extravagancies, that 

stick in my memory from the reasonings of the Academician. 

Meanwhile let us go on with the Author’s propositions. 
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PROPOSITION V. PROBLEM [II] 

In the axis of a given parabola extended [upward], to find 

a high point from which a falling body describes this same 

parabola [when deflected horizontally at its vertex]. 

Let there be a parabola AB whose amplitude is HB and whose 

axis extended is HE. We seek the sublimity from which a falling 

body, being turned horizontally with the impetus aquired at A, 

describes the said parabola. Draw the horizontal AG parallel to 

BH, and putting AF equal to AH, draw the straight line FB 

tangent to the parabola at B, which intersects the horizontal 

line AG at G. Take AE, the third proportional to FA and AG; 

I say that E is the high point sought, from which a body falling 

from rest at E, and turned into the horizontal with the impetus 

acquired at A, where there supervenes the impetus of fall to H 

[as if] from rest at A, will describe the parabola AB. If we 

assume EA to be the measure of time of fall from E to A and of 

the impetus acquired at A, then AG, (that is, the mean pro- 

portional between EA and AF) will be the time and impetus of 

fall from F to A or from A to H. And since [the moveable | 

coming from E in time EA with the impetus acquired at A will 

traverse twice EA in equable horizontal movement [in time EA], 

movement at that same impetus would also traverse twice GA 

in time AG, one-half of BH (for the spaces traversed in equable 

motion are to one another as their times of motion) ; and in 

vertical motion from rest, during the same time GA, it would 

traverse AH. Therefore the amplitude HB and the altitude AH 

would be traversed by the moveable in the same time. Thus the 

parabola AB is described by fall from sublimity E; which was to 

be found. 

COROLLARY 

From this it follows that one-half the base, or amplitude, 

of a semiparabola ( which is one-quarter the amplitude of the 

whole parabola) is a mean proportional between its altitude 

and the sublimity from which a falling [body] would 

describe it. 

PROPOSITION VI. PROBLEM [III] 

Given the sublimity and the altitude of a semiparabola, 

to find its amplitude. 
Let DC be a horizontal line and AC a vertical to it, in which 

are given the altitude CB and the sublimity BA, it is required to 
find in the horizontal CD the amplitude of the semiparabola 
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which is determined by the sublimity BA and the altitude BC. 

The mean proportional between CB and BA is to be taken, of 

which the double is put as CD; I say that CD is the required 

amplitude. This is manifest from the preceding [corollary]. 

PROPOSITION VII. THEOREM [IV] 

In projectiles by which semiparabolas of the same amplitude 

are described, less impetus is required for the describing of 

one whose amplitude is double its altitude than for any other. 

Let semiparabola BD be one whose amplitude CD is double its 

altitude CB; and in the axis extended upward, take BA equal to 

the altitude BC. Draw AD, which will be tangent to the semi- 

parabola at D and will intersect the horizontal BE at E, while 

BE will be equal to BC (or BA). It follows that this [curve] 

will be described by a projectile whose equable horizontal 

impetus is that of fall from rest at A to B, and whose natural 

downward impetus is that of fall to C from rest at B. From this it 

is evident that the impetus compounded from these and impinging 

on point D, is as the diagonal AE, equal in the square to both 

[CD and DB]. 

Now let some other semiparabola GD be taken, whose 

amplitude is the same CD, but whose altitude CG is less (or 

greater) than the altitude BC. Let HD be tangent to this, 

intersecting the horizontal through G at point K. Make KG to 

GL as HG is to GK; the sublimity [altitudo] GL, as previously 

demonstrated, will be that from which a falling [body] describes 

parabola GD. Let GM be the mean proportional between AB 

and GL; then GM will be the time and the momentum or 

impetus at G [after] fall from L, for it is assumed that AB is the 

measure of time and impetus. Let GN be the mean proportional 

between BC and CG;; this will be the measure of the time and 

impetus of fall from G to C. Therefore, joining MN, this will be 

the measure of impetus of a projectile through the parabola DG, 

striking at D. This impetus, I say, is greater than the impetus of a 

projectile through parabola BD, of which the quantity was as AE. 

For since GN was taken as the mean proportional between BC 

and CG, and BC is equal to BE or KG ( for each is one-half DC), 

NG is to GK as CG is to GN ; and as CG (or HG) is to GK, so 

the square of NG is to the square of GK. But as HG is to GK, so, 

by construction, is KG to GL; therefore as NG is to the square 

of GK, so KG is to GL. But as KG is to GL, so the square of 

KG is to the square of GM, since GM is the mean proportional 

between KG and GL. Thus the three squares of NG, KG, and 



Galileo, Opere, VIII (295-296) 245 

GM are in continued proportion, and the [product of the] two 

extremes NG and GM (that is, the square of MN) is greater 

than twice the square of KG, of which the square is twice AE. 

Hence the square of MN is greater than the square of AE, and 

line MN is greater than line EA ; which was to be demonstrated. 

COROLLARY 

From this it is clear that in reverse | direction] through the 

semiparabola DB, the projectile from point D requires less 

impetus that through any other [semiparabola] having 

greater or smaller elevation than semiparabola BD, which 

[elevation] is according to the tangent AD and contains one- 

half a right angle with the horizontal. Hence it follows that 

if projections are made with the same impetus from point D, 

but according to different elevations, the maximum pro- 

jection, or amplitude of semiparabola (or whole parabola) 

will be that corresponding to the elevation of half a right 

angle. The others, made according to larger or smaller 

angles, will be shorter [in range}. 

Sagr. The force of necessary demonstrations is full of marvel 

aiid delight; and such are mathematical [demonstrations] 

alone. I already knew, by trusting to the accounts of many 

bombardiers, that the maximum of all ranges of shots, for 

artillery pieces or mortars—that is, that shot which takes the 

ball farthest—is the one made at elevation of half a right angle, 

which they call “‘at the sixth point of the [gunner’s] square.”’?’ 
But to understand the reason for this phenomenon infinitely 

surpasses the simple idea obtained from the statements of 

others, or even from experience many times repeated. 

Salv. You say well. The knowledge of one single effect 

acquired through its causes opens the mind to the under- 

standing and certainty of other effects without need of recourse 

to experiments. That is exactly what happens in the present 

instance; for having gained by demonstrative reasoning the 

certainty that the maximum of all ranges of shots is that of 

elevation at half a right angle, the Author demonstrates to us 

something that has perhaps not been observed through 

27. An instrument devised by Tartaglia for measuring the elevation of 
a cannon; see Mechanics in Italy, p. 64. It consisted of a rigid right angle 
having a plumb line suspended from the inside corner, and was read along 
a quadrant graduated into twelve equal arcs of 7} degrees each, called 
“points.” A horizontal shot was accordingly called “point blank.” 
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experiment; and this is that of the other shots, those are equal 

[in range] to one another whose elevations exceed or fall 

short of half a right angle by equal angles.?® Thus two balls 

shot, one at an elevation of 525° [7 punti] from the horizon, 

and the other at 374° [5 punti], strike the ground at equal 

distances ; as do those shot at 60° and 30°, or at 673° and 225°, 

and so on. Now let us hear the proof. 

PROPOSITION VIII. THEOREM [V] 

The amplitudes of parabolas described by projectiles sent 

forth with the same impetus, according to elevations having 

angles equidistant above and below half a right angle, are 

equal to one another. 

In triangle MCB, around its right angle C, let the horizontal 

BC and the vertical CM be equal ; angle MBC will then be half a 

right angle. Extend CM to D and form at B two equal angles; 
MBC and MBD, above and below the diagonal MB. It is to be 

demonstrated that the amplitudes of the parabolas of projectiles 

sent forth from point B with the same impetus, according to 

elevations at angles EBC and DBC, are equal. Indeed, the 

external angle BMC is equal to the {sum of the | internal angles 

MDB and DBM, and angle MBC will also be equal to these ; 

for if we put angle MBE in place of [angle] DBM, angle MBC 

will equal the two [angles|] MBE and BDC. And subtracting 

the common [angle] MBE, the remainder BDC will equal the 

remainder EBC. Hence triangles DCB and BCE are similar. 

Bisect line DC at H, and EC at F; and draw HI and FG parallel 

to the horizontal CB. As DH is to HI, so IH is to HL; and 

triangle IHL will be similar to triangle \HD, to which EGF is 

also similar. And as 1H and GF are equal (that is, are half of 

BC), FE (that is, FC) will be equal to HL. Adding FH in 

common, CH will be equal to FL. Through H and B describe a 

semiparabola of altitude HC and sublimity HL; its amplitude 

will be CB, which is twice HI, the mean proportional between 

DH (or CH) and HL; and DB will be tangent to it, since CH is 

equal to HD. If we further describe the parabola through FB 

with sublimity FL and altitude FC, between which FG is the 

mean proportional, then the horizontal CB being twice this, CB 

will likewise be its amplitude, and EB [will be] tangent to it, 

28. Tartaglia had implied a knowledge of this, however, when he declared 
the maximum range to be attained at elevation of 45°; see Mechanics in 
Italy, pp. 85-86, 91-94. 
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since EF and FC are equal. But angles DBC and EBC, which are 
the elevations, are equidistant from half a right angle; there- 
fore the proposition is evident. 

PROPOSITION IX. THEOREM [VI] 

The amplitudes of parabolas are equal when their altitudes 
and sublimities are inversely proportional. 

Let the altitude GF of parabola FH have to altitude CB of 

parabola BD the same ratio that the sublimity BA [of the latter] 

has to the sublimity FE [of the former]; I say that amplitudes 

HG and DC are equal. For since the first, GF , has to the second, 
CB, the same ratio that the third, BA, has to the fourth, FE, the 

rectangle GF-FE of the first and fourth will be equal to the 

rectangle CB—BA of the second and third. Therefore the squares 

to which these rectangles are [respectively] equal are equal to 

each other. But rectangle GF —-FE is equal to the square of one- 

half GH, and rectangle CB-BA is equal to the square of one-half 

CD; hence these squares, and their sides, and the doubles of 

their sides, are [respectively] equal. But those {last named] are 

the amplitudes GH and CD; therefore the proposition is 

evident. 

LEMMA FOR THE NEXT [THEOREM] 

If a straight line is cut anywhere, the squares of the mean 

proportionals between the whole and the parts are equal 

[in sum] to the square of the whole. 

Let AB be cut anywhere at C; I say that the squares of the 

mean proportional lines between the whole AB and its parts AC 

and CB, taken together, are equal to the square of the whole AB. 

This is evident ; for describe a semicircle on the whole of AB, and 

and from C erect the perpendicular CD. Join DA and DB. Then 

DA is the mean proportional between BA and AC, and DB is the 

mean proportional between AB and BC; and the squares of lines 

DA and DB taken together are equal to the square of all AB, 

angle ADB being a right angle inscribed in a semicircle ; whence 

the proposition is evident. 

PROPOSITION X. THEOREM [VII] 

The impetus or momentum of [fall through] any semi- 

parabola is equal to the momentum of natural vertical fall 

to the horizontal through the combined sublimity and 

altitude of the semiparabola. 
Let there be the semiparabola AB with sublimity DA and 

m 

299 



300 

248 Galileo, Opere, VII (299-300) 

altitude AC, which [together] make up the vertical DC; I say 

that the impetus of the semiparabola at B is equal to the mo- 

mentum of natural fall from D to C. 
Take DC as the measure of the time and impetus [of the said 

fall], and assume CF to be the mean proportional between CD 

and DA; let CE be the mean proportional between DC and CA; 

then CF will be the measure of the time and of the momentum of 

that which descends through DA from rest at D, while CE will 

be the time and momentum of that which descends through AC 

from rest at A; and the diagonal EF will be the momentum at B 

(compounded from these) of [fall through] the semiparabola. 

Since DC was cut anywhere at A, while CF and CE are mean 

proportionals between all CD and its parts DA and AC, the 

squares of these, taken together, will equal the square of the 

whole, by the foregoing lemma. But the same squares are also 

equal to the square of EF ; hence line EF is equal to DC. From 

this it is evident that the momenta through DC at C, and through 

the semiparabola AB at B, are equal; which was required. 

COROLLARY 

From this it is evident that for all semiparabolas whose 

combined altitudes and sublimities are matched, the 

[related] impetuses [of fall] are also equal. 

PROPOSITION XI. PROBLEM [IV] 

Given the impetus and the amplitude of a semiparabola, to 

find its altitude. 

Let the given impetus be defined by the vertical AB, and let 

the amplitude be BC in the horizontal, it is required to find the 

sublimity of the semiparabola whose impetus is AB and whose 

sublimity is BC. It is evident from what has been demonstrated 

that one-half the amplitude BC will be the mean proportional 

between the altitude and the sublimity of the semiparabola, 

the impetus of which (from the preceding ) is the same as that 

of fall from rest at A through all AB. For that reason, cut BA so 

that the rectangle contained by the parts shall be equal to the 

square of one-half BC, which is BD. From this it is clearly 

necessary that DB cannot exceed one-half of BA; for the 

maximum rectangle contained by parts [of a line] is [obtained] 

when the line is bisected. Bisect BA at E. Now, if BD is equal to 

BE, the work is finished, [and] the altitude of the semiparabola 

will be BE and its sublimity EA. The amplitude of such a 

parabola, of elevation one-half a right angle, is the maximum of 
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all those that are described with the same impetus, as demon- 
strated above. 

But let BD be less than one-half BA, which is so cut that the 

rectangle of its parts is equal to the square of BD. Describe a 

semicircle on EA, take AF equal to BD, and connect FE equal to 

ene part cut, EG. The rectangle BG—GA plus the square of EG 

now equals the square EA, which also equals square AF plus 

[square] FE. Subtracting the equal squares GE and EF, there 

remains the rectangle BG—GA equal to the square of AF ( that 

is, of BD) ; and line BD is the mean proportional between BG 

and GA. It follows that the semiparabola whose amplitude is BC, 

and whose impetus [of fall] is AB, has the altitude BG and the 

sublimity GA. Now if BI, equal to GA, is taken below, { then] 

BI will be the altitude and \A the sublimity of semiparabola IC. 

From what has been demonstrated, we can now: 

PROPOSITION XII. PROBLEM [V] 

Calculate and compile tables of all amplitudes of semi- 

parabolas described by projectiles sent forth with the same 

impetus. 

It follows from what has been demonstrated that when 

parabolas are described by projectiles having the same { initial] 

impetus, the sublimities and altitudes [ thereof], added together, 

comprise equal verticals ; whence those verticals must be included 

between the same horizontal parallels. Thus take the horizontal 

CB, equal to the vertical BA, and draw the diagonal AC ; angle 

ACB will be half a right angle, or 45°. Bisect the vertical BA at 

D, the semiparabola DC will be that which is determined by the 

sublimity AD plus the altitude DB, and its impetus at C will be as 

much as that of a moveable at B coming from rest at A through 

line AB. If AG is drawn parallel to BC, the combined altitudes 

and sublimities of all the rest of the semiparabolas whose impetus 

is the same as that just described must lie between the parallels 

AG and BC. Furthermore, as already demonstrated, the semi- 

parabolas of which the tangents [at the base] are equidistant 

above and below the elevation of half a right angle are equal in 

amplitude, so that the calculation listed for the greater [of such 

matched] elevations will serve also for the smaller. 

Let us select ten thousand (10000) for the number of parts in 

the maximum amplitude of projection for a parabola of elevation 

45°, and assume that line BA and amplitude BC of the semipara- 

bola are of that many parts. (We chose the number 10000 

because in our calculations we use a table of tangents in which 

301 
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that number corresponds to the tangent of 45°). Now, commenc- 

ing the task, draw CE at angle ECB, greater than ACB though 

still acute; and, tangent to EC, let a semiparabola be drawn 

whose sublimity and altitude together equal BA. From our table 

of tangents, for the given angle BCE, we find the tangent BE; 

bisect this at F, and then find the third proportional to BF and 

BI (one-half BC), which will necessarily be greater than FA. 

Let it be FO. Then, for the semiparabola inscribed in triangle 

ECB and tangent to CE, of which the amplitude is CB, we find 

the altitude BF and the sublimity FO. 

But the whole line BO goes above the parallels AG and CB, 

whereas we require [a line] confined between them; for only in 

that way will both this [line] and the semiparabola DC be traced 

out by projectiles sent forth from C with the same impetus. 

Hence another, similar to this, is to be found among the in- 

numerable [semiparabolas], larger and smaller, that can be 

designed within angle BCE, whose combined sublimity and 

altitude (homologous, that is, with BC) are equal to BA. There- 

fore let amplitude BC be to CR as OB is to BA, and CR will be 

found to be the amplitude of the semiparabola having elevation 

at angle BCE, while its combined sublimity and altitude are 

comprised within and are equal to the space between the parallels 

GA and CB; which is what was sought. The operation is as 

follows. 

Take the tangent of the given angle BCE; to one-half of this, 

add the third proportional to this {half| and one-half BC, which 

[third proportional] is FO. Then, as OB is to BA, make BC to 
some other [line] CR, and this is the amplitude sought. 

Let us do an example. Let angle ECB be 50 ; its tangent is 

11918, of which one-half (or BF) is 5959 ; one-half BC is 5000. 

To these [two] halves, the third proportional is 4195, which added 

to BF gives 10154 for BO. Next, as OB is to BA (that is, as 

10154 is to 10000), make BC, or 10000 ( for both [BA and BC] 

are [equal to] the tangent of 45°), to some other [magnitude], 

and we shall find the required amplitude, RC, to be 9848, the 

maximum amplitude (BC) being 10000. The amplitudes of the 

whole parabolas are the doubles of these; that is, 19696 and 

20000. This [calculation] also gives the amplitude of the parabola 

of elevation 40 , which is at the same distance from 45 . 

Sagr. For complete understanding of this demonstration, I 

still lack knowledge of why the Author says it is true that the 

third proportional to BF and B/ must be greater than FA. 
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[TABLE 1] [TABLE 2] 

Amplitudes of semiparabolas Altitudes of semiparabolas described with 
described with the same initial the same initial speed. 
speed. 

Angle of Angle of Angle of Angle of 
Elevation Elevation Elevation Elevation 

45° 10000 i 3 46° 5173 
46 9994 44° 2 13 47 5346 

47 9976 43 3} 28 48 5523 

48 9945 42 4 50 49 5698 
49 9902 41 5 76 50 5868 

50 9848 40 6 108 51 6038 
51 9782 39 7 150 52 6207 
52 9704 38 8 194 53 6379 

53 9612 3H 9 245 54 6546 

54 9511 36 10 302 55 6710 

55 9396 35 11 365 56 6873 
56 9272 34 12 432 57 7033 

57 9136 33 13 506 58 7190 
58 8989 sy) 14 585 59 7348 

59 8829 31 15 670 60 7502 
60 8659 30 16 760 61 7649 

61 8481 29 iv 855 62 7796 
62 8290 28 18 955 63 7939 

63 8090 Dal 19 1060 64 8078 

64 7880 26 20 1170 65 8214 
65 7660 25 21 1285 66 8346 
66 7431 24 22 1402 67 8474 
67 7191 23 23 1527) 68 8597 
68 6944 22 24 1685 69 8715 

69 6692 21 25 1786 70 8830 
70 6428 20 26 1922 71 8940 

71 6157 19 27 2061 TP 9045 

72 5878 18 28 2204 73 9144 

73 5592 17 29 2351 74 9240 
74 5300 16 30 2499 US 9330 

75 5000 15 31 2653 76 9415 
76 4694 14 32 2810 77 9493 

Ta. 4383 13 33 2967 78 9567 

78 4067 12 34 3128 79 9636 
79 3746 1] 35 3289 80 9698 
80 3420 10 36 3456 81 9755 

81 3090 9 37 3621 82 9806 

82 2756 8 38 3793 83 9851 

83 2419 7 39 3962 84 9890 
84 2079 6 40 4132 85 9924 

85 1736 5 41 4302 86 9951 

86 1391 4 42 4477 87 9972 

87 1044 3 43 4654 88 9987 

88 698 2 44 4827 89 9998 

89 349 1 45 5000 90 10000 
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Salv. | think that consequence may be deduced in this 

manner. The square of the mean of three proportional lines is 

equal to the rectangle of the extremes, whence the square of 

BI (or of its equal, BD) must be equal to the rectangle of the 

first, FB, and the third, to be found; and this third must 

necessarily be greater than FA, because the rectangle BF—FA 

is less than the square of BD, the deficiency being the square 

of DF, as Euclid proves in a proposition of his second [book].”° 
You must also note that point F, which bisects the tangent 

EB, will as often fall above point A [as beneath it], and also, 

once, at A itself; in the former cases, it is self-evident that the 

third proportional to the half-tangent and B/, which gives the 

sublimity, is entirely above A. But the Author has taken the 

case in which it was not manifest that the said third propor- 

tional is always greater than FA, and hence passes beyond the 

parallel AG when added above point F. But now let us go on. 

It will be useful, with the help of this tabulation, to complete 

another in which are compiled the altitudes of the same semi- 

parabolas of projectiles sent forth with the same impetus. The 

construction of this [other table] follows. 

PROPOSITION XIII. PROBLEM [v1] 

From the amplitudes of the semiparabolas gathered in the 

previous table, and preserving the common impetus with 

which each is described, to obtain the respective altitudes 

of individual semiparabolas. 

Let the given amplitude be BC, and the measure of impetus 

(assumed to be always the same), OB; that is, the sum of [each] 

altitude and [the associated] sublimity ; it is required to find and 

distinguish the altitude itself. This will be done when BO is so 

divided that the rectangle of its parts shall be equal to the square 

of one-half the amplitude BC. Let this division fall at F, and 

bisect both OB and BC, at D and I. Then the square of IB is 

equal to the rectangle BF—FO, and the square of DO is equal to 

the same rectangle plus the square of FD; if therefore from the 

square of DO there is taken the square of BI (equal to rectangle 

BF-—FO), the square of FD will remain. The side of this, DF, 

added to line BD, will give the required altitude, BF. This is 

arranged from the things given, as follows: 

From the square of one-half BO, take the square of BI, also 

29. Elements 11.5. 
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known; extract the square root of the remainder, and add BD, 

[which is] known, and you will have the required altitude, BF. 

EXAMPLE 

To be found is the altitude of the semiparabola described 

at elevation 55 . The amplitude, from the preceding tabulation, 

is 9396 ; half of this is 4698, of which the square is 22071204. 

Subtract this from the square of half BO, which is 25000000 

(and is always the same) ; the remainder is 2928796, of which 

the square root is approximately 1710. This, added to half BO 

(that is, 5000), gives 6710, which is the altitude BF. 

It will be useful to give a third table, containing the altitudes 

and sublimities of semiparabolas of which the amplitude will be 
be the same. 

Sagr. I shall be happy to see this, since by it I may come to 

know the difference of the impetuses and forces required in 

shooting the projectile to the same distance, using what are 

called ‘“‘ranging shots.” I believe that this difference is very 

great for the various elevations, so that, for instance, if we 

wished to use an elevation of three or four degrees, or of 87° 

or 88°, and [still] make the ball fall where it went when shot at 

an elevation of 45°, which has been shown to require the 

minimum impetus, then I believe that an immense excess of 

force would be required. 
Salv. You are quite right, and you will see that in order to 

carry out the entire operation, for all elevations, one is rapidly 

driven toward infinite impetus. Now let us look at the con- 

struction of the [ensuing] table. 

PROPOSITION XIV. PROBLEM [VII] 

To find the altitudes and sublimities of semiparabolas of 

which the amplitudes shall be equal, for individual degrees 

of elevation. 
We shall obtain all this by means of an easy procedure. 

Let the amplitude of the semiparabolas be always 10000 parts ; 

then one-half the tangent, for any degree of elevation, gives the 

altitude. For example, let the elevation of the semiparabola be 

30°, and its amplitude, as assumed, 10000 parts; its altitude 

will be 2887, for that is approximately one-half the tangent 

[of 30°]. And the altitude having been found, we get the sub- 

limity as follows. As has been demonstrated, half the amplitude 

of a semiparabola is the mean proportional between the altitude 

308 
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[TABLE 3] 
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Giving the altitudes and sublimities of parabolas of constant amplitude, 
namely 10000, computed for each degree of elevation. 

Angle of 
Elevation 

_ SOMADNFSWN| 

Altitude 

87 
175 
262 
349 
437 
525 
614 
702 
792 
881 
972 

1063 
1154 
1246 
1339 
1434 
1529 
1624 
1722 
1820 
1919 
2020 
2123 
2226 
2332 
2439 
2547 
2658 
2772 
2887 
3008 
3124 
3247 
3373 
3501 
3633 
3768 
3906 
4049 
4196 
4346 
4502 
4662 
4828 
5000 

Sublimity 
286533 
142450 
95802 
71531 
57142 
47573 
40716 
35587 
31565 
28367 
25720 
23518 
21701 
20056 
18663 
17405 
16355 
15389 
14522 
13736 
13024 
12376 
11778 
11230 
10722 
10253 
9814 
9404 
9020 
8659 
8336 
8001 
7699 
7413 
7141 
6882 
6635 
6395 
6174 
5959 
5752 
5553 
5362 
5177 
5000 

Angle of 
Elevation 

46° 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 
72 
2B 
74 
75 
16 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

Altitude 
$177 
5363 
5553 
Sioz 
5959 
6174 
6399 
6635 
6882 
7141 
7413 
7699 
8002 
8332 
8600 
9020 
9403 
9813 

10251 
10722 
11230 
11779 
12375 
13025 
13237 
14521 
15388 
16354 
17437 
18660 
20054 
21657 
23523 
25723 
28356 
31569 
35577 
40222 
47572 
57150 
71503 
95405 
143181 
286499 
infinity 

Sublimity 
4828 
4662 
4502 
4345 
4196 
4048 
3906 
3765 
3632 
3500 
3372 
3247 
3123 
3004 
2887 
2771 
2658 
2547 
2438 
2331 
2226 
2122 
2020 
1919 
1819 
1721 
1624 
1528 
1433 
1339 
1246 
1154 
1062 
972 
881 
792 
702 
613 
525 
437 
349 
262 
174 
87 

{zero} 
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and the sublimity. Hence, the altitude having been already 

found, and half the amplitude being always the same (that is, 

5000 parts), then if the square of this is divided by the given 

altitude, the required sublimity results. 

As in our example above, the altitude was 2887 ; the square of 
5000 parts is 25000000 ; divided by 2887, this gives approxi- 

mately 8659 for the sublimity sought. 

Salv. Here we see, first of all, how true is that conception 

mentioned earlier: that in different elevations, the farther we 

depart from the middle one, whether [by going] higher or 

lower, the greater is the impetus and violence required for 

shooting the projectile to the same distance. For the impetus 

consists of the mixture of two motions, an equable horizontal 

motion and a vertical, naturally accelerated; and this impetus, 

coming to be measured by the sum of the altitude and the 

sublimity, you see from the table that this sum is a minimum 

at the elevation of 45°, where the altitude and sublimity are 

equal, each being 5000 and their sum being 10000. For if we 

look at some other, greater, altitude, say for example [at 

elevation] of 50°, we shall find this altitude to be 5959, and 

the sublimity 4196, which added together make 10155. And 
that much, likewise, we shall find to be the impetus for [an 

elevation of] 40°, the two elevations being equally distant 

from the middle [elevation of 45°]. 

In the second place we should note that it is true that equal 
impetuses are required for elevations equally distant, two by 
two, from the middle; and with this pleasing additional 

alternation, that the altitudes and sublimities of the upper 

elevations are inverse to the sublimities and altitudes of the 

lower. Thus in the example given, for an elevation of 50° 

the altitude is 5959 and the sublimity 4196, while for an 

elevation of 40°, it turns out the other way; the altitude is 

4196, and the sublimity 5959. The same happens with all the 
rest, without any difference except where, in order to escape 

the tedium of calculation, we leave fractions out of account; 

in sums so great, these are of no moment or prejudice whatever. 

Sagr. I observe that with regard to the two impetuses, 
horizontal and vertical, as the projectile is made higher, less 

is required of the horizontal, but much of the vertical. On the 

other hand, in shots of low elevation there is need of great 

force in the horizontal impetus, since the projectile is shot to 

so small a height. But if I understand correctly, at full elevation 

309 
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of 90°, all the force in the world would not suffice to shoot the 

projectile one single inch out of the vertical, and it must 

necessarily fall back at the same place from which it was shot. 

Yet I dare not affirm with equal certainty that a projectile, 

even at zero elevation, which is to say in the horizontal line, 

could not be shot to some [little] distance by some [great] 

force, or that infinite force would be required—as if, for 

example, not even a culverin had the power to shoot an iron 

ball horizontally, or “‘point blank” as they say (that is, at no 

point [on the gunner’s square]), where there is zero elevation. 

I say that in this case there remains some ambiguity, and that 

I am unable to deny resolutely either fact, for the reason that 

another event seems no less strange, though I have a logically 

conclusive demonstration of it. This is the impossibility of 

stretching a rope so [tightly] that it shall be pulled straight, 

and [held] parallel to the horizontal; for it always sags and 

bends, nor is there any force that will suffice to hold it straight. 

Salv. Well, Sagredo, in this matter of the rope, you may 

cease to marvel at the strangeness of the effect, since you have 

a proof of it; and if we consider well, perhaps we shall find 

some relation between this event of the rope and that of the 
projectile [fired horizontally]. 

The curvature of the line of the horizontal projectile seems to 

derive from two forces, of which one (that of the projector) 

drives it horizontally, while the other (that of its own heaviness) 

draws it straight down. In drawing the rope, there is [likewise] 

the force of that which pulls it horizontally, and also that of the 

weight of the rope itself, which naturally inclines it downward. 

So these two kinds of events are very similar. Now, if you give 

to the weight of the rope such power and energy as to be able 

to oppose and overcome any immense force that wants to 
stretch it straight, why do you want to deny this [power] to the 
weight of the ball? 

But I wish to cause you wonder and delight together by 
telling you that the cord thus hung, whether much or little 
stretched, bends in a line that is very close to parabolic. The 
similarity is so great that if you draw a parabolic line in a 
vertical plane surface but upside down—that is, with the vertex 
down and the base parallel to the horizontal—and then hang a 
little chain from the extremities of the base of the parabola 
thus drawn, you will see by slackening the little chain now 
more and now less, that it curves and adapts itself to the 
parabola; and the agreement will be the closer, the less curved 
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and the more extended the parabola drawn shall be. In para- 
bolas described with an elevation of less than 45°, the chain 
will go almost exactly along the parabola.?° 

Sagr. Then with a chain wrought very fine, one might 

speedily mark out many parabolic lines on a plane surface. 
Salv. That can be done, and with no little utility, as I am 

about to tell you. 

Simp. But before you go on, I also wish at least some assur- 

ance about that proposition of which you said that there is a 
necessarily conclusive demonstration—I mean of the impossi- 

bility, by any immense force, of making a rope stay stretched 

straight and parallel to the horizon. 

Sagr. Let me see if I remember the demonstration. To under- 

stand it, Simplicio, it is necessary that you assume as true 

something which is verified in all mechanical instruments, and 

not only by experience, but by demonstration as well. This is 

that the speed of the moving thing, though it be [one] of very 

weak force, can overcome the resistance, though great, of 

something that can be moved only slowly, provided only that 

the speed of the moving thing have a greater ratio to the 

slowness of the resistent than the resistance of that which is to 

be moved has to the force of the moving thing. 

Simp. This is well known to me, and is demonstrated by 

Aristotle in his Questions of Mechanics,*' and it is plainly 

seen in the lever. Again, in the steelyard, the counterweight 

that weighs no more than four pounds will lift a weight of 400, 

when the distance of the counterweight from the center on 

which the steelyard turns is more than one hundred times the 

distance from that center to the point from which the great 

weight hangs. This happens because the counterweight, in its 

descent, goes more than one hundred times the distance 

through which the great weight rises in the same time.** This 
is the same as saying that the little counterweight moves with 

more than one hundred times the speed of the great weight. 

30. The ensuing discussion more or less duplicates that toward the end 
of the Second Day, suggesting that this section of the final dialogue may 
have been originally intended to conclude the discussion of strength of 

materials; cf. note 42 to Second Day. 
31. Questions of Mechanics, 20 (Loeb ed., pp. 375-77). 
32. It was this emphasis on operation “‘in the same time” that separated 

Galileo’s approach on the one hand from medieval statics and on the other 
hand from the mechanics of Descartes, who considered displacements alone 
to be truly relevant in mechanical theory and who ridiculed those who, 

like Galileo, considered the role of speeds essential in the theory of simple 

machines; cf. p. 329. 

311 
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Sagr. You reason very well, and doubtless you will grant 

that however small the force of the mover, it will overcome 

any resistance, however great, whenever the mover exceeds the 

resistance in speed by more than it falls short of it in vigor and 

in heaviness. 
Now we come to the case of the rope, drawing a diagram. 

Assume that this line AB, passing over the two fixed and stable 

points A and B, has hanging at its ends, as you see, two 

immense weights, C and D. These, drawing it with very great 

force, really do make it stay stretched straight if this [AB] is 

a simple line without any heaviness. But here something needs 

to be added. I say that if from point EF, at the center of this 

[line AB], you suspend some small weight such as H here, line 

AB will yield and will tend toward point F. Being thus length- 

ened [without stretching], it will constrain the two very heavy 

weights, C and D, to rise. I demonstrate this as follows. 

Around the two points, A and B, as centers, describe two 

quadrants, EJG and ELM; since the two radii, A/ and BL, are 

equal to AE and EB, the advances F/ and /L will be the 

quantity of lengthening of the parts AF and FB beyond AE 

and EB. Hence these determine the rises of the weights C and 

D, provided that weight H shall have had the ability to go down 

in [the direction E]F. This could happen if line EF, which is 

the quantity of descent of weight H, had a greater ratio to 

line FJ (which determines the rise of the two weights C and D) 

than the heaviness of these weights has to the heaviness of 
weight H. But that will necessarily be the case, no matter how 

great the heaviness of weights C and D, or how small that of 

H. For the excess of weights C and D over weight H is not so 

great that the excess of tangent EF over secant F/ is not in 

greater ratio.>? We prove this as follows. 
Let there be the circle whose diameter is GA/; and whatever 

the ratio of the heaviness of weights C and D to the heaviness of 

H, let line BO have this [ratio] to some other line, C. Let D be 

less than C, so that BO will have a greater ratio to D than to C. 

Now take BE as the third proportional to OB and D, and as 

OE is to EB, make the diameter G/ to JF (prolonging G/). 

From end F, draw the tangent FN. Now since, by construction, 

Glis to JF as OE is to EB, then, by composition, as OB is to BE, 

33. The germinal idea here resembles that of the later concept of infini- 
tesimals of higher order. Galileo had used this notion before, in a different 

connection; cf. Dialogue, pp. 199-202 (Opere, VII, 225-29). 
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so GF is to FI. But D is the mean proportional between OB 

and BE, and NF is that between GF and F/. Therefore NF has 

to FI the same ratio that OB has to D, which ratio is greater 

than that of the weights C and D to weight H. The descent or 

speed of weight H having therefore a greater ratio to the rise 

cr speed of the weights C and D, than the heaviness of these 

weights C and D has to the heaviness of weight H, it is clear 

that weight H will descend; that is, the line AB will depart from 
horizontal straightness. 

And what happens to the straight line AB, devoid of heavi- 

ness, when there is attached at E any minimal weight H, 

happens also to the rope AB made of weighty material, without 

the addition of any further heavy object, since on it is sus- 

pended the weight of the material of the rope AB itself. 

Simp. | am fully satisfied. And now Salviati, in agreement 

with his promise, shall explain to us the utility that may be 

drawn from the little chain, and afterward give us those 

speculations made by our Author about the force of impact. 

Saly. Sufficient to this day is our having occupied ourselves 

in the contemplations now finished. The time is rather late, 
and will not, by a large margin, allow us to explain the matters 

you mention; so let us defer that meeting to another and more 

suitable time. 

Sagr. 1 concur with you opinion. From what I have heard in 

my various discussions with close friends of our Academician, 

this matter of the force of impact is very obscure, nor have its 
recesses been penetrated by anyone who has treated of it. It 

is filled with shadows, and is completely alien to men’s first 

impressions [prime immaginazioni]. Among the conclusions ] 

have heard offered, a very extravagant one sticks in my mind, 

which is that the force of impact is unbounded, not to say 

infinite. We shall therefore await Salviati’s convenience. But 

meanwhile, tell me; what are those things I see written there 

after the treatise on projectiles? 

Salv. These are some propositions pertaining to the center of 

gravity of solids which our Academician discovered in his 

youth, when it appeared to him that there were still some 

defects in what had been left written on the subject by Federico 

Commandino.** He thought that these propositions which 

34. Federico Commandino (1509-75), Liber de centro gravitatis solidorum 
(Bologna, 1565), a work in the strict Archimedean tradition, written to supple- 

‘ment the ancient treatise On Plane Equilibrium. Commandino had been the 
teacher of Galileo’s patron, Guidobaldo del Monte. 
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you see written here might supply that which Commandino’s 

book left to be desired, and he applied himself to this study at 

the instance of the illustrious Marquis Guidobaldo del Monte, 

a very great mathematician of his time as shown by his various 

published works. Our Author gave a copy of these to that 

gentleman, intending to pursue the subject for other solids not 

touched on by Commandino. But some time later, he ran 

across the book of Luca Valerio, a prince of geometers, and 

saw that this resolved the entire subject without omitting 

anything; hence he went no further, though his own advances 

were made along quite a different road from that taken by 
Valerio.*° 

Sagr. It will be good, then, in the time between our meetings 

just concluded and those in the future, for you to leave this 

book in my hands. Thus I may look at in the meantime, and 

study one by one the propositions written there. 

Salv. Very gladly do I yield to your request, and hope that 

you will take pleasure in these propositions. 

[The Fourth Day Ends}| 

35. Cf. notes 20 to First Day and 37 to Second Day. 



Appendix Bue) 

In which are contained theorems and 
related demonstrations concerning 
the center of gravity of solids, 
written earlier by the Author’ 

Opere, I 

POSTULATE 187 

We assume that, of equal weights similarly arranged on 

different balances, if the center of gravity of one composite 

[of weights] divides its balance in a certain ratio, then the 

center of gravity of the other composite also divides its balance 
in the same ratio. 

LEMMA 

Let line AB be bisected at C, and the half AC be divided * : 

at E so that the ratio of BE to EA is that of AE to EC. I say ’ 
that BE is double EA. 

Indeed, since EA is to EC as BE is to EA, we shall have, 

by composition and permutation [of ratios], AE to EC as 

BA is to AC; but as AE is to EC (that is, as BA is to AC), 

BE is to EA; whence BE is double EA. 

These things granted, it is to be demonstrated [that]: 

[PROPOSITION 1] 

If any number of magnitudes equally exceed one another, the 

1. These theorems date, in part at least, from the period 1585-87. The 
last proposition and its lemma appear to have been written first, having 
been submitted by Galileo with an application for a position at the University 
of Bologna in 1587. Early in the next year he corresponded with Christopher 
Clavius and Guidobaldo del Monte about the first proposition. The others 
may have been done in response to encouragement from the latter and from 
Michael Coignet (1544-1623) at that time. A plan to publish this work in 
1613 was postponed; cf. note 37 to Second Day. In the original printing 
the lemmas, theorems, and corollaries were not numbered, and they were 

not always clearly distinguished typographically; both have been done 
here for ease of reference. 
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excesses being equal to the least of them, and they are so arranged 

on a balance as to hang at equal distances, the center of gravity 

of all these divides the balance so that the part on the side of 

the smaller [magnitudes] is double the other part. 

Thus, on balance AB, let hang at equal distances any 

number of magnitudes F, G, H, K, N, such as described above, 

of which the least is N; let the points of suspension be A, C, 

D, E, B, and let X be the center of gravity of all the magnitudes 

thus arranged. It is to be shown that the part of the balance 

BX, on the side of the lesser magnitudes, is double XA, 

the other part. 
Bisect the balance at point D, which lies either at some point 

of suspension, or necessarily falls midway between two 

suspension points. The remaining distances between suspen- 

sion [points], A and [C, C and] D, are to be bisected at points 

M and J, and all the magnitudes are to be divided into parts 

equal to N. Then the number of parts of F will be equal 

to the number of magnitudes that hang from the balance, 

while the parts of G will be one fewer, and so on for the rest. 

Thus the parts of F are N, O, R, S, T; those of G [are] N, O, 

R, S; those of H [are] N, O, R; and finally the parts of K 

are N and O. All the parts marked WN are then equal to [those 

in] F; all the parts marked O will be equal to G; those marked 

R will be equal to H; those marked S will be equal to K; and 

finally the magnitude T is equal to N. 

Since all the magnitudes marked WN are equal to one another, 

their point of balance will be at D, which bisects the balance 

AB. For the same reason, the point of balance for all the 

magnitudes marked O is at J; of those marked R, it is at C; 

those marked S have their point of balance at M, while 

finally Tis hung at A. Thus along the balance AD, [considered 

as separated from DB], there are hung, at the equal distances 

D, I, C, M, A, magnitudes that equally exceed one another 

and whose excess is equal to the least thereof. But [of these] 

the greatest [magnitude], composed of all the N’s, hangs 

[as if] from D, while the least (that is, 7) hangs from A, and 

the others are all arranged in order. 

And again, there is the other balance AB on which 

corresponding magnitudes are arranged in the same order 

[though reversed], equal in number and sizes to the foregoing. 

Wherefore we see the balances AB and AD divided in the 

same ratio by the centers [of gravity] of all the magnitudes 
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compounded. But the center of gravity of the said magnitudes 
[so arranged] is X;? therefore X divides the balances BA 
and AD in the same ratio, in such a way that as BY is to XA, 
so XA is to XD. Therefore BX is double XA, by the above 
lemma. Q.E.D. 

[PROPOSITION 2] 

If to a parabolic conoid one figure is inscribed and another 

is circumscribed, [both] of cylinders having equal height, and 

the axis of the conoid is divided in such a way that the part 

toward the apex is double the part toward the base, the center 

of gravity of the inscribed figure will be closer to the base of 

the section than [will] the said division point, while the center 

of gravity of the circumscribed figure will be farther than that 

same point from the base of the conoid; and the distance from 

that point of each of the two centers will be equal to the line 

that is one-sixth the height of one of the cylinders of which the 
figures are constructed. 

Let there be a parabolic conoid and the said figures, one 

inscribed and the other circumscribed; let the axis of the 

conoid be AE, divided at N so that AN is double NE. It is 

to be shown that the center of gravity of the inscribed figure 
lies in line NE, while that of the circumscribed figure lies in AN. 

Let the figures thus arranged be cut by a plane through 

the axis, and let the parabola BAC be cut, the [inter]section 

of the cutting plane with the base of the conoid being line BC; 

the sections of the cylinders are rectangular figures, as appears 

in the diagram. 
The first inscribed cylinder, of which the axis is DE, has 

to the cylinder of which the axis is DY the same ratio that 
the square [on] TD has to the square [on] SY, which is [in turn] 

as DA is to AY. The cylinder of which the axis is DY is, 
moreover, to the cylinder YZ as the square on SY is to the 

square on RZ, which is as YA to AZ; and for the same reason 

the cylinder of which the axis is ZY, to that of which the axis 

is ZU, is as ZA is to AU. Thus the said cylinders are to one 

2. Both Clavius and Guidobaldo (note 1, above) believed this assumption 
to beg the question. The latter was satisfied by Galileo’s explanation, sent 
to him in 1588 with a redrawn diagram showing all the weights as touching 
horizontally; cf. p. 198. 

3. It was a well known property of the parabola that the squares on the 
abscissae are in the ratio of the ordinates, but cf. note 4, below. 
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another as the lines DA, AY, ZA, AU; but these [lines] 

equally exceed one another, and the excess is equal to the 

least of them; hence AZ is the double of AU, AY is its triple, 

and DA its quadruple. Therefore the said cylinders are 

magnitudes equally exceeding one another, whose excess is 

equal to the least of them. Moreover, line XM is that along 

which these are hung at equal distances (indeed, each cylinder 

has its center of gravity at the midpoint of its own axis); 

whence, by the things previously demonstrated, the center 

of gravity of the magnitude composed of all [these] magnitudes 

divides the line XM so that the part toward X is double 

the remainder. Let it be divided thus, and let Xa be double 

aM; then point is the center of gravity of the inscribed figure. 

Let AU be bisected at point e; eX will be double ME; but 

Xa is double aM, whence eE will be triple Ea. Further, AE 

is triple EN; thus it is clear that EN is greater than Ea, and 
for that reason point a, which is the center of the inscribed 

figure, more nearly approaches to the base of the conoid 

than [does] N. And since as AE is to EN, so the removed 

part eE is to the removed part Ea, the remainder will be to the 

remainder (that is, Ae [will be] to Na) as AE is to EN. Therefore 

aN is one-third of Ae, and one-sixth of AU. 

Further, the cylinders of the circumscribed figure will be 

shown in the same way to exceed one another equally, the 

excess being equal to the least of them, and to have their 

centers of gravity equidistant along line eM. Hence if eM is 

divided at p so that ep is double the remainder pM, then p 

will be the center of gravity of the whole circumscribed 

magnitude; and since ep is double pM, and 4e is less than 

double EM (for these are equal), all AE is less than triple 

Ep; whence Ep will be greater than EN. And since eM is 

triple Mp, and ME plus double eA is likewise triple ME, all 
AE plus Ae will be triple Ep. But AE is triple EN, so the 

remainder Ae will be triple the remainder pN. Therefore 

Np is one-sixth of AU. But these were the things to be proved. 
And from this it is manifest that: 

[COROLLARY] 

To a parabolic conoid, one figure may be inscribed and 
another circumscribed so that their centers of gravity may 
be made less distant from N than any assigned length. 

In fact, if a line is taken six times the assigned length, 
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and the axes of the cylinders composing those figures are 

made less than the said line, then the distances between the 

[respective] centers of gravity of these [two] figures and the 

point N will [both] be less than the assigned line. 

The same [proposition], otherwise [demonstrated]: 

Let CD be the axis of a conoid, so divided at O that CO 

is double OD. It must be shown that the center of gravity 

of the inscribed figure lies in OD, while the center of the 

circumscribed [figure] lies in CO. 

As above, the figures are intersected by a plane through 

the axes and through C. Now, cylinders SN, TM, VI, and 

XE are to one another as the squares on lines SD, TN, VM, 

and X/; and these are to one another as are lines NC, CM, 

CI, and CE, which moreover exceed one another equally, 

and this excess i; equal to the least [of them], which is CE; 

and cylinder 7M equals cylinder ON, while cylinder V/ equals 

cylinder PN, and cylinder XE equals cylinder LN; therefore 

cylinders SN, ON, PN, and LN exceed one another equally 

and the excess is equal to the least of these, that is, to cylinder 

LN. But the excess of cylinder SN over cylinder QN is a ring 

of height QT (or /VD) and of breadth SQ; the excess of cylinder 

QN over cylinder PN is a ring of breadth QP; and finally 

the excess of cylinder PN over cylinder LN is a ring of breadth 

PL. Hence the said rings SQ, OP, PL are equal [in volume] 

to one another and to cylinder LN. Ring ST is therefore 

equal to cylinder XE; ring QV, double ring ST, is equal to 

cylinder VJ, which is likewise double the cylinder XE; and 

for the same reason, ring PX will be equal to cylinder 7M, 

and cylinder LE [equal] to cylinder SN. 

Therefore along the balance KF, which joins the midpoints 

of lines EJ and DN and is cut into equal parts by points H 

and G, there are magnitudes (that is, cylinders SN, TM, 

VI, and XE) of which the centers of gravity are respectively 

K, H, G, and F. Further, we have another balance, MK, 

which is one-half FK, and which is divided into as many 

equal parts by as many points, that is, [lines] MH, HN, and 

NK; and on this there are other magnitudes equal in number 
and size to those found on the balance FK, having their 

centers of gravity at points M, H, N, K, and being arranged 

in the same order. In fact, cylinder LE has its center of gravity 

at M and is equal to cylinder SN, which has its center of 

gravity at K; ring PX has its center of gravity at H and is 

equal to the cylinder TM, of which the center of gravity is 
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at H; ring QV, having its center of gravity at N, is equal to 

cylinder VJ, of which the center is G; finally, ring ST, having 

its center of gravity at K, equals cylinder XE of which the 

center is at F. Therefore the center of gravity of [each of] 

the said magnitudes divides the [respective] balance in the 

same ratio. But their center [of gravity] is unique, and is 

therefore at some point common to both balances; let this 

be Y. Hence FY will be to YK as KY is to YM; therefore 

FY is double YK; and, CE being bisected at Z, ZF will be 

double KD, and consequently ZD will be triple DY. But 

CD is triple DO; therefore line DO is greater than DY, and 

hence the center of gravity Y of the inscribed figure is closer 

to the base than is the point O. And since as CD is to DO, 

so the removed part ZD is to the removed part DY, then 

the remainder CZ will also be to the remainder YO, as CD 

is to DO; that is, YO will be one-third of CZ, or one-sixth 

of CE. 

By the same procedure we may show, on the other hand, 

that the cylinders of the circumscribed figure exceed one 

another equally, that their excesses are equal to the minimum 

cylinder, and that their centers of gravity are situated at equal 

distances along balance KZ; and likewise the rings equal 

to the cylinders are disposed in a like manner along the 

balance KG, which is one-half of balance KZ, and that hence 

the center of gravity R of the circumscribed figure divides 

the balance so that ZR is to RK as KR is to RG. Therefore 

ZR will be double RK; but CZ will be equal to line KD, 

and not its double; hence all CD will be less than triple DR, 

and so line DR is greater than DO; or the center of gravity 

of the circumscribed figure is farther from the base than is the 

point O. And since ZK is triple KR, and KD plus double 

ZC is triple KD, all CD plus CZ will be triple DR. But CD is 

triple DO; hence the remainder CZ will be triple the other 

remainder RO; that is, OR is one-sixth of EC. Which was 

the proposition. 

These things first demonstrated, it will be proved that: 

[PROPOSITION 3] 

The center of gravity of a parabolic conoid divides its axis 

so that the part toward the vertex is double the part toward 
the base. 

The parabolic conoidal [figure] whose axis is AB is divided 

at N so that AN is double NB. It is to be shown that the center 
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of gravity of the conoid is point N. If, indeed, it is not N, 

it is below this [point] or above it. First let it be below, at 

X, and draw LO equal to NX; and let LO be divided anywhere 

at S; and whatever ratio BX plus OS has to OS, let the [volume 

of the] conoid have to the solid R. 

Inscribe in the conoid a figure made up of cylinders of 

equal height in such a way that between its center of gravity 

and the point N, [a distance] less than LS shall be intercepted; 

and let the excess by which the conoid exceeds it be less than 

the solid R. It is manifest that this can be done. Thus let 

the inscribed [figure] be that of which the center of gravity 

is J; now [X will be greater than SO; and since as XB plus 

SO is to SO, so the conoidal [figure] is to R; and further, 

R is greater than the excess by which the conoid exceeds it; 

the ratio of the conoid to the said excess will be greater 

than BX plus OS to SO; and by division, the inscribed figure 

will have a greater ratio to the said excess than BX has to 

SO. But BX has to XJ a smaller ratio than to SO; therefore 

the inscribed figure will have to the remaining parts a much 

greater ratio than BX [has] to X/. Therefore the ratio of the 

inscribed figure to the remaining parts will be that of some 

other line to X/, which [line] must be greater than BY. Let it 

be MX. Thus we have X, the center of gravity of the conoid; 

but the center of gravity of the inscribed figure is 7. Therefore 

the center of gravity of the remaining portions, by which 

the conoid exceeds the inscribed figure, will be in the line 

XM, and at that point wherein it terminates so that the 

ratio of the inscribed figure to the excess by which the conoid 

surpasses it is the same as [the ratio of] this [line] to X/. But 

it has been shown that this ratio is that of MX to X/; therefore 

M will be the center of gravity of the portions by which the 

conoid exceeds the inscribed figure. But that certainly cannot 

be; for if a plane is drawn through M, parallel to the base 

of the conoid, all the said [excessive] parts will lie on the 

same side of it and will not be divided by it. Therefore the 

center of gravity of the conoid is not below point N. 

But neither is it above. Indeed, if this is possible, let it be 
[at] H; and as above, draw LO equal to HN and divide this 

anywhere at S; and whatever ratio BN plus SO has to SL, 

let the conoid have to R. Circumscribe about the conoid 

a figure [composed] of cylinders, as before, exceeding the 

conoid by a quantity less than the solid R, and let the line 
between the center of gravity of the circumscribed figure 

and point N be less than SO. The remainder UH will be 
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greater than LS; and since as BN plus OS is to SL, so the 

conoid is to R (R being greater than the excess by which 

the circumscribed figure exceeds the conoid), then BN plus 

SO has a smaller ratio to SL than the conoid has to the said 

excess. But BU is less than BN plus SO, while HU is greater 

than SL, whence the conoid has a much greater ratio to the 

said portions [of excess] than BU has to UH. Therefore 

whatever ratio the conoid has to the said portions, some line 

greater than BU has to UH. Let this be MU; and since the 

center of gravity of the circumscribed figure is U, while the 

center of the conoid is H, and as the conoid is to the remaining 

portions, so MU is to UH, then M will be the center of 

gravity of the remaining portions, which likewise is impossible. 

Therefore the center of gravity of the conoid is not above 

the point N. But it was demonstrated not to be below it; 

therefore it necessarily lies at N. And by the same reasoning 

this may be proved for a conoid cut by a plane that is not 

at right angles to its axis. 

The same is shown in another way, as is clear from the 

following: 

[PROPOSITION 4] 

The center of gravity of a parabolic conoid falls between the 

center of the circumscribed figure [of cylinders] and the center 

of the [similar] inscribed figure. 

Let there be a conoid with axis AB; the center [of gravity] 

of the circumscribed figure is C, while that of the inscribed 

figure is O. I say that the center [of gravity] of the conoid 

lies between points C and O. Indeed, if it does not, it lies 

either above, or below, or at one of these [points]. Let it 

be below, as for example at R; then since R is the center of 

gravity of the whole conoid and O is the center of gravity 

of the inscribed figure, the center of gravity of all the other 

portions by which the inscribed figure is exceeded by the 

conoid will lie on the extension of line OR beyond R, and 

precisely at that point which terminates it in such a way 

that whatever ratio the said portions have to the inscribed 

[figure], that is also the ratio of line OR to the line intercepted 

between R and that point. Let this ratio be that of OR to RX; 

then X will either fall outside the conoid, or inside it, or in 

its base. That it should fall outside, or in the base, is clearly 
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absurd. Falling inside, since XR is to RO as the inscribed 

figure is to the excess by which this is surpassed by the conoid, 
then we assume that whatever the ratio of BR to RO, such 
also is that of the inscribed figure to the solid K, which must 
necessarily be less than that excess. 

Next, inscribe another figure which shall be exceeded by 

the conoid by an excess less than K; its center of gravity will 

lie between O and C. Let this be U; since the first figure is to 

K as BR is to RO, and since on the other hand the second 

figure, of which the center is U, is greater than the first, and 

is exceeded by the conoid with an excess less than K, we shall 

have that whatever the ratio of the second figure to the excess 

by which it is surpassed by the conoid, such also is the ratio 

of some line greater than BR to line RU. But the center of 

gravity of the conoid is R, while that of the inscribed figure 

is U; therefore the center of gravity of the remaining portions 
will lie outside the conoid, below B, which is impossible. 

By the same procedure it will be shown that the center 

of gravity of this same conoid does not lie on line CA. Then, 

that it is neither of the points C or O is manifest. In fact 

if we suppose this, and describe other figures such that the 

inscribed is greater than the figure whose center [of gravity] 

is O, and that which is circumscribed is less than the figure 

whose center is C, the center of gravity of the conoid will 

fall outside the centers of gravity of these figures, which is 

impossible, as we have just concluded. It follows, then, 

that it lies between the center of the circumscribed figure 

and that of the inscribed figure. Being thus, it must necessarily 

lie in that point that divides the axis in such a way that the 

part toward the vertex is double the remainder, since indeed 

figures can be inscribed and circumscribed such that the lines 

lying between their centers of gravity and the said point 

may be less than any given line. Thus anyone who declared 

the contrary [of the above] would be led to the absurdity 

that the center [of gravity] of the conoid would not lie between 

the centers of gravity ofthe inscribed and circumscribed figures. 

[LEMMA] 

If there are three lines in [continued] proportion, and the 

ratio of the least to the excess by which the greatest exceeds 

the least is the same as that of some given line to two-thirds 

of the excess by which the greatest exceeds the middle [line]; 
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and again if the ratio of the greatest plus double the middle 

[line] to triple the greatest plus triple that middle is the same 

as the ratio of some [other] given line to the excess of the 

greatest over the smallest; then the sum of those two given 

lines is one-third of the greatest of the three proportional lines. 

Let there be three lines, AB, BC, BF, in [continued] 

proportion, and let the ratio of BF to AF be that of MS 

to two-thirds of CA; also let the ratio of AB plus 2BC to 3AB 

plus 3BC be that of another [line] SN to AC. It is to be 

demonstrated that MN is one-third of AB. 

Since AB, BC, and BF are in continued proportion, AC 

and CF are also in that same ratio; therefore, as AB to BC, 

so AC is to CF, and as 3AB is to 3BC, so AC is to CF. Whatever 

ratio 3AB plus 3BC has to 3CB, AC has to some smaller line 

than CF; let this be CO. Then by composition and inversion 

of ratios, OA has to AC the same ratio that 3AB plus 6BC 

has to 3AB plus 3BC; further, AC has to SN the same ratio 

as 3AB plus 3BC to AB plus 2BC; by equidistance of ratios, 

therefore, OA has to NS the same ratio as 3AB plus 6BC 

to AB plus 2BC. But the ratio of 3AB plus 6BC to AB plus 

2BC is 3(AB plus 2BC); therefore AO is triple SN. 

Next, since OC is to CA as 3CB is to 3AB plus 3CB, while 

as CA is to CF, so 3AB is to 3BC, then by equidistance of 

ratios in perturbed proportion, as OC is to CF, so 3AB 

will be to 3AB plus 3BC; and by inversion of ratios, as OF 

is to FC, so 3BC is to 3AB plus 3BC. Also, as CF is to FB, 

so AC is to CB, and 3AC is to 3BC; therefore, by equidistance 

of ratios in perturbed proportion, as OF is to FB, so 3AC 

is to 3(AB plus BC). Hence all OB will be to BF as 6AB is 

to 3(AB plus BC); and since FC has the same ratio to CA 

that CB has to BA, then as FC is to CA, so BC will be to 

BA; and by composition, as FA is to AC, so is the sum of 

BA plus AC to BA, as likewise [are] their triples. Therefore, 

as FA is to AC, so 3BA plus 3BC is to 3AB; whence as FA 

is to two-thirds AC, so 3BA plus 3BC is to two-thirds of 
3BA, which is 2BA. But as FA is to two-thirds AC, so FB 

is to MS; therefore as FB is to MS, so 3BA plus 3BC is to 

2BA. But as OB is to FB, so 6AB was to 3(AB plus BC). 

Therefore, by equidistance of ratios, OB has to MS the same 

ratio as 6AB to 2BA, whence MS is one-third OB. And 

it was shown that SN is one-third AO; hence it is clear that 
MN is likewise one-third AB. Q.E.D. 
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[PROPOSITION 5] 

The center of gravity of any frustum cut from a parabolic 

conoid lies in the straight line that is the axis of this frustum; 

this being divided into three equal parts, the [said] center of 

gravity lies in the middle [part] and so divides this [part] that 

the portion toward the smaller base has, to the portion toward 

the larger base, the same ratio as that of the larger base to 

the smaller. 

From a conoid whose axis is RB, cut a solid with axis BE, 

the cutting plane being parallel to the base. Let it be cut also 

by another plane, perpendicular to the base, this section 

giving the parabola URC, the sections of the cutting plane 

and of the base being the straight lines LM and UC. The 

diameter of ratios, or parallel diameter, will be RB, while 

LM and UC will be ordinately applied.* 

Let the line EB be divided into three equal parts, of which 

the middle one is QY; this is further divided at J so that 

whatever ratio the base of diameter UC has to the base of 

diameter LM (that is, [the ratio] of the square of UC to the 

square of LM), QI has also to /Y. It is to be demonstrated 

that the center of gravity of the frustum ULMC 1s I. 

Draw NS equal to BR, and let SX be equal to ER; and to 
NS and SX take the third proportional SG; and as NG 

is to GS, let BO be to JO. It does not matter whether point O 

falls above or below LM. And since in section URC the lines 

LM and UC are ordinately applied, as the square of UC 

is to the square of LM, so line BR will be to RE; and further 

as the square of UC to the square of LM, so is Q/ to IY; 

and as BR is to RE, so is NS to SX; therefore Q/ is to /Y 

as NS is to SX. Whence as QY is to YJ, so will NS plus SX 

be to SX; and as EB is to YI, so is triple NS plus triple SX 

to SX. Further, as EB is to BY, so triple the sum of NS and 

SX is to the sum of NS and SX; therefore as EB is to BI, 

so is triple NS plus triple SY to NS plus double SX. Therefore 

the three lines NS, SX, and GS are in continued proportion, 

and whatever the ratio of SG to GN, the same will be that 

of some assigned line O/ to two-thirds of EB (that is, of NX); 

and whatever ratio NS plus double SX has to triple NS 

plus triple SX, the same will be that of some assigned line 

4. Galileo’s “diameter of ratios” in the diagram would now be called 

the axis of ordinates, while his “ordinates” are our abscissae. 
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IB to BE (that is, to NX). Therefore, by what was demonstrated 

above, these [assigned] lines taken together will be one-third 

of NS (that is, of RB). Therefore RB is triple BO, whence 

BO will be the center of gravity of the conoid URC. 

Now let A be the center of gravity of the conoid LRM; 

then the center of gravity of the frustum ULMC lies in line 

OB, and at the point where this terminates so that whatever 

ratio the frustum ULMC has to the portion LRM, the line 

AO has that same ratio to the intercept between O and the 

said point [of termination]. Since RO is two-thirds of RB, 

RA is two-thirds of RE, and the remainder AO will be 

two-thirds the remainder EB. And since as the frustum 

ULMC is to the portion LRM, so NG is to GS, and as NG 

is to GS, so is two-thirds EB to OJ, and two-thirds EB is equal 

to line AO; then as the frustum ULMC is to the portion LRM, 

so AO is to OJ. Therefore it is clear that the center of gravity 

of the frustum ULMC is point J, and the axis is so divided 

[by it] that the part toward the smaller base is to the part 

toward the larger base as double the larger base plus the 

smaller is to double the smaller plus the larger. Which is 

the proposition, but more elegantly expressed. 

[LEMMA] 

If any number of magnitudes are so arranged that the second 

adds to the first double the first, and the third adds to the second 

triple the first, while the fourth adds to the third quadruple 

the first, and so every following magnitude exceeds the preceding 

one by a multiple of the first magnitude according to its 

number in order; if, I say, such magnitudes are arranged on 

a balance and suspended at equal distances, then the center 

of equilibrium of the whole composite divides that balance so 

that the part toward the smaller magnitudes is triple the 

remainder. 

Let LT be the balance, and the magnitudes hanging from 

it, of the kind described, are A, F, G, H, K, of which A is 

hung first, from 7. I say that the center of equilibrium cuts 

the balance TL so that the part toward T is triple the remainder. 

Let TL be triple LJ, and SL triple LP, and QL [triple] LN, 

and LP [triple] LO; then JP, PN, NO, OL will be equal. 

Take at F a magnitude of 2A, and at G another, 34; at H, 

4A, and so on; and let these be the magnitudes [marked] 

a in the diagram. And do the same in magnitudes F, G, H, K; 
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indeed, let the magnitude in the remainder of F, which is b, 

be equal to a; and in G take 25, in H, 3b, etc.; and let these 

be the magnitudes containing b’s. And in the same way take 
those containing c’s, d’s, and e. Then all those in which a 

is marked are equal to [all in] K; the composite of all b’s 

will equal H; that of the c’s, G; that composed of all d’s 

will be equal to F, and e [will equal] A itself. And since T/ 

is double LI, J will be the point of equilibrium of magnitudes 

made up of all the a’s; likewise, since SP is double PL, P 

will be the point of equilibrium of the composite of all the 

b’s; and for the same cause, N will be the point of equilibrium 

of the composite of all c’s, O [will be that] of the composite 

of d’s, and L, of e itself. 
There is thus a certain balance TL on which at equal 

distances there hang certain magnitudes K, H, G, F, A; 

and further, there is another balance LJ on which at equal 

distances hang a like number of magnitudes, equal to and 

in the same order as those described. Indeed, there is a 

composite of all a’s that hangs from J, equal to K hanging 

from L; and a composite of all b’s that hangs from P, equal 

to H hanging from P; and likewise a composite of c’s that 

hangs from N, equal to G, and a composite of a’s that hangs 

from O, equal to F; and e, hanging from L, is equal to A. 

Whence the balances are divided in the same ratio by the 

center of [equilibrium of] the composites of magnitudes. 
But there is [only] one center of the composites of the said 

magnitudes, and it will be a common point of the line TL 

and the line L/. Let this be X¥. And thus as 7X is to XL, so 

LX will be to XJ, and all TL to LI. But TL is triple L/, whence 

TX is triple XL. 

[LEMMA] 

If any number of magnitudes are taken, and the second 

adds above the first, triple the first, while the third exceeds 

the second by five times the first, and the fourth exceeds the 

third by seven times the first, and so on, each addition over 

the preceding being a multiple of the first according to the 

successive odd numbers (as the squares of lines that equally 
exceed one another and of which the excess is equal to the 

first thereof), and if these be hung at equal distances along 

a balance, then the center of equilibrium of all combined will 

divide the balance so that the part toward the lesser magnitudes 

is more than triple the remainder; but one distance being 

removed, it will be less than triple. 
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Let there be on the balance BE magnitudes such as those 

described, from which let then be removed some magnitudes 

arranged among themselves as in the preceding [lemma]; 

let [for example] all the a’s [in the present diagram be taken 

away]. The remainder will be the c’s, [still] arranged in the 

same order [as was the whole], but wanting the greatest 

[magnitude]. Let ED be triple DB, and GF triple FB; D will 

be the center of equilibrium of everything composed of the 

a’s, while F will be that of the c’s; hence the center of the 

compound of [both] a’s and c’s falls between D and F. And 

thus it is manifest that EO is more than triple OB, while GO 

is less than triple OB. Which was to be proved. 

[PROPOSITION 6] 

If any cone or portion of a cone has one figure of cylinders 

of equal height inscribed to it, and another circumscribed, and 

if its axis is divided so that the part intercepted between the 

point of division and the vertex is triple the remainder, then 

the center of gravity of the inscribed figure will be closer to 

the base of the cone than [will] the point of division, but the 

center of gravity of the circumscribed [figure] will be closer to 

the vertex than [will] that same point. 

Let there be a cone with axis NM, divided at S so that 

NS is triple the remainder SM. I say that any figure as 

described that is inscribed in the cone has its center of gravity 

in the axis NM, and that it approaches more nearly the base 

of the cone than does the point S, while the center of gravity 

of one circumscribed is likewise in the axis NM, but closer 

to the vertex than is S. 

Assume an inscribed figure of cylinders whose axes MC, 

CB, BE, EA are equal. Thus this first cylinder, of which the 

axis is MC, has, to the cylinder with axis CB, the same ratio as 

[that of] its base to the base of the other (since their altitudes 

are equal); and this ratio is the same as that which the square 

of CN has to the square of NB. It is likewise shown that the 

cylinder with axis CB has to the cylinder with axis BE the. 

same ratio as that of the square of BN to the square of NE: 

while the cylinder around axis BE has to the cylinder around 

axis EA the ratio of the square of EN to the square of NA. 

Moreover, the lines NC, NB, EN, NA equally exceed one 

another, and their excess is equal to the least, namely NA. 

There are therefore magnitudes (i.e. the inscribed cylinders) 
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which have successively to one another the ratio of squared 

lines equally exceeding one another, of which the excess is 

equal to the least. Thus these are arranged on the balance 77, 

with the single centers of gravity therein, and at equal distances. 

Hence by those things demonstrated above, it is evident that 

the center of gravity of all these compounded in the balance 

TI so divides it that the part toward T is more than triple 

the remainder.° Let this center be O; then TO is more than 

triple OJ. But TN is triple JM; therefore all MO will be less 

than one-quarter of all MN, of which MS was assumed to 

be one-quarter. It is therefore evident that point O comes 

nearer the base of the cone than does S. 
Now let the circumscribed figure consist of cylinders whose 

axes MC, CB, BE, EA, AN are equal to one another. As with 

the inscribed [figure], these are shown to be to one another 

as the squares of lines MN, NC, BN, NE, AN, which equally 

exceed one another and whose excesses equal the least, AN. 

Whence, from what went before, the center of gravity of 

all the cylinders thus arranged (and let this be U) so divides 

the balance R/ that the part toward R (that is, RU) is more 

than triple the remainder UJ, while TU will be less than triple 

the same. But NT is triple 1M; therefore all UM is greater 

than one-quarter of all MN, of which MS was assumed to 

be one-quarter. And thus point U is closer to the vertex 

than is point S. Q.E.D. 

[PROPOSITION 7] 

Given a cone, a figure can be inscribed and another 

circumscribed to it, made up of cylinders having equal heights, 

so that the line intercepted between the center of gravity of 

the circumscribed [figure] and that of the inscribed [figure] is 

less than any assigned line. 

Given a cone with axis AB, and given further a straight 
line K; I say, let the cylinder L be drawn equal to that [which 

may be] inscribed in the cone, having an altitude of one-half 

the axis AB. Divide AB at C so that AC is triple CB; and 

whatever ratio AC has to K, let this cylinder L have to some 

solid, X. Circumscribe about the cone a figure of cylinders 
having equal altitudes, and inscribe another one, so that the 

circumscribed exceeds the inscribed by a quantity less than 

5. Because T/ omits one distance, NA. 
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the solid X. Let the center of gravity of the circumscribed 

[figure] be FE, which falls above C, while the center of the 

inscribed one is S, falling below C. I now say that line ES 

is less than K. 
For if it is not, put CA equal to EO; then since OE has to 

K the same ratio as that of L to X, the inscribed figure is not 
less than cylinder L, and the excess by which the circumscribed 

figure surpasses it is less than solid X; therefore the inscribed 
figure has to the said excess a greater ratio than OE will have 

to K. But the ratio of OE to K is not less than that of OE 

to ES, since ES cannot be assumed less than K; therefore 

the inscribed figure has a greater ratio to the excess by which 

the circumscribed [figure] surpasses it than OE has to ES. 

Hence whatever ratio the inscribed [figure] has to the said 

excess, some line greater than EO will have this to the line 

ES. Let this [line] be ER. Now, the center of gravity of the 

inscribed figure is S, while that of the circumscribed is E; 

hence it is evident that the remaining portions by which the 

circumscribed exceeds the inscribed [figure] have their center 

of gravity in line RE, and at that point where it is terminated 

so that whatever ratio the inscribed [figure] has to those 

portions, the line intercepted between E and that point has 

to line ES. But RE has this ratio to ES; hence the center of 

gravity of the remaining portions by which the circumscribed 

figure exceeds the inscribed will be R; which is impossible, 

since indeed the plane through R [drawn] parallel to the 

base of the cone does not cut these portions. Therefore it is 

false that line ES is not less than K, and hence it will be less. 

Moreover, in a way not dissimilar, this may be demonstrated 

to hold for pyramids. 

From this it is manifest that: 

[COROLLARY] 

About a given cone, a figure can be circumscribed, and 
[within it] another inscribed, of cylinders having equal altitudes, 
such that the lines between their centers of gravity and the 
point which divides the axis of the cone so that the part toward 
the vertex is triple the remainder are less than any given line. 

For indeed, as was demonstrated, the said point dividing 
the axis in the said way is always found between the centers 
of gravity of the circumscribed and inscribed [figures]; and 
it is possible for the line between those same centers to be 
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less than any assigned line; so that which is intercepted 

between either of the two centers and the point that thus 

divides the axis must be much less than this assigned line. 

[PROPOSITION 8] 

The center of gravity of any cone or pyramid so divides the 

axis that the part toward the vertex is triple the remainder 
toward the base. 

Given the cone with axis AB, divided so that AC is triple 
the remainder CB, it is to be shown that C is the center of 

gravity of the cone. For if it is not, the center of the cone will 
be either above or below point C. First let it be below, at E, 

and draw line LP equal to CE, and divide this anywhere 

at N; and whatever ratio BE plus PN shall have to PN, 

let this cone have to some solid, X. Inscribe in the cone a 

solid figure made up of cylinders of equal height; the center 

of gravity of this shall be less distant from point C than 

[the length of] line LN, and the excess by which the cone 

exceeds [this figure] will be less than solid X. It is clear from 

what has been demonstrated that these things can be done. 

Let this solid figure which we assume have its center of 

gravity at J. Then line JE will be greater than NP, since LP 

is equal to CE; and IC [is] less than LN; and since BE plus 
NP is to NP as the cone is to X, and moreover the excess 

by which the cone exceeds the inscribed figure is less than solid 

X, the cone will have a greater ratio to the said excess than that 

of BE plus NP to NP; and by division, the inscribed figure 

has a greater ratio to the excess by which the cone exceeds 

it than BE has to NP. Moreover, BE has to E/ a still smaller 

ratio than it has to NP, since JE is greater than NP, whence 

the inscribed figure has a much greater ratio to the excess 

by which the cone surpasses it than BE has to El. 

Therefore whatever ratio the inscribed [figure] has to the 

said excess, some greater line BE has to line E/. Let this be 

ME; since ME is to E/ as the inscribed figure is to the excess 

by which the cone surpasses it, and [if] E is the center of 

gravity of the cone, while / is the center of gravity of the 

[figure] inscribed, then M will be the center of gravity of the 

remaining portions by which the cone exceeds the inscribed 

figure in it; which is impossible. Therefore the center of gravity 

of the cone is not below point C. 
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But neither is it above. For, if possible, let it be R; again 

take the line LP, cut anywhere at N. Whatever ratio BC plus 

NP has to NL, let the cone have to_X, and likewise circumscribe 

about the cone a figure that exceeds it by a lesser quantity 

than the solid X; the line intercepted between its center of 

gravity and C shall be less than NP. Now let there be 

circumscribed [a figure] having center of gravity O; the 

remainder OR will be greater than NL. And since as BC 

plus PN is to NL, so the cone is to X, but the excess by which 

the circumscribed [figure] surpasses the cone is less than X, 

and BO is less than BC plus PN, while OR is greater than LN, 

the cone will have a greater ratio to the remaining portions 

by which it is exceeded by the circumscribed figure than BO 

has to OR. Let MO have that ratio to OR; then MO will be 

greater than BC, and M will be the center of gravity of the 

portions by which the cone is exceeded by the circumscribed 

figure; which is contradictory. Therefore the center of gravity 

of this cone is not above the point C, but neither is it below, 

as was shown; therefore it is C itself. And the same may 

be demonstrated in the above way for any pyramid. 

[LEMMA ]°® 

If there are four lines in [continued] proportion, and whatever 

ratio the least of these has to the excess by which the greatest 

exceeds the least, that same [ratio] is had by some [assumed] 

line to 3/4 of the excess by which the greatest exceeds the 

second [line]; and whatever ratio a line equal to the greatest 

plus double the second plus triple the third has to a line equal 

to four times the sum of the greatest, the second, and the third 

together, that same ratio is had by [another] assumed line to 

the excess by which the greatest exceeds the second; and 

these two [assumed] lines taken together will be one-quarter of 

the greatest of the original lines. 

Let there be four lines in continued proportion, AB, BC. 
BD, BE; and whatever ratio BE has to EA, let FG have to 

three-quarters of AC; and further, whatever ratio a line equal 

to AB plus 2BC plus 3BD has to a line equal to four times 

the sum of AB, BC, and BD, let HG have to AC. It is to be 

shown that HF is one-quarter of AB. 

6. A manuscript copy submitted in 1587 (note 1, above) exhibits some 
variants from the printed text, but none of a substantial character. 
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Since AB, BC, BD, and BE are proportional, then AC, 

CD, and DE will be in that same ratio; and as four times the 
sum of AB, BC, and BD is to AB plus 2BC plus 3BD, so the 
quadruple of AC plus CD plus DE (that is, 44E) is to AC 

plus 2CD plus 3DE; and thus is AC to HG. Therefore as 

3AE is to AC plus 2CD plus 3DE, so is three-quarters of AC 

to HG. Moreover, as 3AE is to 3EB, so is three-quarters of 

AC to GF. Hence, by the converse of [Euclid] V, 24, as 3AE 

is to AC plus 2CD plus 3DB, so is three-quarters of AC to 

HF; and as 4AE is to AC plus 2CD plus 3DB (that is, to AB 

plus CB plus BD), so AC is to HF. And permuting, as 4AE is 

to AC, so AB plus CB plus BD is to HF. Further, as AC is 

to AE, so ABis to ABplus CB plus BD. Hence, by equidistance 

of ratios in perturbed proportion, as 4AE is to AE, so AB 

is to HF. Whence it is clear that HF is one-quarter of AB. 

[PROPOSITION 9] 

Any frustum of a pyramid or cone cut by a plane parallel to 

its base has its center of gravity in the axis, and this so divides 

it that the part toward the smaller base is to the remainder 

as three times the greater base plus double the mean proportional 

between the greater and smaller bases plus the smaller base is 

to triple the smaller base plus the said double of the mean 

proportional distance plus the greater base. 

From a cone or pyramid with axis AD, cut a frustum by 

a plane parallel to the base having axis UD; and whatever 

ratio triple the larger base, plus double the mean proportional 

[of both bases] plus the smaller [base], has to triple the smaller, 

plus double the [above] mean proportional plus the greatest, 
let UO have to OD. It is to be shown that O is the center of 

gravity of the frustum. 
Let UM be one-quarter of UD. Draw line HK equal to 

AD, and let KX equal AU; let XL be the third proportional 

to HX and KX, while XS is the fourth proportional. Whatever 

ratio HS has to SX, let MD have to a line from O in the 

direction of A, and let this be ON. Now since the larger base 

is to the mean proportional between the larger and the smaller 

as DA is to AU (that is, as HX is to XK), and the said mean 

proportional is to the smaller as KX is to XL, then the larger, 

the mean proportional, and the smaller base will be in the ratio 

of lines HX, XK, and XL. 
Thus as triple the larger base plus double the mean pro- 
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portional plus the smaller is to triple the smaller plus double 

the mean proportional plus the larger (that is, as UO is to OD), 

so is triple HX plus double XK plus XL to triple XL plus double 

XK plus XH. And, by composition and inverting, OD will be 

to DU as HX plus double XK plus triple XZ is to four times the 

sum of HX, XK, and XL. Therefore there are four lines in 

continued proportion, HX, XK, XL, and XS; and whatever 

ratio XS has to SH, some assumed line NO has to three- 

quarters of DU (that is, to three-quarters of HK). Further, 

whatever ratio HX plus double XK plus triple XL has to four 

times the sum of HX, XK, and XL, some assumed line OD 

has to DU (that is, to HK). Hence, by what was demonstrated, 

DN will be one-quarter of HX (that is, of AD), whence point 

N will be the center of gravity of the cone or pyramid having 

axis AD. 

Let / be the center of gravity of the pyramid or cone having 

axis AU. It is then clear that the center of gravity of the frustum 
lies in line JN extended beyond N, and at that point of it which, 

with point N, intercepts a line to which JN has the ratio 

that the frustum cut off has to the pyramid or cone having 

axis AU. Thus it remains to be shown that JN has to NO the 

same ratio that the frustum has to the cone whose axis is AU. 

But as the cone with axis DA is to the cone with axis AU, so is 

the cube of DA to the cube of AU, that is, as the cube of HX to 

the cube of XK; and this is the ratio of HX to XS. Whence, 

dividing, as HS is to SX, so the frustum having axis DU will be 

to the cone or pyramid having axis UA. And as HS is to SX, 

so also MD is to ON; whence the frustum is to the pyramid 

having axis AU as MD isto NO. And since AN is three-quarters 

of AD, and AI is three-quarters of AU, the remainder JN will 

be three-quarters of the remainder UD, wherefore IN will be 

equal to MD. It was demonstrated that MD is to NO as the 

frustum is to the cone AU; therefore it is clear that JN has also 

this same ratio to NO. Whence the proposition is clear. 

Finis’ 

7. The end of the original printed edition. 



Added Day 

On the Force of Percussion 

Interlocutors: Salviati, Sagredo 
and Aproino 

Sagr. Your absence during this past fortnight, Salviati, 

has given me an opportunity to look at the propositions 

concerning centers of gravity in solids, as well as to read 

carefully the demonstrations of those many new propositions 

on natural and violent motions; and since there are among 

these not a few that are difficult to apprehend, it has been 
a great help to me to confer with this gentleman whom you 

see here. 

Salv. | was about to ask you concerning the gentleman’s 

presence, and about the absence of our good Simplicio. 

Sagr. I imagine—indeed, I think it certain—that the 

reason for Simplicio’s absence is the obscurity to him of 

some demonstrations of various problems relating to motion, 

and still more, that of those about centers of gravity. I speak 

of those [demonstrations] which, through their long chains 

of assorted propositions of [Euclid’s] Elements of Geometry, 

become incomprehensible to people who do not have those 

elements thoroughly in hand. 

The gentleman you see is Signor Paolo Aproino, a nobleman 
of Treviso, who was a pupil of our Academician when he 

taught at Padua; and not only his pupil, but his very close 

friend, with whom he held long and continual conversations, 

together with others [of like interests]. Outstanding among 

1. Although the word percussio is literally translated in the title above, 
it is rendered by “impact” in the text as the more usual English term. Galileo 
first wrote on these problems in 1594 as a brief appendix to his Mechanics. 
The composition of this dialogue probably began about March, 1635, 
shortly after his old pupil, Aproino, saw at Venice the manuscript of the 

First Day. 
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these was the most noble Signor Daniello Antonini? of 

Udine, a man of surpassing intellect and superhuman worth 

who died gloriously in defence of his country and its serene 

ruler, receiving honors worthy of his merit from the great 

Venetian Republic. [With him, Aproino] took part in a large 

number of experiments that were made at the house of our 

Academician, concerning a variety of problems. Now, 

about ten days ago this gentleman came to Venice, and he 

visited me, as is his custom; and learning that I had here 

these treatises by our friend, he wanted to look them over 

with me. Hearing about our appointment to meet and talk 

over the mysterious problem of impact, he told me that he 

had discussed this many times with the Academician, though 

always questioningly and inconclusively, and he told me 

that he was present at the performance of divers experiments 

relating to various problems, of which some were made with 

regard to the force of impact and its explanation. He was 

just now on the point of mentioning, among others, one which 

he says is most ingenious and subtle. 

Salyv. | consider it my great good fortune to meet Signor 

Aproino and to know him personally, as I already knew him 

by reputation and the many reports of our Academician. 

It will be a great pleasure for me to be able to hear at least 

a part of these various experiments made at our friend’s 

house on different propositions, and in the presence of minds 

as acute as those of Aproino and Antonini, gentlemen of 

whom I have heard our friend speak on many occasions with 

praise and admiration. Now since we are here to reason 

specifically about impact, you, my dear Aproino, may tell 

us what was drawn from the experiments, in this matter; 

promising, however, to speak on some other occasion about 

others made concerning other problems. For I know that 

such are not lacking to you, from our Academician’s assurance 

that you were always no less curious than careful as an ex- 
perimentalist [sperimentatore]. 

Apr. If I were to try with proper gratitude to repay the 

debt to which your excellency’s courtesy obliges me, I should 

have to spend so many words that little or no time would 

be left in this day to speak of the matter here undertaken. 

2. Antonini (1588-1616) became a correspondent of Galileo’s after 
studying with him at Padua about 1608-10. This coupling of his name 
with that of Aproino suggests that the experiments described belonged to 
that period, as do the most precise experiments of which Galileo left any 
manuscript records. 
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Sagr. No, no, Aproino; let us start right in with learned 
discussion, leaving ceremonious compliments to the courtiers. 
For what it is worth, I shall stand pledge between you two 
that mutual satisfaction will be given by words that are few, 
but candid and sincere. 

Apr. | hardly expect to say anything not already known 

to Salviati, so the entire burden of discourse ought to be borne 

on his shoulders. Yet to give him a start at least, if for no 

other reason, I shall mention the first steps and the first 

experiment that our friend essayed in order to get to the 

heart of this admirable problem of impact. 

What is sought is the means of finding and measuring its 

great force, and if possible simultaneously of resolving 

the essence [of impact] into its principles and prime causes; 

for this effect seems, in acquiring its great power, to proceed 

very differently from the manner in which multiplication of 

force proceeds in all other mechanical machines; I say 

“mechanical” to exclude the immense force of gunpowder 

[fuoco, fire].* In machines, it is very conclusively perceived 

that speed in a weak mover compensates the power [gagliardia} 

of a strong resistent [which is] moved but slowly. Now since it 

is seen that in the operation of impact, too, the movement of 

the striking body conjoined with its speed acts against the 

movement of the resistent and the much or little that it is 
required to be moved, it was the Academician’s first idea to 

try to find out what part in the effect and operation of impact 
belonged, for example, to the weight of a hammer, and what 

[part belonged to] the greater or lesser speed with which it was 

moved. He wanted if possible to find one measure that would 

measure both of these, and would assign the energy of each;* 

and to arrive at this knowledge, he imagined what seems 

to me to be an ingenious experiment. 
He took a very sturdy rod, about three braccia long, 

pivoted like the beam of a balance, and he suspended at the 

ends of these balance-arms two equal weights, very heavy. 

One of these consisted of copper containers; that is, of two 
buckets, one of which hung at the said extremity of the beam 

and was filled with water. From the handles of this bucket 

3. Cf. p. 278 and note 14 to Fourth Day. 
4. Galileo’s approach related the problem to compound ratios; see Intro- 

duction and Glossary. His discussion is accordingly mainly one of momentum 
rather than of force in its modern sense. This concentrates attention on 

velocity rather than on acceleration, but see pp. 330, 332, 344, and notes 

12, 14, below. 
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hung two cords, about two braccia each in length, to which 

was attached by its handles another like bucket, but empty; 

this hung plumb beneath the bucket already described as 

filled with water. At the end of the other balance-arm he hung 

a counterweight of stone or some other heavy material, 

which exactly balanced the weight of the whole assembly 

of buckets, water, and ropes. The bottom of the upper bucket 

had been pierced by a hole the size of an egg or a little smaller, 

which hole could be opened and closed. 

Our first conjecture was that when the balance rested in 

equilibrium, the whole apparatus having been prepared as 

described, and then the [hole in the] upper bucket was unstop- 

pered and the water allowed to flow, this would go swiftly 

down to strike in the lower bucket; and we conceived that 

the adjoining of this impact must add to the [static] moment 

on that side, so that in order to restore equilibrium it would 

be necessary to add more weight to that of the counterpoise 

on the other arm. This addition would evidently restore 

and offset the new force of impact of the water, so that we 

could say that its momentum was equivalent to the weight 

of the ten or twelve pounds that it would have been necessary 

[as we imagined] to add to the counterweight. 

Sagr. This scheme seems to me really ingenious, and I 

am eagerly waiting to hear how the experiment succeeded. 

Apr. The outcome was no less wonderful than it was un- 

expected by us. For the hole being suddenly opened, and 

the water commencing to run out, the balance did indeed 

tilt toward the side with the counterweight; but the water 

had hardly begun to strike against the bottom of the lower 

bucket when the counterweight ceased to descend, and 

commenced to rise with very tranquil motion, restoring 

itself to equilibrium while water was still flowing;° and upon 

reaching equilibrium it balanced and came to rest without 
passing a hairbreadth beyond. 

Sagr. This result certainly comes as a surprise to me. The 

outcome differed from what I had expected, and from which 
I hoped to learn the amount of the force of impact. Never- 

theless it seems to me that we can obtain most of the desired 

information. Let us say that the force and moment of impact 

is equivalent to the moment and weight of whatever amount 

5. The experimenters expected some constant effect as long as the flow 
of water continued, enabling them to re-establish equilibrium by adding 
weight to the counterpoise. 
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of falling water is found to be suspended in the air between 

the upper and lower buckets, which quantity of water does 

not weigh at all against either upper or lower bucket. Not 

against the upper, for the parts of water are not attached 

together, so they cannot exert force and draw down on those 

above, as would some viscous liquid, such as pitch or lime, for 

example. Nor [does it weigh] against the lower [bucket], 

because the falling water goes with continually accelerated 

motion, so its upper parts cannot weigh down on or press 

against its lower ones. Hence it follows that all the water 

contained in the jet is as if it were not in the balance. Indeed, 

that is more than evident; for if that [intermediate] water 

exerted any weight against the buckets, that weight together 

with the impact would greatly incline the buckets downward, 

raising the counterweight; and this is seen not to happen. 

This is again exactly confirmed if we imagine all the water 

suddenly to freeze; for then the jet, made into solid ice, would 

weigh with all the rest of the structure, while cessation of 
the motion would remove all impact. 

Apr. Your reasoning conforms exactly with ours— 

immediately after the experiment we had witnessed. To us 
also, it seemed possible to conclude that the speed alone, 
acquired by the fall of that amount of water from a height of 

two braccia, without [taking into account] the weight of this 

water, operated to press down exactly as much as did the 
weight of the water, without [taking into account] the im- 

petus of the impact. Hence if one could measure and weigh the 

quantity of water hanging in air between the containers, 

one might safely assert that the impact has the same power 

to act by pressing down as would be that of a weight equal 

to the ten or twelve pounds of falling water. 

Salv. This clever contrivance much pleases me, and it 
appears to me that without straying from that path, in which 
some ambiguity is introduced by the difficulty of measuring 

the amount of this falling water,° we might by a not unlike 

experiment smooth the road to the complete understanding 

which we desire. 
Imagine, for instance, one of those great weights (which 

I believe are called pile drivers [berte]) that are used to drive 

stout poles into the ground by allowing them to fall from 

some height onto such poles. Let us put the weight of such a 

6. Notes survive in which Galileo made calculations concerning the 

volume of this jet of water. 
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pile driver at 100 pounds, and let the height from which 

this falls be four braccia, while the entrance of the pole into 

hard ground, when driven by a single [such] impact, shall be 

four inches. Next, suppose that we want to achieve the same 

pressure and entrance of four inches without using impact, 
and we find that this can be done by a weight of 1000 pounds, 

which, operating by its heaviness alone, without any preceding 

motion, we may call ‘dead weight.” I ask whether, without 

error or fallacy, we may affirm that the force and energy 

of a weight of 100 pounds, combined with its speed acquired 

in falling from a height of four braccia, is equivalent to the 

dead weight of 1000 pounds. That is, does the force [virti] 

of this speed alone signify as much as the pressure of 900 

pounds of dead weight, which is the remainder after sub- 

tracting from 1000 [pounds] the 100 of the pile driver? 

I see that you both hesitate to reply, perhaps because I 

have not explained my question properly. Then let us merely 

ask briefly whether, from the experiment described, we may 

assert that the pressure of this dead weight will always 

produce the same effect on a resistance as the weight of 100 

pounds falling from a height of four braccia. To make things 

perfectly clear, [say that] the pile driver, falling from the 

same height but striking on a more resistant pole, will drive 

it no more than two inches. Now, can we be sure of this 

same effect from the pressing down alone of the dead weight 

of 1000 pounds? I mean, will that drive the pole two inches? 

Apr. | think, at least on first hearing this, that it would not 

be rejected by anyone. 

Salv. And you, Sagredo, do you raise any question about 

this? 

Sagr. Not at the moment, no; but my having experienced 

a thousand times the ease with which one is deceived prevents 
my being so bold as to feel no trepidation. 

Salv. Even you, whose great perspicacity I have known 

on many occasions, now show yourself as leaning toward 

the wrong side; hence I believe that it would be hard to find 

even one or two men in a thousand who would not be snared 

into so plausible a fallacy. But what will astonish you still 

more will be to see this fallacy to be hidden beneath so thin 

a veil that the slightest breeze would serve to uncover and 

reveal it, though it is now concealed and hidden. 

First, then, let the pile driver in question fall on the pole 

as before, driving this four inches down, and let it be true 



Galileo, Opere, VIII (326-327) 287 

that to accomplish this with dead weight would require 

exactly 1000 pounds. Next, let us raise this same pile driver 

to the same height, so that it falls a second time on the same 

pole, but drives it only two inches, by reason of the pole’s 

having encountered harder ground. Must we suppose that 

it would be driven as much by the pressure of that same 
dead weight of 1000 pounds? 

Apr. So it seems to me. 

Sagr. Alas, Paolo, for us; this must be emphatically denied. 

For if in the first placement, the dead weight of 1000 pounds 

drove the pole only four inches and no more, why will you 

have it that by merely being removed and replaced, it will 

drive the pole two more inches? Why did it not do this before 

it was removed, while it was still pressing? Do you suppose 

that just taking it off and gently replacing it makes it do that 

which it could not do before? 

Apr. I can only blush and admit that I was in danger of 
drowning in a glass of water. 

Salv. Do not reproach yourself, Aproino, for I can assure 

you that you have plenty of company in remaining fastened 

by knots that are in fact quite easy to untie. No doubt every 

fallacy would be inherently easy to discover, if people went 

about untangling it and resolving it into its principles, for 

it cannot be but that something connected with it, or close 
to it, would plainly reveal its falsity. Our Academician had 
a certain special genius in such cases for reducing with a 

few words to absurdity and contradiction conclusions that 

are palpably false, and which nevertheless have hitherto 

been believed to be true. I have collected many conclusions 

in physics that had always passed for true, which were later 

shown by him to be false by means of brief and quite simple 

reasoning. 

Sagr. Truly this is one of them, and if the others are like 

this, it will be good that at some time you will share them 
with us. But meanwhile let us continue with the question 

we have undertaken; we are searching for a way (if there 

is one) in which to give a rule and assign a just and known 
measure to the force of impact. It seems to me that this 

cannot be had through the experience proposed; for as 

sensible experiment shows us, repeated blows of the pile 

driver on the pole do drive it further and further, and it is 
clear that each succeeding blow does act, which is not true 

of the dead weight. Having acted when it made its first pres- 
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sure, it does not go on and produce the effect of the second 

[blow] when replaced; that is, [it does not] again drive the 

pole. Indeed, it is clearly seen that for this second entrance 

we need a weight of more than 1000 pounds; and if we want 

with dead weights to equal the entrances of the third, fourth, 

and fifth blow, and so on, we shall need the heaviness of 

continually greater and greater dead weights. Now, which 

of these can we take as a constant and secure measure of the 

force of that blow which, considered by itself, seems to be 

always the same? 

Salv. This is one of the prime marvels that I believe must 

doubtless have held in perplexity and hesitation all specu- 

lative minds. Who, indeed, will not find it novel to hear 

that the measure of the force of impact must be taken not 

from that which strikes, but rather from that which receives 

the impact? As to the experiment cited, it seems to me that 

from this one may deduce the force of impact to be infinite 

—or rather, let us say indeterminate, or undeterminable, 

being now greater and now less, according as it is applied 

to a greater or lesser resistance. 

Sagr. Already I seem to understand that the truth may 

be that the force of impact is immense, or infinite. For in 

the above experiment, given that the first blow will drive 

the pole four inches and the second, three, and continuing 

ever to encounter firmer ground, the third blow will drive 

it two inches, the fourth an inch and one-half, the ensuing 

ones a single inch, one-half, one-fourth, and so on; it seems 

that unless the resistance of the pole is to become infinite 

through this firming of the ground, then repeated blows 

will always budge the pole, but always through shorter and 

shorter distances. But since the distance may become as small 

as you please, and is always divisible and subdivisible, en- 

trance [of the pole] will continue; and this effect having 

to be made by the dead weight, each [movement] will require 

more weight than the preceding. Hence it may be that in 

order to equal the force of the latest blows, a weight im- 

mensely greater and greater will be required. 

Salv. So I should certainly think. 

Apr. Then there cannot be any resistance so great as to 

remain firm and obstinate against the power of any impact, 
however light?’ 

7. The compact phrasing here is meant to convey the double idea that 
(1) no resistance exists that can withstand a blow of unlimited strength, 
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Salv. I think not, unless what is struck is completely im- 
movable; that is, unless its resistance is infinite. 

Sagr. These statements seem remarkable, and so to speak, 

prodigious. It appears that in this effect [and in this] alone, 

art may overpower and defraud nature—something that 

at first glance it [mistakenly] appears that other mechanical 

instruments can do, very heavy weights being raised with 

small force by the power of the lever, screw, pulleys, and the 

rest. But in this effect of impact, a few blows of a hammer 

weighing no more than ten or twelve pounds may flatten 

a cube of copper that is not broken or mashed by resting 

a big marble steeple or even a very high tower upon the 

hammer. This seems to me to defeat all the physical reasoning 

by which one might try to remove the wonder from it. There- 

fore, Salviati, take the clue in your hand and lead us from this 

complicated maze. 

Salv. From what you two have to say, it appears that the 

principal knot of the difficulty lies in puzzlement why the 

action of impact, which seems infinite, may arise in a different 

way from that of other machines which overcome immense 

resistances with very small forces. But I do not despair of 
explaining how in this, too, one proceeds in the same manner. 

I shall try to clear up the process; and though it seems to 

me quite complicated, perhaps, as a result of your questions 

and objections, my remarks may become more subtle and 

acute, and sufficient at least to loosen the knot, if not to untie 

ite 

It is evident that the property [faculta] of force in the mover 
and [that] of resistance in the moved is not single and simple, 

but is compounded from two actions, by which their energy 
must be measured. One of these is the weight, of the mover 

as well as of the resistent; the other is the speed with which 

the one must move and the other be moved. Thus, if the 

moved must be moved with the speed of the mover—that is, 

if the spaces traversed by both in a given time are equal— 

it will be impossible for the heaviness of the mover to be less 

than that of the moved, but rather it must be somewhat 

greater; for in exact equality [of weight] resides equilibrium 

and rest, as seen in the balance of equal arms. But if with 

a lesser weight we wish to raise a greater, it will be necessary 

and (2) any impact, however small, has some effect on any given resistent. 

Cf. note 26 to Fourth Day; pp. 337, 341, below; and Fragment 4 at end. 
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to arrange the machine in such a way that the smaller moving 

weight goes in the same time through a greater space than 

does the other weight; that is to say, the former is moved 

more swiftly than the latter. And thus we are taught by ex- 

perience that in the steelyard, for example, in order for the 

counterweight to raise a weight ten or fifteen times as heavy, 

the distance along the beam from the center round which 

it turns must be ten or fifteen times as great as the distance 

between that same center and the point of suspension of the 

other weight; and this is the same as to say that the speed of 

the mover is ten or fifteen times as great as that of the moved. 

Since this is found to happen in all the other instruments, 

we may take it as established that the weights and speeds 

are inversely proportional. Let us say in general, then, that 

the momentum of the less heavy body balances the momen- 

tum of the more heavy when the speed of the lesser has the 

same ratio to the speed of the greater as the heaviness of the 

greater has to that of the lesser—to which, any small advantage 

being allowed, equilibrium is overcome and motion is in- 

troduced. 

This settled, I say that not only in impact does the action 

[operazione] seem infinite as to the overcoming of whatever 

great resistance, -but that this also shows itself in every other 

mechanical device. For it is clear that a tiny weight of one 

pound, descending, will raise a weight of 100 or 1000 or as 

much more as you please, if we place it 100 or 1000 times as 

far from the center on the arm of the steelyard as the other, 

great, weight; that is, if we make the space through which 

the former shall descend to be 100 or 1000 or more times as 

great as the space through which the other is to rise, so that 

the speed of the former is 100 or 1000 times the speed of the 

latter. Yet I wish, by means of a more striking example, to 

make it palpable to you that any little weight, descending, 

makes any immense or very heavy bulk ascend. 

Suppose a vast weight to be attached to a rope fastened 

to a firm high place, around which as center you are to imagine 

to be described the circumference of a circle that passes 

through the center of gravity of the suspended bulk. This 

center of gravity, you know, will be vertically beneath the 

suspending rope; or, to put it better, will be in that straight 

line which goes from the point of suspension to the common 

center of all heavy things; that is, the center of the earth. 

Next, imagine a fine thread to which any weight, as small 
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as you please, is attached in such a way that its center of gravity 
always remains in the previously mentioned circumference; 

and suppose that this little weight just touches and rests 

against the vast bulk. Do you not believe that this new weight, 

added at the side, will push the greater one somewhat, se- 

parating its center of gravity from the previously mentioned 

vertical line in which it originally lay? Yet it will unquestion- 

ably move along the circumference mentioned, and being 

moved, it will separate from the horizontal line tangent 
to the lowest point of the circumference in which the center 

of gravity of this vast bulk was situated. As to the space, 

the arc passed through by the heavy weight will be the same 

as that passed through by the tiny weight which was supported 

against the vast one. Yet the rise of the center of the great 

weight will not thereby equal the descent of the center of 

the tiny weight, because the latter descends through a place 

or space much more tilted than that of the ascent of the 
other center, which is made in a certain way from the tangent 

of the circle along an angle less than the most acute [recti- 

lineal] angle.® Here, if I were dealing with people less versed 
in geometry than you are, I should demonstrate how a move- 

able leaving [along a circle] from the lowest point of tangency 

[with the horizontal], its [vertical] rise from [de//a] the hori- 

zontal line to some point in the circumference outside 
[separato dal] the tangent may be smaller in any desired 

ratio than its [vertical] drop along an equal arc [asse] taken 
at any other place not containing the point of tangency; 

but surely you have no doubt as to this.” 
Now, if the simple touching of the tiny weight against the 

great bulk can move and raise that, what will it do when, 

drawn back and allowed to run along the circumference, 

it comes to strike there? 
Apr. Truly, it seems to me that there is no room left for 

doubt that the force of impact is infinite, from what the 
experiment adduced explains about it. But this information 
does not suffice my mind for the clearing away of many 

dark shadows which hold it so obscured that I do not see how 

8. The ‘“‘mixed angle” of note 33 to Second Day; cf. Euclid, Elements 

IIT.16. 
9. Asse (axis) was probably a scribal error for arco; the idea is that the 

vertical drop for any arc not touching the lowest point is greater than the 
drop for an equal arc touching that point, while the latter may be made 

as small as one pleases by shortening the arc. Many dubious readings are 

found in this posthumously printed work; cf. note 10, below. 
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this business of impacts proceeds; at least, not so that I 

could reply to every question that might be asked of me. 

Salv. Before going further, I want to reveal to you a 

certain equivocation that is lurking in ambush. This lets 

us believe that, in the previous example, all blows on the 

pole were equal (or the same), being made by the same pile 

driver raised always to the same height. But this does not 

follow. To understand this, imagine striking with your hand 

against a ball that comes falling from above, and tell me: 

if, when this arrived upon your hand, you were to have your 

hand sinking along the same line and with the same speed 

as the ball, what shock would you feel? Surely none. But 

if, upon the arrival of the ball, you yielded only in part, by 

dropping your hand with less speed than that of the ball, 

you would indeed receive an impact—not as with the whole 

speed of the ball, but only as with the excess of its speed over 

that of the dropping of your hand. Thus if the ball should 

descend with ten degrees of speed, and your hand yielded 

with eight, the blow would be made as by two degrees of 

speed of the ball. The hand yielding with four [degrees], 

the blow would be as six; and the yielding being as one, 

the blow would be as nine; the entire impact of the speed of ten 

degrees would be [only] that which struck the hand that 

did not yield. 

Now apply this reasoning to the pile driver, when the 

pole yields to the impetus of the pile driver four inches the 

first time, and two [inches] the second, and a single inch 

the third. These impacts come out unequal, the first being 

weaker than the second, and the second than the third, 

according as the yielding of four inches retires'® more from 

the [initial] speed of the first blow than the second [yielding 

of only two inches], and the second [impact] is weaker than the 

third, which takes away twice as much as the second from 

the same [initial] speed. Hence, if the great yielding of the 

pole to the first shock, and its lesser yielding to the second 

and still less to the third, and so on continually, is the 

reason that the first blow is less effective [valido] than the 

10. Reading retrae for detrae of the printed text. In pursuance of his 
previous argument, Galileo reasons that even though the terminal speed 
of fall (initial speed of impact) is the same in each case, we should call the 
effective blow, or impact, weaker in the earlier strokes, because the pole 
offers less resistance. A quite different adumbration of Newton’s third law 
of motion was already present in Galileo’s first work; cf. On Motion, pp. 
64, 109 (Opere, I, 297, 336). 
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second, and this than the third, what wonder is it if a lesser 

quantity of dead weight is needed for the first driving of four 
inches, and more is needed for the second, of two inches, 

and still more for the third, and always more and more con- 

tinually, in proportion as the drivings go diminishing with 

diminutions of the yielding of the pole, which amounts to 

saying with the increase of the resistance? 

From what I have said, it seems to me that one may easily 

gather how difficult it is to determine anything about the 

force of impact made upon a resistent that varies its yielding, 
such as this pole that becomes indeterminately more and 

more resisting. Hence I think it necessary to give thought to 

something that receives the impacts and always opposes 
them with the same resistance. Now, to establish such a 

resistent, I want you to imagine a solid weight of, say, 1000 

pounds, placed on a plane that sustains it. Next, I want you 

to think of a rope tied to this weight and led over a pulley 
fixed high above. Here it is evident that when force is applied 

by pulling down on the end of the rope, it will always meet 

with quite equal resistance in raising the weight; that is, the 

opposition of 1000 pounds of weight. For if from the end of 

the rope there were suspended another weight, equal to the 

first, equilibrium would be established; and being raised up 

without support from anything below, they would remain 

still; nor would this second weight descend and raise the first 

unless given some excess of weight. And if we rest the first 

weight on the said plane that sustains it, we can use other 

weights of varying heaviness (though each of them less than 

the weight sustained at rest) to test what the forces of different 

impacts are. [This is done] by tying such weights to the end 

of the rope and then letting them fall from a given height, 

observing what happens at the other end to that great solid 

that feels the pull of the falling weight, which pull will be 
to that large weight as a blow that would drive it upward. 

Here, in the first place, it seems to me to follow that how- 

ever small the falling weight, it should undoubtedly overcome 

the resistance of the heavy weight and lift it up. This conse- 
quence seems to me to be conclusively drawn from our 

certainty that a smaller weight will prevail over another, 

however much greater, whenever the speed of the lesser shall 

have, to the speed of the greater, a greater ratio than the 

weight of the greater has to the weight of the smaller; and 

this [always] happens in the present instance, since the speed of 
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the falling weight infinitely surpasses the speed of the other, 

whose speed is nil when it is sustained at rest. But the heaviness 

of the falling solid is not nil in relation to that of the other, 

since we did not assume the latter to be infinite, or the former 

to be nil; hence the force of this percussent will overcome 

the resistance of that on which it makes its impact. 

Next we shall seek to find out how great is the space through 

which the impact received will raise it, and whether perhaps 

this [distance] will correspond to that of other mechanical 

instruments. Thus it is seen in the steelyard, for example, 

that the rise of the heavy weight will be that part of the fall of 

the counterweight, which the weight of the counterweight 

is of the greater weight. So in our case we should have to see, 

supposing the weight of the big resting solid to be 1000 times 

that of the falling weight—which falls, let us say, from a 

height of one braccio—whether this raises the other [weight] 

one one-hundredth of a braccio; if so, it would appear to 

be following the rule for the other mechanical instruments. 

Let us imagine making the first experiment by dropping from 

some height, say one braccio, a weight equal to the other, 

which we have placed on a [supporting] plane, these weights 

being tied to the opposite ends of the same rope. What shall 

we believe to be the effect of the pull of the falling weight, 

with regard to the moving and raising of the other, which 

was at rest? I should be glad to hear your opinion. 

Apr. Since you look at me, as if you were waiting for my 

reply, it appears to me that the two weights being equally 

heavy, and the one which falls having in addition the impetus 

of its speed, the other must be raised by it far beyond equili- 

bration, inasmuch as the mere weight of the other was 

sufficient to hold it in balance. Hence, in my opinion, it will 

rise through much more than a space of one braccio, which 

is the measure of the descent of the falling weight. 

Salv. And what do you say, Sagredo? 

Sagr. The reasoning seems conclusive to me at first glance; 

but, as I said a while ago, many experiences have taught 

me how easily one may be deceived, and accordingly how 

necessary it is to go circumspectly before boldly pronouncing 

and affirming anything. Hence I shall say, still dubiously, 

that it is true that the weight of 100 pounds of the falling 

heavy body will suffice to raise the other, which also weighs 

100 pounds, as far as to equilibrium, even without its being 
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endowed and supplied with speed; [to do this,] the excess 

of a mere half-ounce will suffice. But I also think that that 

equilibration will be made very slowly, and hence that when 

the falling body acts with great speed, it will necessarily raise 
its companion on high with like speed. Now, there seems 

to me no doubt that greater force is needed to drive a heavy 

body upward with great speed than to push it very slowly;'! 
so it might happen that the advantage of the speed acquired 

by the falling body in free fall through one braccio would 

be consumed, and so to speak spent, in driving the other 
with equal speed to a like height. Hence I am inclined to 

believe that these two movements, upward and downward, 

would end in rest immediately after the rising weight had 

gone up one braccio, which would mean two braccia of 

fall for the other, counting the first braccio of free fall as 

executed by that one alone. 

Salv. I truly lean toward the same belief. For though the 

falling weight is an aggregate of heaviness and speed, the 

operation of its heaviness in raising the other [weight] is nil, this 

being opposed by the resistance of equal heaviness in that 

other, which clearly would not be moved without the addition 

of some small weight. Therefore the operation is entirely that 

of the speed, which can confer nothing but speed.'? Being 

unable to confer other [speed] than what it has, and having 

nothing other than that which it acquired in the descent 

of one braccio after leaving from rest, it will drive the other 

upward through a like space and with a like speed, in agree- 
ment with what can be discerned in various experiences; 

namely, that the falling weight, leaving from rest, is every- 

where found to have that impetus which suffices to restore 

it to the original height. 

Sagr. 1 recall that this is clearly shown by a weight hanging 

from a thread fixed above. Removed from the vertical by 

any arc less than a quadrant, and set free, this weight descends 

11. Galileo’s emphasis on speed as such underlay the essential difference 
between his mechanics and that of medieval, as that of Cartesian, writers; 

cf. note 32 to Fourth Day. But see also note 15, below. 

12. This inference was probably suggested by the use of compound ratios 
in physics (note 4, above). The Aristotelian position was very different, 
defining greater “force” or “power” in terms of the imparting of greater 
speed; cf. Physica vii, § 5, especially at line 250a. Medieval physicists followed 
that lead; thus the theory of proportions in motion developed by Thomas 

Bradwardine (12902-1349) was intended to justify precisely this passage 
in Aristotle. 
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and passes beyond the vertical, rising through an arc equal 

to that of its descent. From this it is evident that the ascent 

derives entirely from the speed acquired in descent, inasmuch 

as in [any] rising upward, the weight of the moving body 

can have played no part. Indeed, that weight, resisting ascent, 

goes despoiling the moveable of the speed with which it was 

endowed by the descent. 

Salv. If the example of what is done by the heavy solid 

on the thread, of which I remember that we spoke in our 

discussions of days past, squared and fitted as well with the 

case we are now dealing with as it fits with the facts [alla 

verita], your reasoning would be very cogent. But I find 

no trifling discrepancy between these two operations; I 

mean between that of the heavy solid hanging from the 

thread, which released from a height and descending along 

the circumference of a circle, acquires impetus to transport 

itself to another equal height, and this other operation of 

the falling body tied to the end of a rope in order to lift another 

one equal to itself in weight. For that which descends along 

the circle continues to acquire speed as far as the vertical 

[position], favored by its own weight, which impedes its 

ascent as soon as the vertical is passed, ascent being a motion 

contrary to its heaviness. Thus [in return] for the impetus 

acquired in natural descent, it is no small repayment to be 

carried along by violent motion or through a height. But 
in the other case, the falling weight comes upon its equal 

placed at rest, not only with its acquired speed but with 

its heaviness as well; and this [heaviness], being maintained, 

by itself alone removes all resistance on the part of its compan- 
ion [weight] to being lifted.'* Hence the [previously] acquired 
speed meets with no opposition from any weight that resists 

rising; and just as impetus conferred downward on a heavy 

body would encounter no cause in that [body] for annihilation 

or retardation [of that impetus], so none is encountered in 

that rising weight whose [effective] heaviness remains nil, 

being counterpoised by the other, descending, weight. 

Here, it seems to me, precisely the same thing takes place 

13. Here Galileo begins to speak of an inertial motion in the modern 
sense, using balanced weights for the study of impact rather than the usual 
and intuitive analysis in terms of frictionless bodies striking while supported 
on a hard flat surface. It was on the latter basis that Descartes deduced, in 
contradiction with the ensuing discussion, that a smaller body could never 
budge a larger one, however great the speed of the smaller. 
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which happens to a heavy and perfectly round moveable 

placed on a very smooth plane, somewhat inclined; this 

will descend naturally by itself, acquiring ever greater speed. 

But if, on the other hand, anyone should wish to drive it 

upward from the lower part [of the plane], he would have to 

confer impetus on it, and this would be ever diminished and 

finally annihilated [in the rise]. If the plane were not inclined, 

but horizontal, then this round solid placed on it would 

do whatever we wish; that is, if we place it at rest, it will remain 

at rest, and given an impetus in any direction, it will move 

in that direction, maintaining always the same speed that 

it shall have received from our hand and having no action 

[by which] to increase or diminish this, there being neither 

rise nor drop in that plane. And in this same way the two 

equal weights, hanging from the ends of the rope, will be at 

rest when placed in balance, and if impetus downward shall 

be given to one, it will always conserve this equably. Here 

it is to be noted that all these things would follow if there were 

removed all external and accidental impediments, as of rough- 
ness and heaviness of rope or pulleys, of friction in the turning 

of these about the axle, and whatever others there may be 

of these. 
But since we are considering the speed acquired by one 

of these weights in descent from some height while the other 

remains at rest, it will be good to determine what and how 

much must be the speed with which both would be moved 

after the [initial] fall of the one, this descending and the other 

ascending. From what is already demonstrated, we know 

that a heavy body which falls freely on departing from rest 

perpetually acquires a greater and greater degree of speed; 

hence in our case, the greatest degree of speed of the heavy 

body, while it descends freely, is that which it is found to 
have at the point at which it commences to lift its companion. 

Now it is evident that this degree of speed will not go on 
increasing when its cause of increase is taken away, this being 

the weight of the descending body itself; for its weight no 
longer acts when its propensity to descend is taken away 

by the repugnance to rising of its companion of equal weight. 
Hence the maximum degree of speed will be conserved, 
and the motion will be converted from one of acceleration 

to uniform motion. '* 

14. Reduction of accelerated motion to some equivalent uniform motion 
was essential before development of the calculus; cf. Third Day, Bk. II, 
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What the future speed will then be is manifest from the 
things demonstrated and seen in the [discussions of the] past 

days. That is, the future speed will be such that, in another 

time equal to that of the [initial free] descent, double the 

space of [free] fall would be passed. 
Sagr. Then Apronio has philosophized better than I have. 

Thus far I am well satisfied by your reasoning, and admit 

what you have told me as most true. But I still do not feel 

that I have learned enough to remove the great wonder I 

feel at seeing very great resistances overcome by the force 

of impact of the striking body when its weight is not great 
and its speed not excessive. It increases my bafflement to hear 

you affirm that there is no resistance short of the infinite 

that will resist a blow without yielding, and moreover that 

there is no way of assigning a definite measure to [the force 

of] such a blow. So it is our wish that you attempt to shed 

light in this darkness. 

Salv. No demonstration can be applied to a proposition 

unless what is given is one and certain; and since we wish 

to philosophize about the force of a striking body and the 
resistance of one which receives the impact, we must choose 

a percussent whose force shall be always the same, such 

as that of the same heavy body falling always from the same 

height; and likewise let us establish a recipient of the blow 
that will always offer the same resistance. To have this, and 

keep to the above example of the two heavy bodies hanging 

from the ends of the same rope, I shall have the percussent 

be the small weight that is allowed to fall, and the other shall 

be a weight as much greater [than this] as you please, in the 

raising of which the impetus of the small falling weight is 

to be exercised. It is manifest that the resistance of the larger 

body is the same at all times and all places, as would not be 
the case with the resistance of a nail, or of the pole, in which 

resistance increases continually with penetration, but in some 

unknown ratio because of the various accidental events 

involved, such as hardness of wood or ground, and so on, 

even though the nail and the pole remain always the same. 

It is further necessary to remember some true conclusions 

of which we spoke in past days in the treatise on motion. The 

Theorem 1. No clear physics of force was likely to emerge under the theory 
of proportion alone, in which force can appear only as some kind of relation 
rather than as an entity. As will be seen in Salviati’s next speech, ‘“‘force”’ 
is simply made to cancel out. 
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first of these is that heavy bodies, in falling from a high point 

to a horizontal plane beneath, acquire equal degrees of speed 

whether their descent is made vertically or upon any of 
diversely inclined planes. 

For example, AB being a horizontal plane upon which 
the vertical CB is dropped from point C, and other planes, 

diversely inclined, CA, CD, and CE, fall from the same C, 

we must understand that the degrees of speed of bodies 

falling from the high point C along any of the lines going 

from C to end at the horizontal are all equal. In the second 

place, it is assumed that the impetus acquired at A by the body 

falling from the point C is such that it is exactly needed to 

drive the same falling body (or another one equal to it) up 

to the same height, from which we may understand that such 
force is required to raise that same heavy body from the 

horizontal to height C, whether it is driven from point A, D, 

E, or B. Let us recall in the third place that the times of descent 

along the designated planes have the same ratio as the lengths 

of these planes, so that if the plane AC, for example, were 

double the length of CE and quadruple that of CB, the time 

of descent along CA would be double the time of descent 

along CE and four times that along CB. Further, let us recall 

that in order to pull the same weight over diverse inclined 

planes, lesser force will always suffice to move it over one 

which is more inclined [to the vertical] than over one less 

inclined, according as the length of the latter is less than the 

length of the former. 

Now, these truths being supposed, let us take the plane 
AC to be, say, ten times as long as the vertical CB, and let 

there be placed on AC a solid, S, weighing 100 pounds. It 

is manifest that if a cord is attached to this solid, riding over 

a pulley placed above the point C, and to the other end of 

this cord a weight of ten pounds is attached, which shall 

be the weight of P, then that weight P will descend with any 

small addition of force, drawing the weight S along the plane 

AC. Here one must note that the space through which the 

greater weight moves over the plane beneath it is equal to 

the space through which the small descending weight is moved ; 

from this, someone might question the general truth applying 

to all mechanical propositions, which is that a small force 

does not overcome and move a great resistance unless the 

motion of the former exceeds the motion of the latter in 

inverse ratio of their weights. But in the present instance 
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the descent of the small weight, which is vertical, must be 

compared [only] with the vertical rise of the great solid S, 

observing how much this is lifted vertically from the horizon- 

tal: that is, one must consider how much S rises in the vertical 

BC. 
Having made various meditations, gentlemen, about the 

setting forth of that which remains to be said by me, which 

is the crux of the present matter, I affirm the following con- 

clusion, which will then be explained and demonstrated. 

PROPOSITION 

If the effect made by an impact of the same weight falling 

from the same height shall be to drive a resistent of constant 

resistance through some space; and [if] to produce a similar 

effect there is needed a determined quantity of dead weight 

[merely] pressing, without impact, I say that if the original 

percussent, [acting] upon some greater resistent, with the 

given impact shall drive it (for example) through one-half 

the space that the other was driven, then in order to 

accomplish this second driving, the pressure of the said 

dead weight will not suffice, but there will be required another 

one, twice as heavy. And similarly in all other ratios, when 

a shorter [constantly resisted] drive is made by the same 

percussent, then inversely by that much there will be required, 

to do the same, a greater pressing quantity of dead weight. 

In the earlier example of the pole, the resistance is to be 

understood to be such that it cannot be overcome by less 

than one hundred pounds of dead weight pressing, and 

[it is understood that] the weight of the percussent is only 

ten pounds, falling from a height of, say, four braccia, and 

driving the pole four inches. Here, in the first place, it is 

evident that the weight of ten pounds falling vertically will 

be sufficient to raise a weight of one hundred pounds along 

a plane so inclined that its length is ten times its height, accord- 

ing to what has been said above; and that as much force 

is needed to raise ten pounds of weight vertically as to raise 

one hundred on a plane whose length is ten times its vertical 

elevation. Hence if the impetus acquired by the falling body 

through such a vertical space is applied to raise another 

that is equal to it in resistance, it will raise it a like space ; 

but the resistance of the vertically falling body of ten pounds 

is equal to that of the body of one hundred pounds rising 

along a plane of length ten times its vertical height. Therefore, 
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let the weight of ten pounds fall through any height vertically, 

and its acquired impetus, applied to the weight of one hundred 

pounds, will drive this through as much space on the inclined 

plane as corresponds to the vertical height as great as one- 

tenth part of this inclined space. And it is already concluded 

above that the force able to drive a weight on an inclined 

plane is sufficient to drive it through the vertical corres- 

ponding to the height of this inclined plane—which vertical, 

in the present instance, is one-tenth the space passed along 

the incline, which is equal to the space of fall of the first 
weight, of ten pounds. 

Thus it is manifest that the fall of the weight of ten pounds 

made vertically is sufficient to raise the weight of one hundred 

pounds, also vertically, but only through a space that is 

one-tenth the descent of the falling body of ten pounds.!>* 

But that force which can raise a weight of one hundred pounds 

is equal to the force with which the same weight of one 

hundred pounds presses down, and this was its power to 

drive the pole when placed upon it and pressing it. Behold, 

therefore, the explanation how the fall of ten pounds of weight 

is able to drive a resistance equivalent to that which a weight 

of one hundred pounds has to being raised, while the driving 

will be no more than one-tenth the descent of the percussent. 

And if we now assume the resistance of the pole to be doubled 
or tripled, so that to overcome it there is needed the pressure 

of two hundred or three hundred pounds of dead weight, 
then repeating the reasoning, we shall find that the impetus 

of the ten pounds falling vertically will be able to drive the 

pole the second and the third time, as it did the first time; 

and as [far as] the tenth part of its fall the first time, so the 

twentieth the second time, and the third time, the thirtieth 

of this descent. And thus, multiplying the resistance in 
infinitum, the same blow will always be able to overcome it, 

but by driving the resisting body always through less and less 
space, in inverse [alterna] proportion; from which it seems 

that we may reasonably assert the force of impact to be 

infinite. '° 
But we must also consider that in another way, the force 

15. Here the neglect of time (or speed), unusual for Galileo, results in 
his adoption of a conservation principle in terms of vertical displacements 
alone, akin to the medieval and Cartesian approaches (cf. note 13, above) 

but not restricted to connected motions as in the simple machines. 
16. Cf. notes 26 to Fourth Day, note 7, above, and Fragment 4 at end. 
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of pressing without impact is also infinite, inasmuch as if 

it overcomes the resistance of the pole, it will drive it not 

merely through some space through which the blow will 

have driven it, but will continue to drive it in infinitum.’ 

Sagr. Truly, I perceive that your attack travels very 

directly to the investigation of the true cause of the present 

problem; but since it appears to me that impact may be 

created in many ways, and applied to a great variety of 

resistances, I believe it is necessary to go on and explain 

some [of these] at least, the understanding of which might 

open our minds to the understanding of all. 

Salv. You say well, and I have already prepared myself 

to give examples. For one thing, we shall say that at times 

it may happen that the operation of the percussent is revealed 

not on the thing struck, but in the percussent itself. Thus, 

a blow being struck on a fixed anvil with a lead hammer, 

the effect will happen to the hammer, which will be flattened, 

rather than to the anvil, which will not descend. Not unlike 

this is the effect of the mallet on the sculptor’s chisel; for the 

mallet being of soft untempered iron and striking repeatedly 

on the chisel of hard tempered steel, it is not the chisel that 

is damaged, but the mallet that becomes dented and lacerated. 

Again, in another way, the effect is reflected solely in the 

percussent; thus we see not infrequently that if one continues 

to drive a nail into very hard wood, the hammer [finally] 

rebounds without driving the nail forward at all, and we say 

in this case that the blow did not “‘take.’”’ Not very different 

is the bouncing of an inflated ball on a hard pavement, or 

of any other body so disposed, which indeed yields to the 

impact, but returns to its first shape as by arching, and such 

a rebound occurs not only when that which strikes yields 

and then recovers, but also when the same occurs in that upon 

which it strikes; and in such a manner a ball bounces when 

it is of very hard and unyielding material, but falls on the 

tightly stretched membrane of a drum. 

Also perceived with great wonder is that effect produced 
when a blow is added to pressure without impact, making 

a compound of the two. We see this in mangles or olive 

presses and the like, when by the simple pushing of several 

17. The seeming incongruity between an infinite force of impact and 
the finite force of dead weight (in Galileo’s sense) is here removed by him 
through showing how either finite or infinite strength may be attributed 
to impact in one way or to steady pressure in another way; see also 
Fragment 1, at end. 
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men the screw has been made to go down as far as they can 

manage. By drawing back a step from the bar and then 

striking swiftly against it, they move the screw more and more, 

and get it to such a point that the shock of the force of four 

or six men will achieve what mere pushing by a dozen or a 

score could not do. In this case it is required that the bar be 

very thick and of very hard wood, so that it bends little or 

not at all; for if it should give, the blow would be spent in 
bending it. 

[Fragments]'*® 

[1] In every moveable that is to be moved by force, it seems 

that there are two distinct species of resistance. One relates 

to that internal resistance which makes us say that a body 

weighing a thousand pounds is harder to raise than one of 

a hundred; the other relates to the space through which 

motion must be made, as a stone requires greater force to be 
thrown one hundred paces than fifty, and so on. To these 

different resistances correspond proportionably the two differ- 

ent movers—the one that moves [a thing] by pressing without 

striking, and the other that acts by striking. The mover 

that operates without impact moves only a resistance which 

is less, though [it may be] only insensibly [less], than the 

power [virtu] or the pressing heaviness; but that will move 

it through an infinite distance, accompanying it always 

with its same force. That which moves by striking, moves 

any resistance, though [this may be] immense; but [moves 

it only] through a limited distance. 

Hence I consider these two propositions true: that the 
percussent moves an infinite resistance through a finite 
and limited interval, while the pressing [force] moves a finite 

and limited resistance through an infinite interval; hence 
to the percussent, the interval is proportionable, and not 
the resistance, while to the pressing [force] the resistance, and 

not the interval [is proportionable]. These things make 

me doubt whether Sagredo’s question has an answer, as one 

that seeks to equate things that are incommensurable; for 

18. These fragments were collected and published at the end of this 
dialogue by the editors of the 1718 edition of Galileo’s works, probably 
from manuscripts no longer extant. It is possible that despite the editor’s 
assertion, they were not all in Galileo’s own hand; particularly Fragment 

2 seems suspect. Numbers are here assigned for convenience of reference, 

none were given in the original printed version. 
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such, I believe, are the actions of impact and of pressing.'? 

Thus, in this particular case [illustrated], any immense 

resistance that may exist in the wedge BA will be moved by 

any percussent C, but [only] through a limited interval, 

as between points B and A, while the pressing [force] D will 

not drive just any resistance existing in the wedge BA, but 

only a limited resistance, and one not greater than the 

weight D. That, however, will be driven not [only] through 

the limited interval between points B and A, but in infini- 

tum, provided that the resistance in the movable body AB 

remains always equal, as must be assumed, nothing to the 

contrary having been mentioned in the inquiry. 

[2] The momentum of a body in the act of impact is nothing 

but a composite and aggregate of infinitely many momenta, 

each of them equal only to a single moment [a/ solo mo- 

mento],”° either internal and natural per se, as is that [moment] 
of its own absolute weight which it eternally exercises when 

placed on any resistant body, or else extrinsic and violent, 

as is that [momentum] of the moving power [forza]. Such 

momenta go accumulating during the time of [naturally 

accelerated] motion of the heavy body from instant to 

instant with equal increments, and are stored therein, in 

exactly the way that the speed of a falling body goes increasing; 

for as in the infinitely many instants of a time, however short, 

a heavy body goes ever passing through new and equal 

degrees of speed, always retaining those acquired in the 

previously elapsed time, so also in the moveable those mo- 

menta (either natural or violent, conferred on it by nature or 

by art) go conserving [themselves] and compounding from 

instant to instant, etc. 

19. This concept of incommensurability in the Euclidean sense, carried 
over by Galileo into physics, disappeared in the algebraic treatment of 
nearly every later writer. The authenticity of this fragment appears to me 
incontestable, and its content suggests some probable reasons for which 
Galileo finally decided to withhold the Added Day from publication. 

20. Because the word momento is used in both senses of ‘‘static moment” 

and “momentum” (see Glossary), not alternately, but in a mixed way un- 
characteristic of Galileo, this fragment is hard to translate. It fits much better 
with Torricelli’s later modification of Galileo’s thought than with his own 
writings, and it may be apocryphal. The idea here is that moments, like 
degrees of speed, are uniformly added with time, so that the momentum 
of a body on impact resembles its terminal speed in free fall as being a finite 
aggregate of infinitely many unquantifiable parts; cf. parti non quante in 
Glossary. 
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[3] The force of impact is equivalent to [di] infinite [static] 

moment, provided that it is applied in one momentum and in 

one instant by the striking heavy body, upon unyielding 
material, as will be demonstrated. 

[4] The yielding of a material struck by a heavy body moved at 

any speed cannot take place instantaneously, because other- 

wise there would be instantaneous movement through some 

finite space, which is demonstrably impossible. If therefore 

the yielding in the place struck takes time, time is also required 

for the application of those momenta acquired in the motion of 

the percussent, which time is sufficient to extinguish and 

dissipate in part that aggregate of the aforesaid momenta. 

These, if they were exercised against the resisting body in an 

instant (as would happen if the materials of the thing struck 

and of the percussent did not yield at all), would absolutely 

have an effect and an action far greater, in moving it and 
overcoming it, than if applied in a time, however short. I 

say “greater effect” because they will have some effect against 

the thing struck, however tiny the blow or however swift the 

yielding; but this effect may perhaps be imperceptible to our 

senses, even though it really exists, as we shall demonstrate 
in the proper place. Yet that is also clearly revealed by ex- 

perience, since, if with quite a small hammer one shall strike 

with uniform impacts against the end of a very large beam 

that is lying on the ground, then after a great many impacts, 

the beam will eventually be seen to have been moved through 

some perceptile space—a most evident sign that every impact 

acted separately on its own, in driving the beam.”' For if the 
first impact had no part in the effect, then all those which 

followed, as in the place of the first, would achieve nothing at 

all; which is contrary to experience, to sense, and to the proof 

that will be given, etc. 

[5] The force of impact is infinite in [equivalent static] moment, 

because there is no resistance, however large, that is not 

overcome by the force of the tiniest impact. 

[6] He who shuts the bronze doors of San Giovanni will try 

in vain to close them with one single simple push; but with a 

21. Mersenne, in the preface to his French translation of Galileo’s 

Mechanics (Paris, 1634) alluded to an experiment of this sort carried out 

by Galileo, though there is no trace of it in his published works. 
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continual impulse he goes impressing on that very heavy 

movable body such a force that when it comes to strike and 

knock against the jamb, it makes the whole church tremble. 

From this one sees how there is impressed in moveables—and 

the more, the heavier these are—and how there is multiplied 

and conserved in them the force that has been communicated 

to them over some time, etc. 

A similar effect is seen in a great bell, which is not set in 

strong and impetuous motion with a single pull of its rope, 

nor with four, or six [pulls], but [is] with a great many. These 

being long repeated, the final [pulls] add force to that acquired 

from the preceding pulls; and the thicker and heavier the bell 

shall be, the more force and impetus it acquires, this being 
communicated to it in a longer time and by a larger number of 

pulls than are required for a small bell, into which impetus is 

readily put, but from which it is also readily taken away, this 

[small bell] not drinking in, so to speak, as much force as the 
larger one. 

A similar thing happens also in ships, which are not set in 

full course by the first tugs at the oars, or by the first impulses 

of wind; but, by continual rowing or continual impression of 

force made by the wind on the sails, they acquire very great 

impetus, capable of breaking the vessels themselves, when, 

carried by this [impetus] they strike a reef. 

[7] A weak but long bow of a balestra will sometimes make a 

greater throw than another [bow] much stronger but not as 

long; for the former, accompanying the ball for a longer time, 

goes on continually impressing force on it, while the latter 
soon abandons it. 

[The End] 
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abstraction, 12, 58, 78-80, 
112-13, 131, 135n, 162, 217, 
22352250221 

Academician (Author; our 
friend; i.e., Galileo), xxxiii, 7, 
15, 22, 34, 74, 97, 142, 143, 
152, 155, 160, 161, 162, 169, 
LT ET4A STIS 21592175218; 
221, 223, 229, 230, 232, 235, 
236, 242, 245, 250, 259, 260, 
281, 282, 283, 287 

acceleration: 53n, 215; along 
curves, 164; and medium, 

94-95; and weight, 90; cause 
of, xix, 77, 157-59, 158n, 
196, 198, 297; continuity of, 
154, 157, 233; duration of, 
xx; force of, 198; indefinite, 
94, 297; law of, viii, 77, 166, 
223; limited, 95; 
measurement, xviii, natural, 

ix, 77, 78, 147-48, 153 ff., 
169, 197, 230, 232, 233; 
reduction of, 172, 293. See 
also deceleration; 

double-distance rule; motion; 
odd-number rule; speeds; 
times-squared law; uniform 
acceleration 

accidents, external, 15, 77, 87, 
162221752235 225; 227-2971; 
298. See also motion, 
impediments to; resistance 

act and potency, 42, 42n, 43, 44, 
53 

actual. See act and potency; 
potential 

air: as cause of motion, 98; as 
habitat, 129-29; compressed, 
76, 82-85; conflict with water, 
74-75; escape of, 23, 73, 82, 
83; expansion into void, 20, 
84; lifting of, 84n; particles 

of, 27; penetration of, 20, 24; 

pressure of, 25n, 75n, 129n; 
rarefaction of, 24; removal of, 

78; reistance to speed, 78, 

88n, 90-91, 95, 163, 225-28; 
speed in, 70, 79, 81, 224, 226 
ff.; vibration of, 99; weight 
in, 76; weight of, 76, 80-85. 
See also medium; waves 

ambit and ambient, 85 

angle of contact, 291 

animals: aquatic, 73, 127, 129; 
fall of, 14, 123; proportions 
of, 127; size of, 14, 123, 127; 
strength of, 128. See also fish 

antipathy, 75 

antiperistasis, xxxii, 98, 159 

Antonini, Daniello (1588-1616), 
282, 282n 

anvil, 302 

Apoilonius of Perga (262-190 
B.C.), 215, 218, 218n 

Aproino, Paolo (d. 1638): xxxiv, 

282n; as interlocutor, xxxiv, 
281 

Archimedes (287?-212 B.C.): 
XVii, XXxXviii, 38, 48, 110, 
121n, 140, 141, 215, 223; and 
physics, 110, 151; method of 
exhaustion, 139-41, 139n; 
mirror of, 48, 487; on 
mathematics, xiii; on the 
method of physics, xiii; on 
the object of science, xviii; 

postulates of, 110, 110n, 139; 
principle of, see buoyancy 

—works: Conoids and 
Spheroids, 139n; Floating 
Bodies; Plane Equilibrium, 
110, 110n, 223, 259n; 
Quadrature of Parabola, 
141n, 223; Spiral Lines, xli, 
139, 139n, 148n, 149n 

architects, 224 

Ariosto, Lodovico (1475-1533), 
127n 

Aristotle (384-322 B.C.): 
axioms of, 21, 27n, 42n; 
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experiments of, 66, 69, 81-82; 
on mathematics, xiii; on 

speed of fall, 65-71, 79; on 
the method of physics, xiii; 
on the object of science, xiii; 
on the void, 20, 20n, 34, 55, 
65-71; on weight of air, 
80-83; wheel of, 29 ff., 56-57. 
See also Peripatetics; 
philosophers; physics, 
Aristoltelian 

—works: De caelo, 21n, 42n; 
Metaphysics, xxxviii; 
Physics, 20n, 21n, 39n, 42n, 
148n, 229n, 295n. See also 
Questions of Mechanics 

arquebus, 95, 228 

Arrighetti, Andrea (1592-1672), 
125n 

arrows, 225 

artillery, 49, 224, 229n, 245 

artisans, 11, 142, 143, 182 

astronomers, 8, 169 

atomists, 34, 34n, 65, 66, 71 

atoms, xliii, 26, 27n, 28, 33, 
34n, 47, 54, 92. See also 

indivisibles; minima naturalia 

Author. See Academician 

balance: 137, 223, 289; in 

centers of gravity, 261-63, 
272-74; in impact 
experiments, 283-85; in 
weighing air, 82-85 

Baliani, Giovanni Battista 
(1582-1666), 25n, 83n 

ball: bronze, 142-43, 169; cork, 
87-88; glass, 75; horizontal 
projections of, xv, xxix; 
inflated, 302; gold, 75; lead, 
75, 76, 87-88, 225-26, 236; 
on inclined plane, xviii, 162, 
164; wax, 72-73; wooden, 30, 
79-80, 225-26 

basket, capacity of, 61 

beam: driven by taps, 305; 
lightening of, 135-38, 142; of 
even strength, 135-41; 

Index 

supported at ends, 131 ff., 
135n, 138n. See also 
breakage; strength 

bells, 99, 306 

bending, 53, 123, 144, 303 

Benedetti, Giovanni Battista 
(1530-90), xxxiv, 66” 

Berkeley, George (1685-1753), 
axioms or lemma of: 37n, 57n 

bladders, 73, 76-78 

Blondel, Francois (1626-86), 
138n 

body, xli 

Bologna: 49n; University of, 
261n 

Bolzano, Bernard (1781-1848), 

37n 

bones: 14; size of, 127-28; 
strength of, 144; wieght of, 
128-29 

Borri, Girolamo (1512-92), 81n 

bottle, leather, 80-81 

bouncing, 302 

bows, 225-27, 306 

brachistochrone, 97, 212-13, 
213n 

bran, 81 

Bradwardine, Thomas 

(12902-1349), 39n, 295n 

brass plate, 102-3 

breakage: 11-15, 25-26, 114-34; 
neutrality to, 13, 123-24; of 
columns, 14-15; of cylinders, 
23; of wire, 25-26; place of, 
133, 134; resistance to, 22-28, 
134-46; transverse, 
propositions on, 114, 116. See 
also strength; self-support; 
weight 

buckets, 24, 283-85 

buoyancy, 78, 78n, 79, 80n, 84, 
> 

cannonballs, xxxiv, 66, 68, 90, 
95, 96, 228 
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Castelli, Benedetto 
(1578-1643), 49n 

catapult, 48n, 227 

catenary, 143n 

cause: Xviii-xix, xli, 12, 19, 24, 
77, 296; before effect, 21; 
first, 182, 182n; Galileo on, 
11, 21, 159n, 245; internal vs. 
external, 74, 77, 158; of 

cohesion, 19, 22-23, 26, 27, 
109; of impact effects, 242, 

283, 302; of resistance, 227 

Cavalieri, Buonaventura 
(1598?-1647): 35n, 39n, 49n, 
147n; Specchio Ustorio of, 49 

celestial: hemisphere, 37, 46; 
motions, 232-33 

cement: 16, 17, 19, 20, 109; 
burning of, 26. See also parts, 
coherence of 

center of gravity: 112n, 172, 
259, 290-91; Archimedes on, 
see Archimedes, Plane 
Equalibrium; Federico 
Commandino on, 259; 
Galileo on, 141n, 142, 
261-80, 281; Galileo’s - 
postulate concerning, 261; 
Luca Valerio on, 141-42; 
propositions concerning 
weights distributed— 
arithmetically, 261-62, 272; 
in geometric progression, 
269-70, 278; as successive 
squares, 273. See also cones; 

parabolic conoids 

center of heavy things, 77, 172, 

223, 290 

chains, 127, 143, 256-57, 259 

chisels, 102-3, 302 

Cicero, Marcus Tullius (106-43 

B.C.), 7n 

circles: as loci of intersections, 
46-47, 51-52; concentric, 
181; divide lines into points, 
53-54; equality of all, 37; 
equivalent to points, 37-38; 
infinite, 46-47, 51; internally 
tangent, 181, 205; polygons 
and, 62; polygons of infinite 
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“sides,” 33, 53, 54, 56, 57, 
61-62; rolling of, 31 ff.; 
uniform motion in, 233 

Clavius, Christopher 
(1537-1612), 62n, 261n, 263n 

clocks, 12 

coherence. See parts 

Coignet, Michael (1544-1623), 
261n 

coins, 22, 27 

Colombe, Lodovico delle (fl. 
1615), xxxiii 

comets, 8 

Commandino, Federico 
(1509-75), 259n, 260 

commensurability, xxxvii. See 
also incommensurables 

compass, proportional, 143, 
143n 

compound force, 113n, 289. See 
also moment, compound 

compound ratio. See ratio 

compounded motion, 217 ff., 
229 ff. 

condensation: 64; of air, 82-85; 
Galileo’s theory of, 54-57, 
64-65, 84n 

cones, propositions on, 219-20, 
274, 275, 276, 277, 279 

conic sections, 218, 218n, 221 

conservation principles, 241n, 
301n 

consonance: 96, 106-7; “forms” 
of, 97, 97n, 100-102; 
Galileo’s theory of, 104-6, 

106n; ratios in, 99-103 

continuum: 28, 34, 47; and 

indivisibles, 33, 39, 42-43, 54 

Copernican system, 142n 

copper: flattening of, 289; 
tensile strength of, 25-26 

cosmogony, 233 

counterlever, 117, 144, 284, 290 

counterweight, 82, 85, 257, 294 

crassitude. See materiality 
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Cremonini, Cesare (1550-1631), 
XXXVIli 

Crew, Henry, vii-viii 

cylinders: enclosing rope, 19; 
hollow, 144-46; inscribed and 
circumscribed, 263-69, 
274-77; pressure between, 18; 
pulled apart, 16, 22-24; 
supported at both ends, 14, 
15, 131; surfaces of, 59-60; 
theorems on, 59, 60. See also 
strength, of cylinders 

cylindrical razor, 36 

dead weight, 286-88, 300-301, 
302n. See also pressure; 
weight 

deceleration: 78, 91, 94, 157, 
196, 197-98, 198n, 296; 
proportional to speed, 227 

definitions: arbitrary, 154-55; 
mathematical, 35n, 36n, 144n 

Democritus (460-357 B.C.), 34n 

demonstration: mathematical, 8, 
12, 13, 15, 58, 60, 142, 169, 
245; necessary, 15, 16, 133, 
256, 257 

density. See specific gravity 

De Salvio, Alfonso, vii 

De Soto, Domingo, xix 

Descartes, René (1596-1650), 
xXxx1, 257n, 296n. See also 
physics, Cartesian 

die, 92 

discontinuity, 30, 31 

dissonance, 104, 106-7. See also 
consonance 

distances in fall, propositions 

on, 188, 190, 191, 192, 193, 
194, 199, 201, 207, 209, 213 

divisibility: and indivisibles, 39, 
45, 51, 54; unending, 43, 45, 
54, 155, 288 

doctors, 73 

double-distance rule, 168, 1687, 
196, 198, 203, 226, 231, 232, 
236, 239, 240, 298 

Index 

doughnut (ciambella), 144, 
144n, 145 

drumskin, 302 

dust, 227, 69, 90. See also 
powder 

eardrum, 102, 104, 105, 106, 
107, 108 

earth: xli; center of, 77, 222, 
223, 224, 290; motion of, xi, 
Xxxiv; radius of, 227; reduced 
to walnut, 58; surface of, 
197n, 222n, 224 

ebony and lead, 79 

eggs in water, 71 

Einstein, Albert (1879-1955), 
XXXi-XXXil 

elements, weight of, 76, 80-81, 
83 

Elzevirs (Bonaventure and 
Louis, printers), 5, 6, 7, 9n, 
146n 

energy, 172, 173, 239, 240, 242, 

256, 283, 286, 289 

Epicurus (341-270 B.C.), 34n, 
39n 

equable acceleration. See 
uniform acceleration 

equable motion. See uniform 
motion 

equality: in infinites, 34, 35n, 
40, 40n, 41; in the limit, 
36-37, 37n; in the square, 
XXXvii, 229, 235, 238, 239, 
240, 247; ratio of, 178. See 
also paradoxes; vector 
addition 

equidistance of ratios, xxxviii 

equilibrium: 110-12, 173, 284, 
289, 290, 294, 299; in water, 
72-73, 129; of forces, 157 

Euclid (fl. 300 B.C.): x, 
XV1i-XVili, XXxix, 215, 218, 
219, 252; Elements of, xi, 

XVlil, XXV, XXXVii, XXXix, 
149n, 215, 220, 220n, 252, 
281—; on mean 
proportionals, xxv, xxx; on 
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motion, 215; on number, 
XXX1, ON ratios, XXX-Xxxi 

Euclidean xxxviii, xxxix, 93, 
196n, 304n 

Eudoxian theory of proportion, 
149n 

expansion: of air, 20, 23, 24, 73, 
82, 84; of gold, 33-34, 58, 60; 
of lines, 33; of odors, 64 

experience: 11, 169; and reason 
96; of breaking thread, 17-18; 
of broken column, 14-15; of 

descent by rope, 19; of 
driving pile, 156, 287; of 
drops on leaves, 74; of 
gilding, 58; of gold leaf, 58, 
69; of hollow stalks, 144; of 
hum in projectiles, 90; of 
hydrometer, 73; of parabolas, 
142; of pendulums, 88, 96, 
107; of range of shots, 245; of 
rarefaction, 64; of separating 
slabs, 19-22; of speed inverse 
to weight, 257, 290; of speed 
of fall, 71, 228; of speed of 
sound, 49; of swiftness in fall, 
155-56; of time in fall, 
160-61; of tremor in throat, 
43; of weight in air, 81, 82; of 
winch, 19; of yielding to 
speed, 292 

experiments: Aristotle and, 66, 
69; 81-82; beam driven by 
taps, 305; checked pendulum, 
162-64; chisel marks, 102-3; 
commensurable pendulums, 

107; differential density, 73; 
equal speed of fall, 68, 87; 
Galileo and, vii, viii, xv, xx1, 
xxv, 24, 81n, 96, 153, 159, 

161, 171, 221n, 223 226n 
245, 282, 284-85; impact of 
water jet, 283-85; inclined 
plane 169-70, 170n; inertial 

motion, 197n, 296n; inflated 
bladder, 76; isochronism, 
87-88, 88n, 226; musical, 
97n; musket shot, 95, 228; 
power of vacuum, 23-24; 
speed of light, 50-51; tensile 
strength, 23; tracing 
parabolas, 142-43; vibrating 

goblet, 100, 102; weight of 
air, 82-86; weights over 
pulley, 294-95, 297; wine 
through water, 74-75 

fall: vili-ix, xix, Xxvii-xxix, 
147n, 155-56, 176n, 236-37; 
along chords and arcs, 97, 
164, 164n, 178-80, 183, 202; 
Aristotle on, xiii, 65 ff.; cause 
of, 77; deflected along planes, 
185, 186-90, 193, 194, 199, 
200, 202, 214; equal speed in, 
xiii, 68, 69, 72, 75-76, 78, 86, 
90, 91, 225; in void, 76, 78; 
law of xv, xvii-xxi. See also 
uniform acceleration; vertical 
fall. 

fallacies, 69, 160, 161, 180, 227, 
286, 287 

Favaro, Antonio (1847-1922), 
vii, 21n 

fibres and filaments: binding of, 
17-18; breaking of, 17; 
hempen, 16-17, 28; in wood, 
16, 117; separation of, 17 

“Fifth Day” on proportion, 9n 

fire: xliii, 80; and motion, 49; 
wood resolved into, 64 

fire-particles, 27, 28n, 48 

fish: 153; bones of, 128-129; 

equilibration of, 72-73, 129; 
on land, 129 

flask, 82-85 

floating, 69, 70, 72, 75, 81 

Florence, xi, Xxxiil 

fluids: as mediums, 84, 92; 
continuity of, 47; resistance 
of, 84n. See also air; water 

football, 82 

force: xix, xxxii, 295n, 298n, 
299, 303; and speed, 257, 
283, 295, 299; and weight, 
301; compounded, 113ff.; 
conserved, 306; impressed, 
xix, xxxii, xl, 157-58, 306; 
infinite, 132, 242, 256, 259, 
291, 301n, 302n; minimal, 28, 
92, 258-59, 290-91, 299; 
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multiplication of, 283, 306; of 
firing powder, 228, 283; of 
impact, 242, of void, 22, 
27-28 

freezing, 285 

friction, 87, 91, 100, 297 

functional relations, 121n, 177n 

Galilei, Galileo (1564-1642); 
see Academician; cause, 
Galileo on; consonance, 
Galileo’s theory of; constant, 
xxv; demonstration; 
experiments, Galileo and; 
infinite, Galileo on; 
mathematics, Galileo and; 
opponents of Galileo; 
paradoxes, Galileo on; 
physics, Galilean, postulates 
of Galileo 

—works: Assayer (II 
Saggiatore), 34n, 5On; Bodies 
in Water, 22n, 74n; Centers of 
Gravity, 141n, 142n, 261-80; 
De motu (On Motion), 66n, 
78n, 91n, 158n, 193n, 292n; 
Dialogue, xi, xxxii, 5, 21n, 
35n, 47n, 75n 88n, 147n, 

163n, 176n, 197n, 229n, 
233n, 237n, 258n; Mechanics, 
110n, 112n, 172, 172n, 179n, 
281n, 305n. See also Two 
New Sciences 

geometrical theorems, 46, 51, 
59, 60, 137-41, 210, 211, 229, 
243, 247 

giants, 14, 127-28 

gilding, 58-60 

glass: ball, 75; flasks, 82-85; 
impenetrability of, 24; 
molten, 26, 47 

gluey substance. See cement 

goblet, singing, 100, 102 

gold: 75; expansibility of, 
33-34, 58, 60; leaf, 58, 60, 69; 
molten, 26, 27; point-atoms 
of, 34n, 48; Spanish, 22; 
strings, 103 

Grassi, Orazio (1590-1654), 34n 

Index 

Guevara, Giovanni di 
(1561-1641), 29, 29n, 123 

Guiducci, Mario (1585-1646), 
193n 

gunner’s square, 245, 245n, 256 

gunpowder: 49; expansion of, 
64; force of, 283; motion 

from, 96, 227, 229 

hammers, 242, 283, 289, 302, 
305 

heat, 27, 49. See also fire 

Heath, Thomas Little 
(1861-1940), xxxviii, xxxix, 
xl 

heaviness (gravita); ix, 16, 20, 
65, 76-78, 80, 90, 91, 103, 
109n, 112 ff., 157-58, 217, 
225, 242, 258, 289, 293, 294, 
296; neutralized, 296 

heights, measuring: 98 

Hertz, Heinrich Rudolf 
(1857-94) xxxv, 153n, 159n, 
164n 

hollow cylinders, 143 ff. 

horizontal impetus, 240, 255, 
296n 

horizontal planes: ideal nature 
of, 197n, 223; motion on, 

172, 196-97, 197n, 202-3, 
DN WE RP HARA 

horizontal shots, 255-56 

humming of projectiles, 90 

Huygens, Christiaan (1629-95), 
XXX1V 

hypothesis (ex suppositione), 
153, 164, 222, 224 

impact (percussion): 281n; and 
dead weight, 156; as measure 
of speed, 156, 160; energy of, 
240, 242; first, 305; force of, 
259, 282 ff., 298, 305; instant, 
305; of air waves, 104; of 
projectiles, 95-96, 228, 240, 
242; of weight, 156; on 
riverbed, 95; partial, 241; 
theory of, 240-42, 300-303; 
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weight and speed in, 283, 
289, 293. See also resistent; 
yielding 

impetus: accumulated, 99; 
compound, 235; conserved, 
297; destroyed, 296; equality 
of in fall and rise, 96, 164, 
295, 296, 299; excessive 
(supernatural) 227-29; 
infinite, 253; initial, 156; 
maximal, 172, 178, 242; of 
projectiles, 229, 234-41, 247, 
255; theory, xix. See also 
momentum 

impressed speed, 197-98 

impulses, periodic, 99, 306 

inclined planes: decrease 
acceleration, 172; equilibrium 
on, 172-73, 299-300; motion 
along, xxix, 87, 162, 164, 
169, 171, 217, 297-300; 
postulate concerning, 162; 

propositions on, 171, 175, 
176, 177, 178-80, 183, 184, 
185, 187, 188, 189, 190, 194, 
199, 200, 201, 203, 204, 206, 
211, 213, 214. See also fall, 
deflected 

incommensurables, 104, 107, 
303, 304n 

indivisibles: 33, 34, 38, 39n, 55, 
57; dimensionality of, 35n, 
39n; in physical material, 
xliii, 33-34, 47, 48, 60; 
method of, 35n, 39n. See also 

atoms; continuum; 
divisibility; parts 

inertia, 181, 194n, 197n, 296n. 
See also motion, inertial 

infinite: aggregates, x; distance, 
224; finite attributes and, 
41-43, 46; number and, 
XXXvili, 28, 46, 47; orders of, 

39; paradoxes of, 28, 33-46 
passim; passage to, 30n, 45, 
46, 47, 51. See also 
divisibility; paradoxes 

instant: 20, 65; first, 155, 157, 
167; in finite time, 157, 196; 
mathematical, 155, 157, 
165n; physical, see moment 
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interpenetration, 54-57, 64 

inverse squares, 98, 101, 177 

isochronism. See pendulum 

jet of water, 285 

Johnson, Alexander Bryan 
(1786-1867), xxxv 

Kastner, Abraham (1719-1800), 
37n 

Koyré, Alexandre (1892-1964), 
Vili-ix 

lance, 68, 144, 241 

least time, propositions 
concerning: 203, 204, 205, 
212, 213. See also 
brachistochrone; minimum 

lever: 113 ff., 132, 137, 144, 

242, 257, 289; law of, 109 ff.; 
material and ideal, 112-13, 
113n. See also balance; 
steelyard 

levity, 80, 82 

Leyden, 146 

light: xliii; expansion of, 50, 64; 
speed of, 49-51 50n 

lightning, 49, 51 

Lincean Academy, 7 

logic, 133 

Lucretius (98-55 B.C.), 34n 

machines, 12, 13, 257n, 283, 
289, 290, 301n; sizes of, 12, 

14, 127 

magnitude: 42n, 43; continuous, 
42: of same kind 295; orders 

Olea. 220, 221, 

mallet, 302 

mangles, 302 

Marchetti, Alessandro 
(1633-1714), 138” 

mass, xl 
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materiality, 65, 70, 112 

mathematicians, 215, 220 

mathematics: applicability of, 

153, 155, 169, 223; Aristotle 
on, xiii; assumptions in, 223- 
24; definitions in, 357, 36, 
144n; discovery by, 133; 
physics and, 12, 112-13, 133, 
151n, 153, 215, 223-24; study 
of, 93, 133 

matter: 58, 112; imperfections 

of, 12; inalterable, 12-13; 
prime components of, 33-34, 
47, 60 

maximum: 124n; area, 61-64; 

capacity, 61; length of beam, 
123-24, 130-31; length of 
wire, 25-26; range of shots, 
245, 246n; weight, 25, 134 ff. 

mean proportional: xxxviii, 45; 

tule for times, 170-71, 174, 
185-86 

mean speed, 165n 

measure: of force of vacuum, 

22-23; of height, 98; of 
impact, 283, 287; of impetus, 
23092310 2849236,2379255; 
of resistance, 227; of speed, 
231, 234, 237, 239, 283; of 
time, 170, 236, 239; of total 
moment, 173; of 

wavelengths, 102-3; standard 

of, 231, 236-37 

mechanical: advantage, 122n, 
290; conclusions, 16, 171; 
instruments or devices, 12, 
110, 113, 172, 242, 257, 289, 
290, 294; movements, 173 

mechanics, xxxviii, 11, 12, 13, 
109, 169, 179, 242, 295n 

Mechanics in Italy, 66n, 81n, 
229n, 245n, 246n 

medieval statics, 179n, 257n, 
295n, 301n 

medium: and speed, 65, 69-71, 
75-80, 90, 224, 226n; 
Aristotle on, 65 ff.; buoyancy 
of, 78; density of, 79; 
displacement of, 77-78, 
84-87, 104; extrusion by, 159; 

friction with, 78 ff., 91-92; 
lifting of, 84n; motion of, 90, 
99; non-resistant, 76, 78-80; 
resistance of, 69-76, 84n, 92. 
See also antiperistasis; 
buoyancy; specific gravity 

melting, 26, 47-49 

mercury, 47, 75 

Mersenne, Marin (1588-1648), 
172n, 233n, 305n 

metaphysics, 182n 

Middle Ages, 179n, 215n. See 
also medieval statics; physics, 
medieval 

minima naturalia, 34n 

minimum: force, 244; parts, 26, 
27, 47; time, 202-3, 205, 211 
ff.; resistance, 173 

mirrors: concave, 48; metal, 

142-43; parabolic, 48 

mixed angle, 291 

mixed triangle, 139, 139n, 141 

moment: xl, xli, 113 ff.; against 

internal resistance, 122 ff.; 

compound, 121; infinite, 305; 
of force, 28; of heaviness, 
117; of speed, 231; of time, 

106; partial, 173; static, 
112-13, 125, 179, 284, 305 

momentum: 87; acquired, 236; 
as aggregate, 99, 304; 
compounded, 229, 257; in fall 
and rise, 163-64; of impact, 

160, 1617; on inclined plane 

172; quantity of, 240; weight 
and speed in, 257, 290 

monochord, 101 

Monte, Guidobaldo del 

(1545-1607), 143n, 259n, 
260, 261n, 263n 

moon: fall from, 14, 95; spots 
on, 7 

mortars, 229, 229n, 245 

motion: and force, xxxii; and 
heat, 49; beginning of, 76, 

81n, 154, 155, 170, 174, 228; 
cause of, 77; circular 181-82, 
233; compounded, 217 ff., 
229 ff.; conflict of, 222, 229n; 
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continuous, 46; curved, 164, 
218, 256; deflected, see fall, 
deflected along planes; 
horizontal, 172, 196-97, 
202-3, 217, 222, 225, 297; 
impediments to, 11n, 77, 78, 
87, 94, 162, 164, 223, 224, 
225, 226-27, 297, 298; 
indifference to, 172; inertial, 
172, 182, 194n, 217, 222, 
225, 236, 240, 296-97; 
instantaneous, 20, 50, 65, 
160, 305; in void, 20, 65 ff., 
76, 78-80; minimal, 156; 
mixed, 197-98, 222, 235-36, 
239, 255; natural, 147, 155, 
157-58, 181-82, 239, 281; of 
medium, 90; perpetual, 157, 
196-98, 217, 223, 225, 233, 
302; propensity to, 77, 173, 
197, 297; reflected, 198-99, 
200; science of, 8, 147 ff., 
171, 215; violent, 148, 158, 
281, 296. See also 
acceleration, deceleration; 
fall; inclined planes; medium; 
paradoxes; projectiles; 
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number: xxxviii, xxxix, 40; 
indefinite, 43-44; infinite, 
XXXvili, 41, 43, 45, 47, 51: 
one (unity), xxxviii, 45, 67n; 
prime, 44; real xxxix; 
squared, 40-41, 45 

oars, 127, 306 

observation: and reasoning, 64; 
by artisans, 11; of bells, 99, 
306; of broken rope, 17; of 
chisel marks, 102-3; of dust, 
47-48; of fluids 48; of fish, 

72-73; of goblets, 100, 102; 
of gold, 75; of impact through 
water, 95; of lathes, 90; of 
lightning, 51; of long ropes, 
119; of pack twine, 18; of 
pendulums, 87, 89, 227; of 
planetary motions, 233; of 
rarefaction, 64; of specific 
gravity, 73; of speed in water, 
71; of split waves, 100; of 
suction pump, 24-25; of 
swinging lamp, 98; of 
sympathetic vibration, 
99-100; of terminal speed, 
228; of trajectories, 143; of 
wetting rope, 28 

odd-number rule, 147, 147n, 

167-69 

odors, 64 

one-to-one correspondence, 32, 
40-41, 40n, 45, 160n, 165, 
165n, 176, 196-97 

opponents of Galileo, 34, 86, 
89-90, 161, 234 

speeds; uniform acceleration; 
uniform motion 

music: instruments of, 96, 99; 
intervals of, 101, 104. See 

also consonance; dissonance; 
vibration; waves 

musket ball, 66 

mutation, xlii 

muzzle velocity, 96 

nails, 15, 143, 162-63, 298, 302 

nature: actions of, 143, 153; 
defrauding of, 289; motions 172n, 179n, 281, 282n 
used by, 153, 154, 181-82; : : : 
pranks of, 180; simplicity in, Pappus of Alexandria (fl. 285), 
153 XXXVI 

parabolas: as burning glasses, 

Padua: 35n; University of, 62n, 

net impact, 241 

net leverage, 113n, 122, 122n 

neutrality to breakage, 123-24 

Noailles, Francois de 
(1584-1645), 5-6 

48; as conic sections, 218-21; 
degenerate, 222; drawing of, 
142-43; 143n; for shaping 
beams, 137 ff.; properties of, 
137-41, 219-20, 263n; 
propositions concerning, 137 
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ff., 217 ff., 247 ff.; quadrature 
of, 141; tangents to, 220, 242; 
trajectories and, 49n, 143, 
147, 147n, 217 ff., 222, 224, 
225, 229, 240 ff. 

parabolic conoids, 263, 264, 

266, 268, 271 

paradoxes: Aristotle’s laws of 
fall, 67-68; Aristotle’s wheel, 
29 ff.; Galileo on, 57n; of 

equal speed, 88-89; of 
infinity, 28, 32-47 passim, 51, 
57; of line, point, and surface, 
35 ff., 37n; of numbers and 
squares, 40-41; of passage to 
infinite, 30n; of passage to 
limit, 35-37, 57n 

Paris, 143n 

parti. See parts, quantified; 
parts, unquantifiable 

particles: minimum, 26, 27, 28, 
47, 48; of lines, 31-32 

parts: coherence of, 16-17, 19, 
21, 26, 27, 54, 109, 115; 
quantified, xlii-xliii, 32-34, 

42, 43, 44, 47, 57; 
unquantifiable, xli, 33, 34, 
42, 304n 

pendulum: xxi-xxix, 87-88, 94, 
96, 107, 296; and heights, 98; 
checked, 162-64; isochronism 
of, 87, 88n, 94, 97, 99, 
226-27; law of, 94, 97-98; 
period unalterable, 99; started 
by puffs, 99; swings to same 
level, 96, 163-64, 295-96 

percussent, 156, 160-61, 294, 

298, 300, 302, 303, 305 

percussion, Added Day on: 9n, 
241n, 259, 281-303; Galileo’s 
proposition on, 300. See also 
impact 

Peripatetics, 54, 55, 65, 66n 

philosophers, viii, xviii, xxxii 8, 
20, 34, 44, 64, 69n, 73, 80, 
94, 96, 102, 147, 157, 159, 
215, 218. See also Peripatetics 

physics: Aristotelian, xiii, 
XXXVili, xli-xlii, 2957; 
Aristotle on, xviii, Xxix, 

_ Index 

Xxxix, xlii-xliii; assumptions 
in, 223; Cartesian, xl, 295n,, 

301n; Galilean, ix, xxx, 151n, 
159n; mathematical, xvii, 
XXXi; Measurement in, xviii; 

medieval, xxx, 147n, 153n, 
295n; 301n; modern, xxxiv; 
terrestrial, xli 

Pieroni manuscript, 21n, 69n, 
80n, 81n, 104n, 106n, 134n, 
137n 

pikestaff, 236-37 

pile driver, 285 ff., 292 ff., 301 

Pisa, University of, 38n, 81n 

piston, 23-24 

planets, 233 

Plato (427?-347 B.C.): 93, 133, 
232, 233; Timaeus of, 234n 

Platonism, 193n 

points: and lines, 34, 35, 38, 
53-54; bisection of, 39; equal 
to circles, 37-38; filled vs. 
void, xli, 27n, 33 

polygons: inscribed and 
circumscribed, 62; relation to 
circles, 33, 62, rotation of, 29 
ff., 55-56 

porosities, 24, 27, 28, 90 

postulate of Galileo on acquired 
speeds: 162, 164-65, 174, 

175; dynamic lemma for, 
162n, 164n, 171n, 171-74; 

kinematic arguments for, 
174-75, 199; utilized, 299 

potential, xxxvili, 42. See also 
power 

powder, 47, 48, 92. See also dust 

power: in mathematics, xxxviii, 
235: in physics, 114, 256, 
295n. See also three-halves 
power 

pressure: atmospheric, 25n, 75n, 
129n; combined with impact, 
156, 242, 291, 302-3; effect 
of, 156, 242, 302; of fingers, 
17-18; of weight, 156, 242, 

288-89, 300; separation of, 18 

projectiles: 215, 217, 221 ff.; 
actual, 225; impetus of, 
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230-42; motion of, 143, 148, 
217 ff.; paths of, 49n, 143, 
147, 221, 243; propositions 
on impetus of, 229, 244, 245, 
247, 248, 252; propositions 
on ranges of, 246, 249, 253; 
trajectory of, xxix. See also 
trajectories 

proportion, theory of: xxx, 
295n, 298n; propositions on, 
192, 210, 247, 269, 278. See 
also Eudoxian theory of 
proportion 

proportionality: inverse, xxxviii, 
150, 151 

Ptolemy (astronomer, fl. 140), 
XVil, XXXVili 

pulleys, 289, 293-95, 297, 299 

pumps, 24-25, 25n 

quantified. See parts, quantified 

Questions of Mechanics 
(psuedo-Aristotelian), 29, 

109, 109n, 123, 131, 229n, 
257 

rafters, 135, 169 

range of shots: 229; maximum, 
245, 246n; with given 
impetus, 246, 249-51 

rarefaction, 54, 55, 57, 58, 64. 
See also condensation 

ratio: compound, xxxvii, 114, 

120, 151-52, 177, 177n, 283n, 
295n; defined, xxvii; 
duplicate, xxxvii; Euclidean 
restriction on, XXX-XXXi; 
Galileo’s, xxviii, inverse, 60, 
109, 121, 152, 174; of 
equality, 178; of infinites, 
196; of volume and surface, 
92; same, xxx, 149 

relativity, Xxxix 

resistance: absolute, 115; and 
speed, 78, 257; constant, 293 
ff., 298 ff.; increasing, 
286-87, 292-93, 298; infinite, 
132, 287, 289, 298, 303; of 

323 

medium, 68, 72, 78, 94; of 
vacuum, 22, 23, 25, 76; 

proportionality to speed, 88n; 
to ascent, 173; to breakage, 
12, 13, 19, 54n, 93, 109, 115 
ff.; to separation, 20, 21, 92; 

two kinds of, 19, 119, 303; 
uniform, 131 ff., 135 ff. 

resistent: xliii, 288; always 
yields, 28, 257, 288, 301, 
305; condition of, 241; 
movement of, 241, 257, 283; 
obliquity of, 241; weight of, 
289. See also yielding 

rest, 56, 57, 67, 68, 155, 156, 
ASVi/y MSR AGA SABI), 222). 2838}. 
289, 290, 295, 296 

retardation. See deceleration 

Rome, 5, 38n, 62n, 142n 

rope: breaking of, 16, 17, 25; 
descent by, 19; fibers of, 

16-17; long and short, 19-20; 
of water, 25; roughness of, 
297; stretched straight, 
256-59; swelling of, 28; 
twisting of, 17; weight of, 25, 

256; wetting of, 28n 

sacks, capacity of, 61 

Sacrobosco, Joannes (13th c.), 
62, 62n 

Sagredo, Giovanni Francesco 
(1571-1620), xxxili-xxxiv; as 
interlocutor, xxxiil-xxxiv, 
42n, 158n, 223n 

Salviati, Filippo (1582-1614), 
XXxXiil; as interlocutor, xxxiil, 

28n, 182n, 224n 

sand, 23, 72, 82, 85, 90 

San Giovanni, church of, 305 

Saturn, 7 

science: vii, xi, xiii, 15, 139, 
224, 225; demonstrative, 90, 
169; object of, xviii 

screw, 172, 242, 289, 303 

sculptors, 182, 302 

self-support, propositions on, 
117, 123, 124, 130 
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sensorium, 104 

shape: and speed, 90, 94, 104, 
225; and strength, 122-23, 

135: and weight, 112; implies 
finite, 47 

ships, 11, 28, 127, 130, 138, 306 

Siena, 125n 

Simplicio as interlocutor, 
XXXiii-xxxiv, 91n, 182n, 
223n, 281 

siphon, 25n 

Sixth Day, 9n. See also 
percussion size, 11, 12, 13, 
15, 90, 123, 127, 225 

skeleton, 127-29 

slabs, separation of, 19-22 

sledge, 156 

slowness, infinite, 155, 156, 
157, 233. See also rest; 
acceleration, continuity of 

sound: 96; pitch of, 90, 102-4; 
sensation, 102; speed of, 
49-50; waves, 102 

soupdish, 36 

specific gravity: 68n, 80, 82, 
129; heat and, 73; in fall, 68, 

72-73, 75n, 78, 79, 90; of 
mercury, 75 

speeds: absolute, 66, 80; 

acquired, 162, 236-37, 
296-97; and pitch, 90; and 
shape, 90-91, 104, 225; and 
weight, 65, 68-71, 78, 90, 
173, 257; Aristotle on, 65-71; 

composition of, 241; 
conserved, 197, 297; 
consumed, 150n, 157; 
degrees of, xlii, 70-71, 77, 
T7In, 154, 156-57, 162, 165, 
176, 176n, 197, 241, 297, 
299; equality of, 88-89; 
impressed, 197, 228; 

indefinitely increased, 156; 
inequalities in, 72; in free fall, 
65-71, 78, 225-28; mean, ix, 
XViii-xix, 165n; measure of, 

XViii; natural and 
supernatural, 95, 226-29, 
228n; overall, 161n, 173, 
176n, 196n, 197n, 226; 

physical definition, 159n; 
proportional to distances, ix, 
154n, 159-60, 176n; 
proportional to times, 77, 
154, 159, 168, 171, 174, 231, 
237, 238; ratio of, xviii, 69, 
72, 80; universal unit of, 
236-37. See also air, speed in; 
fall, equal speed in; medium, 
and speed; momentum, speed 
in; weight, and speed 

spinning, 90 

spirals, 18, 19, 153 

square number, 40-41, 45 

steelyard, 237, 290, 294 

sticks, 13, 16, 131 

stones: falling, 157; hurled up, 
157; tied together, 67-68 

Straw, 144 

strength: and length, 123-24, 
131; breaking, propositions 
On, LE4 TGS 7s. 119) 
120, 121, 123, 124, 126, 130, 
133, 134, 144, 145; of beams, 
13, 114 ff.; of cylinders, 118, 
121, 125 ff., 143 ff.; of dogs, 
128; of materials, 8, 109 ff., 
115n, 143 ff.; of plants, 14, 
144; of nails, 15; of rope, 
16-18, 119-20; of structures, 
11-13; of wood 16; 

propositions on ratios of, 118, 
119, 120-21, 126, 144, 145; 
size and, 11-12, 15, 123; 
tensile, 16, 25-26, 109, 
114-16, 118; transverse, 109, 
114 ff., 143; uniform, 131, 
135 ff.; uniqueness in, 13, 
123-24. See also breakage; 
resistance; self-support; 
weight 

strings (musical): tension in, 
101, 103. See also vibration 

sublimity (of parabola): 232, 
233, 240, 243, 252 

suction, 24-25 

sunspots, 7 

supernatural speed, 226-29, 228n 

surfaces: and lengths, 58-60; 
and perimeters, 61-63; and 
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volumes, 60-61, 91-92; 
irregular, 61; of cylinders, 

59-60; roughness of, 90-92, 
162 

surface tension, 74n 

swim bladders, 73 

Swineshead, Richard (fl. 1350), 
148n 

tables of trajectories, 251, 254 

tardity, 155, 157. See also 
slowness 

Tartaglia, Niccolo 

(1500?-1557), 229n, 245n, 
246n 

telescope, vii, xxx, 7, 50 

tensile strength. See strength, 
tensile 

terminal velocity, 78n, 94-95, 
161n, 225, 228 

theology and mathematics, 182n 

three-halves power, 92, 93, 119, 
121-22 

time: accumulation of, 87; 
divisibility of, 106, 154, 157; 
measure of, 170, 236; 
minimum, 202, 203, 204, 

205, 211; moment, 106; 
motion and, 154; 

representation of, 175n, 237, 
239 

times of motion, propositions 

concerning: equal times, 178, 
180, 183, 184, 185, 187, 188, 
190, 206, 207, 209, 213, 214; 
minimum time, 203, 204, 

205, 212, 213, 214; ratios of 
times, 175, 176, 177, 185, 
186, 190, 199, 200, 202, 214; 
shorter time, 159, 183, 189, 
191, 194, 211 

times-squared law, viii, xv, 
XViii-xix, xxix, 147n, 166, 

169, 174, 222, 237 

Torricelli, Evangelista 
(1608-47), 129n, 172n, 304n 

tower, 14, 79, 95, 224 

trajectories: 49n; distorted, 
223-24, 229; propositions 
concerning, 221, 229, 243, 

925. 

244, 245, 247, 248, 249, 252, 
253 

transparency, 48 

trees, 14, 127 

Treviso, 281 

Two New Sciences: Added Day, 
x, 176n, 241n, 242, 259, 
281-306; Appendix, 259, 260, 
261-80, 281; beginning of 
modern science, xiii; edition 

of 1638, 21n, 28n, 68n, 80n, 
134n, 162n, 193n, 196n; 
edition of 1655, 171n, 196n; 
Fourth Day, viii, xxx, 143, 
143n, 148, 217-60; 
interlocutors of, xxxiii; Latin 

treatise in, xv, 147-59, 162 ff., 
217 ff.; manuscripts of, 5, 
21n, 68n, 69n, 80n, 104n, 
106n, 134n; passages added, 
68n, 69n, 71n, 85-6, 171-75; 

Second Day, xxx; Third Day, 
Vili, X, Xxi; translations of, x 

Udine, 282 

uniform acceleration: xviii, 77, 

153i OSs 181) 2172325 
236, 297; added theorem on, 
174, 175; definition, 154-55, 
161-62, 169, 174; law of, 
166; medieval work on, 147n, 
153n, 165n; problems on, 

191, 192, 206, 207, 208; 
Prop. I on, 165-66, 176, 196, 
197n, 297n; Prop. Il on, 
166-71, 171n, 177, 221; Prop. 
III on, 175, 199, 299. See also 
acceleration; double-distance 
rule; distances in fall; fall, 

deflected; inclined planes; 
odd-number rule; times of 
motion; times-squared law; 
vertical fall 

uniform motion: viii, 147-52, 

154, 166, 168, 181, 196, 217, 
229, 236, 238, 297; axioms 
of, 148-49, 1487, 1507; 

composition of, 229n, 237; 
defined, 148, 148n; following 
on fall, 94; never actual, 223, 
225; perpetual, 157, 197n, 



326 

198; Prop. I on, 148n, 149; 

Prop. II on, 1487, 150, 160n, 
179; Prop. IV on, 167. See 
also motion, inertial 

unison, 97, 106 

unit, XXxix 

unity, xxxviii, 45, 51, 147, 167 

universe; creation of, 233; 
infinite, 193n 

unquantifiable. See parts, 
unquantifiable 

vacuum. See void 

Valerio, Luca (1552-1618): 387, 
141-42, 142n, 260; his De 
centro gravitas solidorum, 38, 
141n, 142 

valves, 24, 82-85 

vapors, 49, 81 

vector addition, xxxvii, xiii, 
229-30, 238-39 

velocity. See speeds 

Venice: 281n, 282; arsenal of, 11 

Venus, 8 

vertical fall, propositions 
concerning, xxv, 165, 166, 
167, 175, 185-86, 190, 191, 
192, 193 

vibration: of church lamps, 98; 
of strings, 104; of throat, 103; 
sympathetic, 97, 99-100 

Virgil (70-19 B.C.), 160n 

virtual velocities, 109n, 257n, 
257-58 

viscosity, 74 

Viviani, Vincenzio (1622-1703), 
On, 28n, 98n, 107n, 135n, 
138n, 171n, 172n 

void: equal speed in, 76, 241; 

horror of, 19-20, 23, 26, 27n, 
54n; in nature, xliii, 20, 21, 

34, 54, 64, 69n; interstitial, 
xliii, 27-28, 33, 34n, 51, 85; 

macroscopic, xlili, 54n, 57, 
71, 76, 78; motion in, xliii, 
20, 65 ff., 76, 78-80; not 
instantaneous, 20; particles, 
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Introductory 

The law of fall states that distances from rest are as the squares of the 
elapsed times. Galileo used this in his Dialogue of 1632 and developed 
consequences of it in Two New Sciences six years later. The law had 
been first recognized by him early in 1604, immediately following his 
discovery of the pendulum law. 

In a way it is surprising that the times-squared law for the sponta- 
neous descent of heavy bodies had not been recognized long before 
the 17th century. Measurements sufficient to put the law within 
someone’s grasp are quite simple.' Equipment for making them had 
not been lacking—a gently sloping ramp, a heavy ball, and the sense 
of rhythm with which everyone is born. Discovery of the law by those 
means would be easier from rough measurements than from painstak- 
ing ones. Counting regularly would suffice for timing. The ball’s place 
at each count is marked, and a piece of string, stretched between the 
thumbnails from the point of rest to the first mark, is used as the unit 
of length. The marks will thus be found to be separated, serially, by 1, 
3,5, 7, ... units. Distances from rest must then sum to 1, 4, 9, 16, ...; 

and, since the counts 1, 2, 3, 4, ... numbered equal times, the times- 

squared rule of distances from rest becomes immediately recognizable. 
If one were to measure in fractions of an inch, applying a yardstick 

instead of a length of string, this odd-number spacing might go unno- 

ticed and the law would not become evident.’ The unit used makes no 

" The matter of proof, or rigorous derivation of the law, is quite separate 
from that of its discovery, or recognition, from measurements and calcula- 
tions. 

2 The odd-number rule will be found unmistakably when the first distance is 
used as the unit, even in casual demonstrations on a gently sloping plane, 
as by holding the hand stretched to the first distance and counting its 
applications to the others. 
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difference mathematically, but could greatly increase the difficulty of 

discovery. It happens that the best unit in this case is the natural one 

for a person merely curious, not seeking a cause. Idle curiosity might 

thus have led to the discovery of the law of fall at any epoch (and more 

probably by a construction foreman than by a natural philosopher.) 

Once the times-squared law has been so found, a conjecture that the 

same rule applies also to vertical fall could be easily verified, to any 
practicable degree of accuracy. On the other hand it would be ex- 
tremely difficult for anyone to discover the fact in the same way that it 
could easily be shown to be true. Furthermore, however nearly the law 

might be found to correspond with actual measurements, it is quite 
another matter to derive the times-squared law by logic, or to prove it 
mathematically. 

The ease of stumbling on this discovery renders it highly improba- 
ble that natural philosophers had ever searched for the law of fall. 
They gave many reasoned accounts of the cause of fall, from Aristotle’s 
to Buridan’s, all without value in terms of useful knowledge.? Newton 
lamented his inability to find the cause of gravitation. It may be hard 
to imagine what kind of a cause he was looking for, and it has been a 
waste of time for historians to seek a historical source of the law of fall 
among philosophical quests for the cause of fall that were made up to 
the time of Galileo—and also by him, in his early years. 

Historians were in possession of the law of fall when they began the 
search for its possible sources before the 17th century. Knowing pro- 
portionality to be involved in it, it seemed to them reasonable to as- 

sume that some natural philosopher before the time of Galileo had hit 
upon the idea that a proportionality of speeds in accelerated motion to 
distances fallen (or to times of fall) could explain the motions of heavy 
bodies causally. But that was simply not the case. Aristotle had defined 
the goal of science to be causal knowledge. Any proportionality capa- 
ble of accounting causally for fall would, it seemed to his followers, 

Galileo’s comment on the subject in his famous Dialogue is worth quoting. 
His spokesman having said that he would know what makes the earth 
move if he knew what moves heavy bodies downward, the spokesman for 
philosophers replied that that cause is well known; it is gravity. “You are 
wrong,” was the answer; “what you ought to say is that it is called gravity. I 
am asking not for its name, but its essence, of which you know no more 
than you know the essence of whatever moves the planets.” 
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necessarily relate speeds either to the heaviness of a falling body or to 
some external force impressed upon it. Those things were acceptable 
causal agencies, whereas the distances or times of a motion were philo- 
sophically unacceptable as its cause. Heaviness as the cause of fall, and 
impressed force as the cause of acceleration during fall, were proposed 
(in that order) by theories of fall during Greek antiquity. The two 
alternative ancient causes were eventually combined in a novel 14th- 
century theory of fall. The 16th century witnessed the destruction of 
simple heaviness as the cause of fall, by mathematical logic and by 
actual tests. The heavier of two bodies does not fall with a speed 
proportionately greater than speed of the lighter. As the 16th century 
ended, Galileo saw that it was superfluous to assume action of im- 
pressed force in order to explain continuation of any motion. Only 
then, with those traditional causal preconceptions out of the way, was 
the times-squared law—which might easily have been found through 
curiosity—discovered by Galileo after a series of painstaking and 
rather complex investigations. The discovery followed immediately 
upon his discovery of the law of the pendulum, which in turn had 
required his adoption of units of length and time particularly appro- 
priate for gravitational phenomena. Although Galileo did not apply 
them to planetary motions, that will be done in the Epilogue on 
Kepler’s problem, for the Galilean units are still of use today. 

Before the 17th century was over, Newton restored both the old 

ideas of heaviness and impressed force at a higher level of physical 
thought. But his creation of modern dynamics came after the end of 
the period to be considered in the present monograph. 

Despite its rigorous derivation in 1638 (and confirmation by mea- 
surement), the law of fall was still in dispute among scholars in 1650. 

The notion that it produced a sudden shift of attention among 17th- 
century natural philosophers, away from causal inquiry and toward 
measurements and mathematics, is more a product of our customary 
terminology than a demonstrable truth. We call René Descartes a natu- 
ral philosopher; yet far from his having sought consequences of the 
times-squared law, he declared that Galileo had merely asserted his 

law without any causal foundation, and that it rarely, if ever, applied 
in actual fall. Honoré Fabri, who vigorously opposed the new law of 
fall, is called a natural philosopher—but so are Christiaan Huygens 
and Isaac Newton who as vigorously investigated its consequences, 

strengthening its foundations as a true law of nature. 

Publication of the times-squared law of fall did not hinder philo- 
sophical speculations about the cause of spontaneous motion by heavy 
bodies, or improve them. In physics, it initiated an unprecedented line 
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of inquiry into natural phenomena. Confusion arises from calling 

those who adhered to strictly causal theories of fall by the old, estab- 

lished name, and also extending the same title to those others who 

investigated physical phenomena in the new way, aimed toward a 

different goal. This confusion could be eliminated by calling the for- 

mer “natural philosophers” and the latter “physicists,” or “scientists,” 

or the like. Yet Newton certainly, and Huygens very probably, thought 
of himself as a natural philosopher, so we do well not to alter our 
terminology. Any confusion is better avoided by understanding clearly 
what did happen in the 17th century—no matter what status that may 
have had then (or now has) among philosophers of the highest repute. 

The principal purpose of the present monograph is to improve our 
understanding of what did happen in the 17th century. To do that 
effectively it is necessary to begin at the beginning, from theories of fall 
and rules arising incidentally to them—rules which, being wrong, are 
not entitled to be called “laws” without mental reservations. When the 
old theories and rules are studied in order, they show a certain pattern 

of recurrence at each epoch in the history of theories of fall. In turn, 
some events of the 17th century then appear less surprising, and less 
revolutionary in the usual sense, than they now seem to have been, by 
becoming more easily understandable in this chronological frame- 
work. 

Two obstacles exist to comprehension of that framework. One is the 
fact that theories of fall from Aristotle to Galileo have been fully docu- 
mented and studied by many scholars. The prospect of learning any- 
thing new seems hardly to justify one’s reviewing the old documents 
and reconsidering the established conclusions. Nevertheless, patient 
re-examination of familiar things has often resulted in historical in- 
sights, formerly unappreciated only by reason of some inveterate pre- 
conception. 

The other obstacle is that events of the 17th century have been even 
more copiously documented than those of ancient and medieval natu- 
ral philosophy, so that nothing relevant to the law of fall seems to have 
escaped notice. Nevertheless, a decade ago there was still uncertainty 
about the circumstances of the eventual discovery. From Galileo’s 
working papers, restored to their order of composition, it is at last 
possible to follow his work step by step, and hence to determine 
whether, and how, any of the known theories of fall could have helped 
or hindered that eventual discovery. That process brings to attention 
aspects of older theories that had been relatively obscured from notice. 

Until quite recently it has been possible only to speculate about the 
possible influence of this or that theory on Galileo’s thought at one 
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time or another during his long career. A great many such speculations 
were offered, of which none required any role for the pendulum law in 
the discovery (because pendulums had played no part in old theories 
of fall.) Now, however, Galileo’s working papers leave no doubt that 
his 1604 discovery of the law of fall depended on his having found the 
pendulum law. Not only was that used in Galileo’s approach, but 
when G.B. Baliani also published the same law in the same year (1638), 
he postulated the pendulum law for his proof of the times-squared law 
of fall. It is clear that not everything that happened in the 17th century 
to bring forth the times-squared law was already at least implicit in 
some previous theory of fall. Documents formerly unexamined reveal 
what had been lacking, after which, with knowledge of the facts in 
need of explanation, new study of familiar documents is called for to 
reveal why that had been lacking. 

There is also at least one positive reason for composing a mono- 
graph on theories of fall; namely, that none already exists. In order to 
learn the pre-history of the times-squared law of fall it is presently 
necessary to study the scattered accounts—sometimes contradictory 
accounts, and so far as the 16th century is concerned, incomplete ac- 

counts. Nearly all the documentation needed for theories of fall before 
1500 was compiled a quarter-century ago by Marshall Clagett, who 
incorporated it with a much greater bulk of documentation for many 
other aspects of natural philosophy and mechanics during the same 
period.’ To extract the part relevant to the present topic, and present it 
together with documentation for the 16th and 17th centuries, will 

therefore be of some service to historians of early modern physics. 

The times-squared law of fall belongs to purely mathematical phys- 
ics, a field opened by Archimedes in antiquity, approached in a differ- 
ent way during the 14th century, and finally revised and continuously 
pursued from the 17th century to the present. Old theories of fall be- 
longed to speculative physics, and came only incidentally to include 
some mathematical formulations. 

Clearly, the mathematical physics of any epoch is shaped by the 

Marshall Clagett, The Science of Mechanics in the Middle Ages (Madison, 
1959.) Citations of documents from this source will be identified by the 

name Clagett followed by page numbers. Some of his English translations 
will occasionally be slightly altered in the present text, since comparison 

with the original Latin in that volume may be easily made. 
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mathematics of that period. Because there was a fundamental differ- 
ence between the mathematics employed by Archimedes and that cre- 
ated in the 14th century, while that of Archimedes was reinstated in 
the 16th century, it will be necessary to identify the nature and occa- 
sions of such alterations of mathematics. The relevance of each change 
to theories (and to the law) of fall may not be immediately clear at the 
places of exposition, but will become so as the story proceeds. 

The language in which old theories of fall were expressed also un- 
derwent changes with time, and again in translation from Greek, the 

language of the first theories, into Latin. Thus the word KIVNOLC be- 

came motus, so in modern-language translations of Aristotle, commen- 
taries on his writings, and discussions of his meaning, kivnoic appears 
as “motion” (or its equivalent in other languages). Aristotle’s term 
included not only locomotion, or change of place with time, but also 
alteration and growth. The word “physics” was coined by Aristotle to 
name the science of nature, from %o1c, which became natura in Latin, 

so that the word “natural” (as in natural philosopher) is often best 
thought of as meaning “physical” in modern usage. It is less simple to 
deal with linguistic changes (semantic shifts) than with changes which 
have taken place in mathematics, but they will at least be pointed out 
as occasion arises. 
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From Aristotle to Hipparchus, 
350 -150 B.C. 

The law of fall was first stated as proportionality between distances 
and squares of times, and then derived from a direct proportionality of 
speeds to times. Whether Aristotle intended any proportionalities in 
his rules of fall is debatable, but if he did, one was a proportionality of 

speeds to weights when bodies fall through the same medium. A given 
body falling in different media was (proportionally?) swifter in the less 
dense medium. Such, at any rate, were the rules taught as Aristotle’s 

from his scattered statements, mainly in De celo. Assuming them to 
have represented his thought, they did not reveal the hidden cause of 
acceleration during fall unless the weight of a body increased during 
the process of falling, and that was the cause offered by Aristotle for 
greater speed at the end of fall than in its middle part. 

Aristotle’s theory of fall, though presented piecemeal, was complete 
and logically coherent. It explained the direction” of motion, rules of 
swiftness, and the cause of acceleration. Equal speed and greater speed 
were defined terms, implying the meaning of lesser speed. Only swift- 
ness itself remained undefined, as a quality of motion known intu- 
itively. His was a scientific theory in Aristotle’s sense, by virtue of its 
giving a causal account of the fall of heavy bodies. 

Aristotle did not invoke force to explain continued motion by a 
body thrown after it left the hand. He did maintain that anything in 
motion is moved by something; that is, not by itself, but by contact 
with its mover. Because only the surrounding air remained in contact 
with a projectile, he favored the opinion that when moving the thing 
thrown, the moving hand imparts some of its moving power to the air, 

Straight toward the center of the universe, at which Aristotle held the earth 
to also be centered, not by necessity but in fact. 
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which power continued the motion begun by the hand. Forced motion, 

being against nature by definition, played little part in Aristotle’s 

physics as the science of nature; projectiles were mentioned only in 

passing and near the end of his Physics. 

The first rival theory of fall deserving consideration was proposed 

about two centuries later by Hipparchus, who was not a philosopher 

but an astronomer and a mathematician. His book has not survived, 

but we have its title and a summary of the theory of fall it contained, 
given by Simplicius in his sixth-century commentaries on Aristotle’s 

De celo as follows: 

Hipparchus in his work entitled On bodies carried down by heaviness de- 
clares that, in the case of earth thrown upward, the projecting force is the 
cause of the upward motion as long as the projecting force overpowers 
the downward tendency of the projectile, and that to the extent that this 
projecting force predominates, the object moves the more swiftly upward. 
Then, as this force diminishes, (1) the upward motion continues but no 

longer at the same rate; (2) the body then moves downward under the 
influence of its own internal impulse, even though the original projecting 
force lingers in some measure; and (3) as this force continues to diminish, 

the object moves downward always more swiftly, and (4) most swiftly 
when this force is entirely lost. 

Now, Hipparchus asserts that the same cause operates in the case of 
bodies let fall from on high. For, he says, the force which held them back 
remains with them up to a certain point, and this is the restraining factor 
which accounts for the slower movement at the start of the fall.® 

That is another coherent theory of fall, quite different in its implica- 
tions from Aristotle’s, and it appears to be the only other coherent 
theory put forth in Greek antiquity. Inasmuch as Hipparchus was a 

mathematician, whereas Simplicius was concerned chiefly with strictly 
philosophical issues, it is probable that the book contained arguments 
in support of this theory of fall in relation to a supposed impressed 
force of projection that were not included by Simplicius, understand- 
ably if they were mathematical in character. 

The clause, “...to the extent that this projecting force predominates, 
the object moves the more swiftly upward,” certainly suggests that a 
proportionality was intended by the mathematician whose theory was 
being outlined. In upward motion, the degree to which the force ex- 

Clagett, p. 543. 
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ceeded the natural tendency downward was always diminishing, until 
it vanished entirely, after which event the downward motion must 
become uniform at a speed determined only by Aristotle’s cause of 
fall, the heaviness of the body. Hence, in the new theory, acceleration 

during fall was of limited duration. 
It is natural to wonder why Hipparchus chose not to assume that 

acceleration would continue throughout fall. Presumably he had rea- 
son to regard something as left unexplained, or even as contradicted, 
by Aristotle’s account of fall. One possibility is that, like Philoponus 
centuries later, Hipparchus knew that in falling through considerable 
distances, different weights strike the ground nearly together.’ What 
Philoponus wrote in his sixth-century commentaries on Aristotle’s 
Physics was:° 

If you let fall from the same height two weights, of which one is many 
times as heavy as the other, you will see that the ratio of the times re- 
quired for the motion does not depend on the ratio of the weights, but 
that the difference in time is a very small one. 

That would certainly be the case if in fact the bodies fell with nearly 
equal speeds after the leftover force of projection had vanished. Like- 
wise, observation may account for Hipparchus’ connection of the case 
of fall with that of continued motion in projectiles, as Aristotle had not 
done. Now, although Philoponus did not make that connection explic- 
itly, in his later discussion of projectile motion in the same commen- 
tary, having criticized the explanation favored by Aristotle, Philoponus 
went on to say:? 

...It is necessary to assume that some incorporeal motive force is im- 
parted by the projector to the projectile, and that the air contributes either 
nothing at all or else very little to this motion of the projectile. If, then, 
forced motion is produced as I have suggested, it is quite evident that if 
one imparts motion contrary to nature, or forced motion, to an arrow ora 

stone...there will be no need of any [material] agency external to the 

When Galileo was a student at Pisa he disputed the rule taught to him as 
Aristotle’s, because he had seen large and small hailstones striking the 
ground together. Observations of the kind had always been possible, and 
doubtless many had been made in antiquity. 

§ Clagett, p. 546. 

° Clagett, pp. 509-10. 
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projector... 

The striking similarity between the thought of Hipparchus and that 

of a commentator on Aristotle centuries later might be regarded by 

many historians of science as proof that Philoponus had read 

Hipparchus. On the other hand it is quite possible that a simple obser- 

vation of falling bodies led each, in turn, to very similar conclusions, 

contrary to those presented by Aristotle and accepted as scientific ex- 

planation by philosophers who cared only for reasoning and neglected 
to make observations, or considered them to be misleading when they 
contradicted, or appeared to contradict, pure reasoning from meta- 

physical principles. 
Returning now to Hipparchus, the first author known to have asso- 

ciated the projecting force’? with the body, we may call his theory of 
fall the first dynamic explanation of that phenomenon. Aristotle’s the- 
ory may be called kinetic, for he regarded weight not as a force but as 
a natural tendency, a realization of the energy of matter. Or it could be 
called kinematic, as he wrote in terms of motions rather than of forces. 

The idea of “force” came into Greek philosophy as a concept of 
something altering the course of nature, and it was associated with the 
notion of the supernatural, as when the gods intervene to compel an 
action (serving a purpose of their own) evidently contrary to the inter- 
ests of the doer. It was also a principle of Aristotle’s that nothing 
forced, or violent, could long endure. The concept of power was differ- 
ent; powers could exist in nature and need not, like force, be contrary 
to nature and accordingly excluded from physics (as the science of 
nature.) 

Here we may properly digress to consider a mathematical rule pro- 
posed by Aristotle for forced motions. In his Metaphysics, Aristotle 
appeared to exclude the method of mathematicians from physics when 
he wrote: 

The minute accuracy of mathematics is not to be demanded in all cases, 
but only in the case of things which have no matter. Hence its method is 
not that of physical [natural] science, for presumably the whole of nature 
has matter. (Book a, at end.) 

"" What word Hipparchus used is not known; the Latin translation of the 
passage in Simplicius gives virtus, usually rendered as “strength” rather 
than as force (= vis), and closer to “power.” 
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It is not certain from this that Aristotle meant to exclude the method 
of mathematicians entirely from physics as the science of nature. On 
the contrary, it is probable that he meant only to caution others against 
the extreme mathematicism of the “Italian philosophers” 
(Pythagoreans) and of his teacher Plato, in which geometric forms and 
certain properties of particular numbers were invoked to explain qual- 
ities and to serve as causes. The phrase “only in cases of things that 
have no matter” suggests the lines, surfaces, and points of mathemati- 
cians. But other things might also have been meant, for Aristotle him- 
self made use of a purely mathematical reason for one rule given in his 
Physics: 

If the movent A have moved B a distance I in a time A, then in the same 

time the same power"! A will move 4 B twice the distance I, and in 2 A 
it will move 2 B the whole distance I; for thus the rules of proportion 
will be observed... 

The continuation (postponed to Chapter 3) gave rise to an impor- 
tant medieval development in mathematics. Here the point of interest 
is that the rule just given was for locomotion, to which Aristotle gave 
priority over other forms of «ivnotc, or change, that he placed at the 
heart of physical science. Even Aristotle himself had not flinched from 
a rule of locomotion grounded only in the method of mathematics. 

Now, if one stops to think of this, it is not unreasonable to ask 

whether locomotion has matter, in anything like the sense that a stone, 

or a spark, has matter. Natural motion would not take place were it not 
for the presence of matter—earthy or fiery, as the case might be. But 
must this downward (or upward) motion, as such and considered in its 
own right, have matter? Motion as a case of “things that have no mat- 
ter’ would be exempt from Aristotle’s restriction in his Metaphysics, 
and he appears here to have so regarded it, precisely where the con- 
cept of a motive power—the nearest thing to “force” included in his 
physics—was subjected by Aristotle to mathematical rules. 

Returning now to the ancient dynamic theory of fall, we see that 

1 §Svautc. Although in the Oxford Aristotle the English “force” is given here, 
Greek Bia very seldom is found in Aristotle. As remarked above, force had 
the connotation of being a supernatural intervention, not a proper physical 
agency in natural phenomena. 

% Aristotle, Physics 7:5, 249b 25-29 
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Hipparchus did not discuss or compare speeds in fall through differ- 
ent media, at any rate in the summary by Simplicius. Hence he made 
no claim that speeds in fall by different weights of the same material 
are literally equal—and if he had done so, that would certainly have 
called forth comment by Simplicius. That claim is not found before the 
16th century, though when it was made it had an ostensible basis in 

antiquity, as will be seen. 
Either directly, or from the summary account by Simplicius, or by 

the critique of Philoponus, there is fair evidence that the dynamic 
theory of fall became widely known, passing first to the Arabs and 
from them into medieval Latin natural philosophy. The Arabic word 
mail for disembodied forces of this kind is reported by historians of 
medieval science, and the leftover force became vis derelicta in the writ- 

ings of Francesco di Marchia during the 1320’s. His account of fall 
soon gave way to the impetus theory of acceleration in fall as formu- 
lated by Jean Buridan at Paris in the mid-14th century and given 
mathematical expression by Albert of Saxony. That truly marked the 
introduction of dynamic thought into Aristotelian physics—not just its 
survival in a doctrine contradicting Aristotle’s. The most orthodox Ar- 
istotelian natural philosophers remained hostile to impetus theory. 

It is this uneasy symbiotic relation between kinematic and dynamic 
theories of motion, one arising to amend a previous form of the other, 
that continued to recur at each principal epoch in the history of phys- 
ics, until conflicts disappeared with Newton's mathematical definition 
of force impressed upon a moving body. Even that victory of dynamic 
theories of motion may not have been final, in view of Einstein’s prin- 
ciple of equivalence. 



3 

From 1300 to 1500 

Early in the 14th century a significant new development in mathemat- 
ics began with the work of Thomas Bradwardine of Merton College 
(Oxford) on speeds in motion. This was virtually coeval with the ad- 
vent of dynamic thought in physics signalled by the vis derelicta of 
Francesco di Marchia in Italy, Bradwardine having composed it in 
1328. Yet there was no direct connection between the two events, for 
Marchia concerned himself with the phenomenon of fall, whereas 
Bradwardine was motivated by a passage in the Physics of Aristotle 
that had nothing to do with falling bodies. For the passage cited in 
Chapter 2, giving Aristotle’s rule for proportionalities in forced mo- 
tions, continued as follows: 13 

Again, if a given power move a given weight a certain distance in a 
certain time, and half that distance in half the time, half the motive power 
will move half the weight that same distance in the same time. Let E 
represent half the motive power A, and Z [be] half the weight B; then the 

ratio between the motive power and the weight in the one case is similar 
and proportionate to™ that ratio in the other, so that each power will 
cause the same distance to be traversed in the same time. 

But if E move Z a distance I ina time A, it does not necessarily follow that 
E can move 2Z a distance 2G in the same time [A]. If A move B a 
distance T in a time A, it does not follow that E, being % A, will in the 

time A, or in any fraction thereof, cause B to traverse a part of T whose 
ratio to the whole of I is proportionate to [i.e., the same as] the ratio 
between A and E, whether E be 14 or any other part of A; in fact, it might 

Aristotle, Physics 7:5, 249b 30-250b 15 

The redundant phrase suggests that in the old theory of proportion known 
to Aristotle, the definition of proportionality given by Euclid as “sameness 
of ratio” was not yet in use. The old, purely arithmetical (or number-the- 
oretic) theory is set forth by Euclid in Book VII, while this definition is 
given in Book V. 
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well cause no motion at all... 

For otherwise, Aristotle went on, one man might move a ship that in 

fact it would require many men to move, inasmuch as their combined 

power, and the distance they move the ship, are both divisible into as 

many parts as there are men. 
In modern academic history of science it has become usual to say 

that mathematical physics is equivalent to an abandonment of Aristo- 
telian natural philosophy in favor of Platonism, a great intellectual 
revolution which had to await the 17th century and whose leading 
exponent was Galileo. However, no historian has found it necessary to 

brand Bradwardine, or any of the medieval scholars to be mentioned 

in this section, a Platonist. Centuries before Galileo it had been possi- 

ble to create a whole new theory of proportionality, to lay the mathe- 
matical basis for a whole new theory of fall, and devise a mathematical 

approach to the science of physics, all without forsaking Aristotle. To 
the contrary, those achievements began from Bradwardine’s attempt to 
understand Aristotle’s thought behind the text cited above. 

The puzzle Bradwardine set out to solve was how Aristotle’s rule of 
proportionality in motions could be reconciled with the case in which 
no motion results from application of a power to a weight. He was far 
from being the first to attack this problem, so he began by showing 
why no solution previously offered by philosophers could represent 
the thought of Aristotle. He then set forth his own solution:!° 

The ratio of speeds in motions follows the ratio of the motive powers to 
resistances, and conversely. Or, to put the same thing in another way, the 

ratios of motive powers to resistances, and the speeds in motions, exist in 

the same order of proportion. And this is to be understood as geometric 
. proportionality. 

° H. Lamar Crosby, Jr., Thomas of Bradwardine his Tractatus de Proportioni- 
bus...(Madison 1955), p. 112 gives the original Latin, with a very free trans- 
lation on p. 113. 
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This rule, which Bradwardine believed to reflect accurately the 
thought of Aristotle about proportions in forced motions, has come to 
be called “Bradwardine’s function” by those who express it symboli- 

Fo aie ns\e2 
cally'® as Rach Relcooas translation into our mathematical symbol- 

ism that is as unlikely to represent the thought of Bradwardine in 1328 
as his rather turgidly expressed conclusion is unlikely to have repre- 
sented Aristotle’s thought seventeen centuries earlier. 

Bradwardine’s thought was that speeds were so related to net forces!” 
that speed (and hence motion) must vanish entirely when the power 
acting is not greater than the resistance to motion. If this terminology 
is strange, so was Bradwardine’s conclusion strangely expressed—not 
because his thought was unclear, but because the language in which he 
was obliged to state it was as yet hardly equal to the task. Mathemati- 
cal symbolism of any kind was not available to him; not even the 

writing of expressions in equation form had been invented. Neither 
equations nor symbols can easily represent the restrictions imposed by 
the rules’® of proportionality before those rules were ignored in alge- 
bra. The thought of Bradwardine can be reflected properly only in 
words. 

As to the function-concept, that entered into mathematics after sym- 
bolism took over in the 17th century. For Bradwardine’s thought, the 

positive integers alone sufficed, and since the only cases dealt with 

"© Cf. Clagett, p. 438. 

” | adopt this term to replace Bradwardine’s “ratios of motive powers to [the 
related] resistances [against motion.]” In the symbolism of “Bradwardine’s 
function” that was represented as a ratio of force to resistance encountered 
in a moving weight, F/R. 

** Proportionality was defined as “sameness of ratio,” and ratio was defined 
as a relation in respect of greater or less between two magnitudes “of the 
same kind.” Hence ratios of the sort created in algebra when a term is 
transferred from one side of an equation to the other were simply not 
allowed. 
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were those in which R = 1; a =2,<2,or > 2, it is misleading to use the 
1 

term “function.” Yet his thought had some interesting mathematical 

implications, and his approach led others in the 14th century to devise 

a wholly original theory of proportion which culminated in the earliest 

treatment of what are now called fractional exponents, and were chris- 

tened “ratios of ratios” by Nicole Oresme, who completed that treat- 
ment.” 

Although the medieval theory of proportion was an original contri- 
bution to mathematics, it added nothing to physical science in the 
sense of knowledge of natural phenomena. Bradwardine’s rule did not 
correctly relate any forces, resistances, and speeds. Yet his manner of 
approach to mathematical physics proved to be remarkably fertile at 
the hands of others at Merton College, and later at Paris. This method 
was to devise and fit mathematical terms and reasoning with physical 
propositions. Not proofs, but numerical exemplifications (or later, geo- 
metrical diagrams) were used to verify their consistency. There was as 
yet no thought of utilizing measurements of physical phenomena, al- 
though the term “measure” was used in its mathematical sense, and 
was a concept that had underlain all earlier theories of ratio and pro- 
portion. 

The most significant medieval application of the concept of measure 
(without actual measurement) was in the definition of the term 
“speed” as applied to an accelerated motion from rest. The concept of 
“speed” had remained undefined (unlike that of “equal speed.”) Aris- 
totle had offered only a definition of “swift” as applying to motion 
through a great distance in a small time; “swiftness,” or speed, could 
not yet be mathematically defined.” 

For a discussion of some mathematical implications of the medieval theory 
of proportion and their symbolic expression, see my “Bradwardine’s func- 
tion, mediate denomination, and multiple continua,” Physis 12:1 (1970), 
51-68. 

20 : : ‘ < < We now think of speed as a “ratio” of distance to time, but in antiquity no 
ratio could exist except between two things of the same kind. 
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William Heytesbury of Merton College was probably the first to 
propose that speed during any completed “uniformly difform mo- 
tion”! from rest be assumed equal to the speed at the middle instant. 
That device, appropriately named the “Merton rule,” is loosely called 
the “medieval mean speed theorem.” It was not a theorem, but a pos- 
tulate—that speed of a completed motion from rest under uniform 
acceleration is measured by the speed in some uniform motion which 
carries a body an equal distance in the same time. Since what was 
taken as the measure was a certain constant speed, postulated to exist 
at the middle instant among differing degrees of speed, Heytesbury’s 
rule is most fittingly described as the medieval middle-degree postu- 
late. Its application was by no means restricted to locomotion, but also 
extended to Kivnotc in general and was frequently used in discussions 
of heat, charity, and other qualities subject to increase or decrease. 
Nonetheless it was a significant contribution to define mathematically 
any concept having a physical application. 

The middle-degree postulate was, in fact, never applied to motion 
in fall from rest during the 14th, or even in the 15th century, though 
many imaginary motions” were invented to fit the definition of uni- 
formly difform motion. The only known statement that fall is a case of 
uniformly difform motion came in the mid- 16th century, without any 
accompanying evidence in its support.” Inasmuch as fall is uniformly 
accelerated motion, this historical situation was long puzzling to histo- 
rians of science. But there was no way in which it could have been 
known that fall from rest is uniformly accelerated, without some ac- 

*! Uniformly difform motion was the medieval term for uniformly acceler- 
ated or decelerated motion, conceived either as continuous in the mathe- 
matical sense or as discretely incremental. See Clagett, Ch. 4. 

2 As for example, the motion of a point on the rim of a rotating wheel of ice, 
in an oven which caused the radius of the wheel to increase by thermal 
expansion at exactly the rate at which ice melted from the rim. 

The writer was a Spanish theologian, Domingo de Soto; see Ch. 4, and 
W.A. Wallace, “The enigma of Domingo de Soto,” Isis 59:4 (1968), 384-401. 
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tual measurements of the physical phenomena—which, being merely a 

kind of observation, could shed no light on the hidden cause of motion 

and accordingly had no place in Aristotelian natural philosophy.” 

Now, the causal explanation of fall offered by Marchia did not 

imply uniform acceleration during fall; rather, the falling body reached 

uniform motion after an initial acceleration. Even the new causal ac- 

count to be discussed presently, developed a bit later in the 14th cen- 

tury, appeared to contradict one implication of the Merton rule, as that 
had been set forth by Heytesbury:” 

With respect, however, to the distance traversed in a uniformly acceler- 
ated motion commencing from zero degree and terminating at some finite 
degree, it has already been said that the motion as a whole, or its whole 

acquisition, will correspond to its middle degree... From the foregoing it 
can be sufficiently determined, for this kind of acceleration or decelera- 

tion, how great a distance will be traversed, other things being equal, in 
the first half of the time, and how much in the second half. For when the 

acceleration of a motion takes place uniformly from zero degree to some 
degree, the distance it will traverse in the first half of the time will be 

exactly one-third of that which it will traverse in the second half of the 
time. 

It was Jean Buridan who set forth the theory of impetus, as an im- 
pressed force which did not diminish of its own accord (like that of 
Hipparchus, the Arab philosophers, and Marchia), but only when 

there was external resistance to motion or internal conflict with some 
contrary tendency to motion. About the middle of the 14th century 
Buridan wrote: 

The first [conclusion] is that this impetus is not the identical local motion 

in which the projectile is moved, because this impetus moves the projec- 
tile, and the mover produces motion; therefore, the impetus produces that 
motion, and the same thing cannot produce itself. 

The second conclusion is that this impetus is not a purely successive 
thing, since motion is just such a thing and the definition of motion [as a 

successive thing] is fitting to it, as was stated elsewhere. And now it has 

24 : 
Still less would actual measurement have any place in Platonist doctrine, 
for Plato discouraged attention to the inconstant and defective world of 
immediate sensible experience. 

#8 Clagett, p. 272 

= Clagett, pp. 536-7 
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just been affirmed that this impetus is not the local motion. Also, since a 
purely successive thing is continually corrupted and produced, it contin- 
ually requires a producer. But there cannot be assigned a producer of this 
impetus which would continue to be simultaneous with it. 

The third conclusion is that this impetus is a physically permanent thing 
distinct from the local motion in which the projectile is moved. This is 
evident from the two above conclusions and from what went before. And 
it is probable that this impetus is a quality physically present and predis- 
posed for moving a body in which it is impressed, just as it is said that a 
quality impressed in iron by a magnet moves the iron to the magnet. And 
it is also probable that just as that quality—impetus—is impressed in the 
moving body along with the motion, by the movent, so with the motion it 
is remitted, corrupted, or impeded by resistance or by a contrary inclina- 
tion. 

Having closely associated impetus with speed, Buridan saw a case 
in which the speed of a natural motion could inaugurate the process 
that yielded a causal account of acceleration in fall:*” 

One must imagine that a heavy body not only acquires motion unto itself 
from its principal mover, i.e. its heaviness, but that it also acquires unto 
itself a certain impetus with that motion. This impetus has the power of 
moving the heavy body in conjunction with the permanent natural heavi- 
ness. And because this impetus is acquired in common with the motion, 
the swifter the motion is, the greater and stronger is the impetus. There- 
fore the body is moved from the beginning [of fall] by its natural heavi- 
ness only, and hence is moved slowly. Afterward it is [still] moved by the 
same heaviness and [also] by the impetus acquired at the same time [as 
before]; hence it is moved more swiftly. And because the movement be- 
comes swifter, the impetus also becomes greater and stronger, and thus 
the body is moved by its natural heaviness and by that greater impetus, 
and so again it is moved faster; and in this way it will always and contin- 
ually be accelerated, to the end. 

Impetus theory removed the previous temporary character of accel- 
eration in fall inherent in the vis derelicta account. But fall did not 
thereby become associated with uniformly difform motion, because 

Albert of Saxony soon proceeded to formulate the impetus theory of 
fall mathematically, as Buridan had not done. Albert examined the 
various ways in which growth of speeds and distances with time from 

” Clagett, pp. 551-2 
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rest might occur and eliminated those in which, contrary to Aristotle, 

infinite speed might be reached in finite time or over a finite distance. 

One way that Albert eliminated from consideration was thas: 

Natural motion does not accelerate by double, triple, and so on, in such a 

way that in the first proportional part of an hour it is a certain speed, and 
in the second proportional part of the hour [it is] twice as fast, and so 
One. 

Because only completed motions were ever considered, it was 
customary to take proportional parts by halving repeatedly from the 
end of motion, making the first proportional part above a half-hour, 
the second, the preceding quarter-hour, and so on. In that manner, no 
first instant of motion would ever be reached, in accordance with a 
principle of Aristotle’s that anything moving must have been already 
in motion, at any point selected. But an actual infinitude of speeds 
would surely be implied, each greater than the preceding, if motion 
could be divided back to its very beginning. Hence if the speeds in- 
creased as 1, 2, 3, 4, ..., the final speed in a finite motion could be 
infinite. Discarding all such progressions, Albert concluded as fol- 
lows:”” 

When some space has been traversed, [the speed] is some amount; and 
when double space is traversed, it is faster by double; and when triple 

space is traversed, it is faster by triple, and so on beyond... 

Although Albert here intended successive motions, in order,” histo- 

rians have read this as if each motion named were supposed to begin 
from rest, and concluded that Albert believed speeds in fall to be pro- 
portional to distances traversed from rest. But if that had been his 
conclusion, it would have been very easy for him simply to have said 
so—much simpler than to write out the above statement, and much 

Clagett, pp. 565-6 

* Clagett, p. 566 

* His purpose was to describe the first three steps in a single fall, from which 
anyone could go on, not to describe the first step in each of three different 
falls. The same format was used in attacks against the times-squared law 
three centuries later. 
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clearer to any reader. 
In Buridan’s account of fall there is a first motion during which only 

heaviness acts, necessarily a uniform motion at some speed.*’ That is 
followed by a second motion in which heaviness acts in conjunction 
with impetus acquired simul (all at once) at its beginning, and Albert 
regarded that as acting throughout this second motion, being uniform 
in speed and producing simul a still greater speed to act in the third 
motion, but not before. That succession of uniform speeds, each greater 
than the preceding, is in fact a uniform acceleration, but not mathemati- 
cally continuous acceleration; it amounts to an acceleration by quan- 
tum-jumps of speed, so to speak. Albert might have written, more 
clearly for us now (but as something self-evident to his medieval read- 
ers) the following description of fall: 

When some space has been traversed, [the speed] is some amount; and 

then double space is traversed, and is faster by double; and then triple 
space, this being faster by triple, and so on beyond... 

Under that rule, the successive time-intervals automatically become 
equal (not divided into proportional parts), while speeds are not in- 
creased proportionally either to the times (as they are in actual fall) or 
to distances from rest (as Albert is wrongly said to imply.) In his 
mathematization of the impetus theory of fall, times increase as the 
natural numbers, while the distances from rest accumulate at the ends 

of successive equal time as do the “triangular numbers” 1, 3, 6, 10, ... 

and not, as in actual fall, as do the square numbers 1, 4, 9, 16, ... 

Albert’s rule was easily grasped and it appears to have gone un- 
questioned before the 16th century. Its implication that in the second of 
two motions from rest, double the distance of the first motion is tra- 

versed, contradicted Heytesbury’s rule for uniformly accelerated mo- 
tion. In other words, the new causal explanation of acceleration during 

fall excluded fall from the category of uniformly difform motions. That 
in turn explains why, for 200 years, medieval natural philosophers did 
not debate whether speeds in fall were proportional to elapsed times, 
or to distances traversed from rest. Such a question, which may seem 
natural to historians of science now that laws of nature permeate sci- 

31 Since only a single cause acts, its effect must be uniform. In the same way, 
when impetus is added, it adds uniform speeds in proportion to the degree 
of impetus added each time. 



HISTORY OF FREE FALL 22 

entific thought, would simply not have occurred to scholars at a time 
when causal explanation of natural phenomena was the sole purpose 
of science. 



4 

The Sixteenth Century 

As commerce with the Near East revived, classical Greek texts in 
mathematics and science became known in Europe, mainly through 
Latin translations of Arabic versions, not from Greek. As universities 

began to be founded, Euclid’s Elements in one Latin version became 

the standard text, with commentaries by Campanus of Novara. 
Whether the Arabic text he used had been responsible for the corrup- 
tion of Book V is not known, though it seems probable, because the 
same faults are found in an earlier Latin translation by Adelard of Bath 
from an Arabic version in Spain. 

Except for Book V, both Latin versions agreed fairly closely with the 
authentic Elements, in which Book V contains the general theory of 
ratios and proportionality for continuous magnitudes. In the standard 
medieval version, Book V was transformed into a largely superfluous 
treatment of continued proportion, applicable to numbers and discrete 
quantities, but inadequate for dealing generally with mathematically 
continuous magnitudes. 

This transformation appears to have been deliberate, not a product 
of scribal carelessness or incompetent translation. One definition, es- 
sential to the general theory, was omitted, while another definition 

was inserted, not in place of the one omitted, but following another 
crucial definition and rendering it merely redundant. Apart from this 
tampering with two definitions, the rest of Book V remained unaltered 

(but essentially useless.) The omitted definition (Def. 4) was given by 
Eudoxus of Cnidos while Aristotle was still living;* Def. 5, in my 
opinion, was added by Euclid a century later. The medieval Book V 
removed those ancient advances, perhaps the greatest of all, returning 

eit is extremely unlikely, however, that Aristotle was aware of the Eudoxian 
treatment of proportionality, even though he knew and adopted the system 
of homocentric spheres devised by Eudoxus. 



HISTORY OF FREE FALL 24 

the theory of ratio and proportion to its primitive state, a doctrine of 

numbers and rational fractions dating back to the Pythagoreans. As a 

result, medieval European mathematicians could not simply take up 

the subject at the point where Euclid and Archimedes had left off in 

Greek antiquity. That did not become possible until the mid—16th cen- 

tury, not long before Galileo was born. 
The scientific Renaissance began in the 15th century after Cardinal 

Bessarion’s deposit of classical Greek manuscripts in the library of St. 
Mark’s at Venice. Printing from movable type began shortly afterward. 
The medieval Euclid had been printed twice when, in 1505, 
Bartolomeo Zamberti published at Venice a Latin Euclid based on the 
Greek text which included the complete and correct definitions be- 
longing to Book V. That made rigorous treatment of proportionalities 
among mathematically continuous magnitudes (such as distances, 
times, and speeds) possible. But the hold of medieval tradition was so 
strong in universities that at least two generations elapsed before aca- 
demic instruction in mathematics recognized the significance of the 
authentic text. Zamberti himself was partly responsible for the delay. 
He appears to have been less a mathematician than a humanist whose 
zeal was to remove the taint of infidel Arabic intervention from the 
classics of Greek learning. Instead of writing commentaries explaining 
the restored definitions of Book V, Zamberti pointed to them as exam- 
ples of the errors of medieval translators. It remained for mathemati- 
cians to discern and explain the treasure that had lain unnoticed for a 
millennium. 

The self-taught mathematician Niccol6é Tartaglia, of Brescia, ulti- 
mately did that in 1543. He translated both Latin versions of the Ele- 
ments, with the commentaries of Campanus, into Italian. His 

commentaries on Book V—the first to have been written by a first-rate 
mathematician since antiquity—restored the classic theory of propor- 
tion for continuous magnitudes in general. 

As an experienced teacher of mathematics to private pupils having 
common sense and practical interests, Tartaglia knew how to bring 
Euclid—and the whole of mathematics—within easy reach for any 
reader of average intelligence, as was promised on the very title-page 
of this first living-language text of Euclid ever to be printed. That, 
however, did not change anything in the universities of his time, 
where medieval proportion theory continued to prevail for another 
half-century throughout Europe. The long-omitted definition was sim- 
ple enough, but it had profound mathematical implications. Following 
the definition of “ratio” as a relation in respect of greater or lesser 
between two magnitudes of the same kind, it reads: 
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Magnitudes are said to have a ratio to one another which are capable, 
when multiplied, of exceeding one another. 

Tartaglia commented first that from this it follows that the circum- 
ference of a circle has a ratio to its diameter, whether or not that ratio 

can be represented by numbers (since any diameter multiplied by 4 
certainly exceeds the circumference). Moreover, the same definition 

excluded from the domain of “ratio” both the infinite and the null, 
which remain unaltered by multiplication. Tartaglia did not say so, but 
it had been a basic principle of Aristotle’s that there can be no ratio 
between the curved and the straight. A belief so old as to be found in 
Ecclesiastes I, 15 (“the crooked cannot be made straight”) cannot be 
contradicted without involving profound consequences. For mathe- 
matics, one consequence was the rectification of curves; for physics, 

the abandonment of such Aristotelian dogmas as that of a necessary 
gulf between circular celestial and straight elemental motions. 

Tartaglia’s destruction of the spurious definition in the Campanus 
Euclid, and his restoration of meaning to the celebrated definition of 

“same ratio” that had been obscured, began from his perception that 
Campanus himself must have had before his eyes a valid ancient com- 
mentary (by Theon of Alexandria), but had been unable to understand 
it, or he would not have mingled it with meaningless distinctions in 
his own commentaries. This shows the acuity of Tartaglia (who did not 
read Greek) as a mathematician. He saw that part of the commentary 
was ancient, because it made mathematical sense of Euclid’s defini- 

tion, something that no one had managed to do in the Middle Ages. In 
his edition of Euclid, Tartaglia moved the commentaries explaining 
medieval proportion theory from Book V to the later arithmetical 
books, where they belonged (if anywhere.) Even in the 1570 English 
translation those were still published with Book V, as they continued 
to be in 1578 Latin textbook version by Christopher Clavius, standard 
in most universities throughout Europe during Galileo’s lifetime. 

Fortunately for modern physics, Galileo began his study of mathe- 
matics not in a university but under Ostilio Ricci, said to have been a 
pupil of Tartaglia’s. He used the Italian version, rather than any Latin 
edition lacking Tartaglia’s commentaries. Those are still a delight to 
read, even today, for their clarity, mathematical intelligence, and irrev- 
erent exposure of nonsense masquerading as scholarship. 

Tartaglia’s first published book had appeared in 1537 at Venice, 
where he taught mathematics privately to the end of his life. Titled 
Nova Scientia, that book dealt mathematically with artillery problems, 
such as the angle of elevation at which the maximum horizontal pro- 
jection is obtained. Tartaglia’s Nova Scientia finding of 45° was correct, 
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but without the law of fall he was unable to correct the medieval 

conception of projectile paths—that the shot travels straight until the 

force projecting it is overcome by the natural tendency of things down- 

ward, weakened by conflict with that.*? The projectile was then sup- 

posed to fall vertically to earth, as no body could obey two tendencies 
to motion at the same time, in Aristotelian physics. 

Tartaglia remarked that he assumed straight motions only as a prac- 
tical approximation, for the path must be curved at every part once the 
ball has left the gun. He seems not to have been familiar with impetus 
theory, as he never used the word impetus. Neither did Tartaglia give 
any account of acceleration in fall, beyond his likening that to the 
hastening of a traveller’s steps as he neared home. 

Impetus theory seems to have fallen into neglect also among natural 
philosophers in the early 16th century, unlike medieval kinematics. By 
1550 the first known statement had been ventured that fall is an exam- 
ple of uniformly difform motion. The author was Domingo de Soto, 
who offered no evidence for his statement and appears to have been 
unaware that it conflicted with Albert of Saxony’s mathematization of 
impetus theory. Father William A. Wallace, who undertook to explain 
the “enigma of de Soto” and was thus enabled to recognize the classifi- 
catory purpose behind the emergence of uniformly difform motion, 
concluded that the unique statement by de Soto was made mainly 
because his superiors in the Dominican order disliked mathematical 
abstractions. They wanted physical examples for things taught in nat- 
ural philosophy.™4 

ce ee ae ea i a el ee a ei ts 

= On Aristotelian principles of physics, only the stronger of two tendencies 
to motion could be obeyed by a heavy body, and the inherent tendency 
downward could not be weakened, being natural. 

34 
W.A. Wallace, “The concept of motion in the sixteenth century,” Proceedings 
of the American Catholic Philosophical Association, Washington, 1967. 
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In 1551 Tartaglia published a book on the raising of partly sunken 
ships, often menaces to navigation in the Venetian Gulf. His method 
used the Archimedean principle, and on the first page he remarked 
that the speeds of bodies sinking in water were as their specific gravi- 
ties. Archimedes had not discussed speeds of sinking or rising in 
water, but Tartaglia repeated his remark in a section of the book pre- 
senting, in Italian translation with dialogue commentaries, Book I of 
Archimedes’ On bodies in water. The great importance of Tartaglia’s 
remark for new 16th-century developments in the history of fall is not 
widely recognized. 

One of Tartaglia’s pupils in 1547 had been G.B. Benedetti, who first 
asserted, and offered a proof for, the proposition that bodies of the 
same material but different weights fall with equal speed through the 
same medium. That first appeared in 1553, in the dedicatory letter to 
Benedetti’s first book, with the promise of further physical proposi- 
tions to follow. The book concerned solution of all problems in Euclid 
with a ruler and a compass of fixed setting.*° Benedetti remarked that 
the place was not appropriate for his proposition on fall, but said that 
he did not want to risk his priority. Hence his discovery had been very 
recent, not earlier than 1552, when Benedetti had indeed good reason 

to fear that others might hit upon it soon.?” 
There is little doubt that Benedetti, reading Tartaglia’s 1551 book on 

the raising of sunken ships, noted the remark that bodies sink in water 

*° N. Tartaglia, Regola generale...(Venice 1551), ff. 1v and English translation in 
T. Salusbury, Mathematical Collections and Translations (London 1665, repr. 

1967), vol. 2, pp. 484, 335, Salusbury having printed the Archimedean work 
with Tartaglia’s commentaries separately, and first. 

°° This was a celebrated problem in mathematics at the time, to which Tar- 
taglia had devoted much study. Benedetti’s analysis showed him to be an 
original and talented mathematician. 

*” Tartaglia’s solution of the cubic had been published by Girolamo Cardano 
despite his vow to keep it secret until Tartaglia made it public. Even if 

Benedetti had not known this, Tartaglia printed the relevant letters in an 
appendix to his 1551 book on raising sunken ships, the idea for which 

Cardano had also plagiarized in his De subtilitate of 1550. 
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with speeds proportional to their specific gravities. No reason ap- 

peared why fall through air should not be subject to a like condition, 

defying Aristotle’s rule that speeds were proportional to simple 

weights. Benedetti’s proof applied the Archimedean principle, also to 
be found in Tartaglia’s 1551 book. That made it not unlikely that before 
long, others would reach the same conclusion or would hear of 
Benedetti’s discovery and claim it for themselves. Hence his haste to 

publish it. 
Announcement of equal speed in fall for bodies of different weights 

created controversy, in which some seem to have disputed this because 
it contradicted Aristotle, while others cited other authorities. At any 
rate in 1554 Benedetti published a book on speeds in fall written 
“against Aristotle and all the [natural] philosophers.”** Later he was 
invited to lecture at Rome on his novel ideas. There he was heard by a 
Belgian, Jean Taisnier, who published as his own, at Antwerp in 1561, 

Benedetti’s book of 1554. It was translated into English as Taisnier’s, 

and by the 1570’s the idea of equal speeds in fall had spread to most of 
Europe, together with a mathematical demonstration in its support. 

What had been lacking was any assertion that the proposition had 
been tested by observations. This was supplied by the Dutch engineer 
Simon Stevin in 1586, who had read the Belgian edition. With a friend, 

Jan de Groot, Stevin compared times of fall from a height of thirty feet 
and found them equal,” but he also saw an error in the proof, for 
which he believed Taisnier responsible. The mistake had been 
Benedetti’s, who had already detected and corrected it in a second 
edition of the book plagiarized by the Belgian, published later in 1554. 

The fact that no one seems to have put so novel a statement to 
actual test before Stevin, long after it had circulated very widely, is a 
commentary on the natural philosophy that preceded scientific physics 
in the modern sense. It was not a difficult experiment to carry out, but 

*° G.B. Benedetti, Demonstratio proportionum motuum localium...(Venice (1554); 
English translation in S. Drake and I.E. Drabkin, Mechanics in Sixteenth-Cen- 
tury Italy (Madison 1969), pp. 154-65. 

a Simon Stevin, De Beghinselen der Weeghcoonst (Leyden 1586); see E.J. 
Dijksterhuis, The Principal Works of Simon Stevin, vol. 1 (Amsterdam 1955). 
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to mathematicians as well as natural philosophers a test appeared un- 
necessary; only reasoning, or the authorities adduced, really mattered. 
Stevin was a first-rate mathematician, the inventor of decimal fractions 

and the first to break with ancient arithmetical theory (and with Euclid 
himself) by declaring in print that one is a number.” But Stevin was 
not only a mathematician; he was also, and primarily, an engineer no 

less interested in practice than in theory. 
In 1586 Galileo was tutoring privately in mathematics, as Tartaglia 

had done most of his life. For the text of Archimedes he must have 
been using the 1543 edition by Tartaglia, for that alone included the 
work on bodies in water on which Galileo based his own first scientific 
essay, La bilancetta of 1586. Now, in that year Galileo also began his 
first manuscript on motion, a pupil-teacher dialogue of the kind Tar- 

taglia had used for his commentary on Archimedes in 1551, and pre- 
viously in 1546 when he edited and commented on the principal 
medieval work on statics, attributed to Jordanus Nemorarius.*! 

Galileo’s dialogue on motion included the proposition that bodies 
of the same material fall through the same medium with equal speeds, 
regardless of their weights. The mathematical demonstration he of- 
fered was similar to Benedetti’s a generation earlier, and some other 
arguments in the dialogue also resemble those of Benedetti in his sec- 
ond book, newly reprinted in 1585.*° Many think that Galileo’s source 
for equal speed in fall had been Benedetti, but more probably it was 
the very same source as that of Benedetti; namely, Tartaglia’s book on 
raising sunken vessels, which had been reissued several times, bound 

with other works of his. If so, that book inspired two attacks against 

Aristotelian physics, a generation apart—without Tartaglia’s ever hav- 
ing perceived the further implications of his own statement about 
speeds of sinking through water. 

40 Euclid defined number as “multitude of units,” and since one is not a 

multitude, two was the smallest number in classical Greek mathematics. 

oN: Tartaglia, Quesiti, et inventioni diverse (Venice 1546); see also his posthu- 
mous Jordani opusculum de ponderositate (Venice 1565). 

a English translation by I.E. Drabkin in our Galileo On Motion and On Mechan- 
ics (Madison 1960) pp. 89-90. 

43 GB. Benedetti, Diversarum speculationum...(Torino 1585). 
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One of many reasons for doubting that Galileo had seen the 1585 

edition of Benedetti’s works is that in that book Benedetti had set forth 

the same kind of explanation for acceleration in fall as that of medieval 

impetus theory. But Galileo, in his writings on motion during the 16th 
century, treated acceleration as temporary only, at the beginning of fall 
and as the result of loss of the impressed force that sustained it, or had 
moved it upward. That was precisely the explanation already given by 
Hipparchus in antiquity, and at least implied by Philoponus in the 
sixth century, which was once more proposed in the 1320’s by 
Marchia. Galileo appears to have arrived at it independently, and to 
have been very proud of it. After he found it attributed to Hipparchus 
in a book by Benedict Pereira, Galileo noted that Hipparchus had ne- 
glected to explain more than the case of fall ensuing upon upward 

projection. 
Now, that was mistaken, but the mistake was due to failure on the 

part of Pereira to describe the work of Hipparchus as fully as 
Simplicius had done, writing: 

Hipparchus said that the cause of such events is that violent motion pre- 
cedes natural motion; that in being moved naturally downward, first 

came motion and projection upward, so when returning downward, this 
force that projected upward is weakened and diminished, and near the 
end this force is broken and remitted so that swifter motion then exists.— 
But Hipparchus deserved reprehension by Alexander [of Aphrodisias], 
who said this may be true for natural motions when something violent 
immediately preceded, but cannot also hold in natural motions in which 

there was not some violence before...*° 

The fault thus charged by Alexander (as here cited) against 
Hipparchus was perhaps properly chargeable only against his 14th- 
century followers such as de Marchia; it did not go back to Greek 
antiquity. The case of fall from rest at a height is even more common, 
and physically more interesting, than the case of prompt return after 
projection upward. In his Pisan De motu of 1591-2 Galileo included a 
passage about this that deserves notice:” 

“" Drabkin & Drake, op. cit.. pp. 89-90. 

* Benedict Pereira, De communibus omnium rerum...(Venice 1586), Bk. 14, p. 
475. 

© Drabkin & Drake, op. cit. n. xx, p. 109. 
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Suppose that there are two bodies equal in size, one of wood and the 
other of lead; that the weight of the lead is 20, and of the wood, 4; and 
that both are held up by the line ab. 

20 a 

Now in the first place, it is clear that these bodies press down with a force 

equal to that with which the line ab presses upward. For if they exerted 
more than that pressure, line ab would not hold them up, and they would 
move down in spite of the line. But actually they do not move downward 
in the air because they are not exerting weight upon the air, the medium 
through which they must move... It is rather on ab that the bodies are 
exerting pressure... But when they are released by the line they still re- 
tain, at the first point of their departure, an impressed contrary quality 
that impels them upward, and this quality is lost not instantaneously but 
gradually. The lead has 20 units of this contrary quality to be used up, 
and the wood, 4... 

In the time in which one unit of the quality departs from the lead, more 

than one unit has left the wood; and consequently while the lead has 
recovered only one unit of weight, the wood has recovered more than one 

unit. It is because of this that the wood moves more swiftly during that 
time... On the other hand, because the lead ultimately reacquires more 
weight than the wood, it follows that by that time, the lead is moving 

much more swiftly [than the wood.] 

Galileo certainly did not get this erroneous but interesting analysis 
from Hipparchus; still less did it come from a medieval natural philos- 
opher or mathematician. Written about the time of Galileo’s famous 
demonstration of equal speeds in fall from the Leaning Tower of Pisa, 
it demolishes fanciful reconstructions of that event in which it is fre- 

quently said that one falling weight was leaden and the other wooden. 
The original account, written by Vincenzio Viviani in 1657, who had it 

from Galileo in 1640,” stated that both weights were of the same mate- 

47 At that time Galileo was blind and Viviani took his letters in dictation. A 
letter from the professor of mathematics at Pisa recounted recent experi- 
ments from the Leaning Tower, unaware of Galileo’s much earlier demon- 
stration there. That is why Viviani had the details right, though he was not 
born until long after the event. 
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rial, which in 1590 was the only case that had been considered by 

Benedetti, Stevin, or Galileo as having been mathematically estab- 

lished or verified by observation. From the above it is evident that 

Galileo might expect the lead weight to move much more swiftly than 

that of wood after the initial motion. The proof for equal speed of fall 

held only for bodies of the same material, and it would have been 

foolish for him to risk his reputation with his students by using 
weights that he would not expect to move with the same speeds. 

That the lighter of two materials begins fall from rest more swiftly 
than the heavier was asserted more than once in De motu, and in very 

recent years such a possibility has been seriously investigated by phys- 
icists. Galileo said that he had observed the phenomenon, which is 

puzzling, though it was reported also in a book by one of his teachers 
at Pisa, Girolamo Borro, whose explanation of the alleged experi- 
mental fact Galileo did not accept.*® Dr. Thomas Settle has reported 
that a person holding weights in both hands will release the lighter a 

bit sooner than the heavier, despite an intention of letting them go at 
the same time.” 

Also of interest is Galileo’s implication that the line ab pushed up 
with different forces against the two weights. The equality of action 
and reaction (Newton’s third law of motion) was by no means a com- 
monplace in 16th-century mechanics; indeed, the idea of a table-top 
pressing upward when a weight is placed on it would have been ridi- 
culed by Aristotelian physicists, and even today seems odd to many 
beginning students. Galileo brought to his early studies of motion 
much that had not traditionally been considered relevant to such stud- 
ies. Even at the outset, he thought more like later physicists than like 
the earlier natural philosophers whose authority counted heavily with 
philosophers of his own time. But his conviction that acceleration was 
a brief event at the beginning of fall, and that it could be ignored for 
convenience (as Tartaglia had neglected the curvature of paths of can- 
nonballs), held Galileo back for many years. The conflict between ki- 

* Girolamo Borro, De motu gravium et levium (Florence 1576), p. 232. Galileo 
had already mentioned this book on the first page of his 1586-7 dialogue 
on motion. 

se T. Settle, “Galileo and early experimentation” in Springs of Scientific Creativ- 
ity, ed. R. Aris, H.T. Davis, and R.H. Steuwer (Minneapolis 1983). 
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netic and dynamic theories of fall, seemingly resolved by medieval 
impetus theorists, came to life again with Galileo’s Hipparchian pref- 
erence. 

The first unequivocal statement that speeds in fall are proportional 
to distances from rest appeared in 1584, one year before Galileo left the 

University of Pisa without a degree and began teaching mathematics 
to private students. The proposition appeared in De motu tractatus by 
Michael Varro, a Swiss merchant who had studied mathematics in his 
youth and aspired to imitate Archimedes in “demonstrating by reason 
and proving by experiment” as he said in the opening sentence of his 
dedicatory letter.°° 

Varro’s terminology is entirely different from that of impetus theory. 
Natural force, by which a thing tends toward its natural place, moves 
it with continued and orderly motion. That is why it is easier to move 
a moving thing than a thing at rest. The same force pressing in motion 
moves a thing more greatly in motion than at rest, and the more 
greatly as the motion becomes greater. Speeds are greater in the pro- 
portion of distance moved to the whole space of the motion. Varro’s 
line and triangle diagrams illustrating his proposition closely resemble 
those found among Galileo’s working papers in 1602-4. 

50 M. Varro, De motu tractatus (Geneva 1584), f. A2. The statement on p. 12 
equalia spatia ab eorum principiis numerata, equalibus temporibus habebunt, is 
exemplified by diagrams on p. 13. 
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Discovery of the Law of Fall 

Galileo’s working papers on motion from 1602 to 1637 are now in 
Volume 72 of the Galilean manuscripts at Florence. On f.107v of that 
volume is his first surviving record of precisely measured distances. 
They are in punti, of 0.94 mm. per punto as determined from notations 
on ff. 115, 116, and 166 of the same volume. A few days later these first 

measurements became linked with the law of fall, so we may begin 
from those. Calculations at the center of f.107v are of the form 60x + (60 
-n), implying the use of a ruler finely divided into 60 equal parts.’ 
Before outlining Galileo’s experimental work in obtaining the numbers 
he tabulated on f.107v, the reason behind that work will be given. 

Late in 1602 Galileo wrote a letter to his friend and patron 
Guidobaldo del Monte, author of the best 16th-century book” on me- 
chanics, recommending the use of pendulums 4 to 6 feet long in exper- 
iments relating to descents along a circular arc. In that letter? he 
communicated two theorems concerning descents along chords to the 

°i The same ruler was used in drawing and measuring diagrams on several 
pages of the working papers during the years around 1604. 

52 Guidobaldo del Monte, Mechnicorum liber (Pesaro 1577); Italian translation 
by F. Pigafetta, Venice 1581; abridged English translation in S. Drake & LE. 
Drabkin, Mechanics in Sixteenth Century Italy (Madison, 1969). 

°? Translated in S. Drake, Galileo at Work (Chicago 1978), pp. 69-71. 
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bottom of a circle, with his conjecture that times along arcs to the 

lowest point are equal for all lengths of arc.* In 1603, after deriving 

two least-time theorems for straight descents, Galileo saw that he 

could advance further only by some rule for increase of speed in 
straight natural descent from rest. 

Aristotle had defined “greater speed” as the traversal of greater 
distance in the same time, so Galileo conceived the idea of equalizing 
several times during a relatively slow straight descent and taking the 
distances traversed as measures of speeds. A grooved inclined plane 
about 2 meters long (over 2,100 punti) was tilted 60 punti, to an angle 
of 1.7° with the horizontal. Along the groove a bronze ball descended 
repeatedly from rest while Galileo divided the time into 8 equal inter- 
vals, probably by singing at beats of a half-second each.» The place of 
the ball at each beat was marked; at those marks, strings were tied 

around the grooved plane. Probably gut strings were used, as when 
frets were tied around the neck of a lute—firmly, but capable of being 
adjusted when tuning the instrument. After the ball passed over each 
string, a faint bumping sound was audible as it struck the plane. Posi- 
tions of the strings were patiently adjusted until all sounds coincided 
with notes of the tune, and the distance from resting contact of ball 
with plane to the lower side of each string was noted. Analysis shows 

that Galileo was accurate within Pr second for every string except the 

lowest. Later he adjusted that string by about 20 punti (say 2 cm.), and 
also marked a + or a — sign after four of his original measures which 
seemed to Galileo a bit short or a bit long when he made subsequent 

* This conjecture was mistaken, as Galileo learned in 1604 when he began 
measuring times precisely. His knowledge of pendulum motions at each 
stage of the work will not be discussed in this monograph except as it 
relates to discovery of the law of fall. 

* Calculation shows the times to have been very nearly 0.55 seconds each. 
Marching songs usually have such a tempo, at which even a slight depar- 
ture from the rhythm is easily detected. 
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re-runs (these then sounding to him early, or late.) 
In equal successive time intervals, Galileo found, the speeds in- 

creased as do the odd numbers 1, 3, 5,7, ... etc.°° This simple and exact 
rule doubtless surprised Galileo as much as it delighted him, for only a 
year before he had said to Guidobaldo that when put to a test with 
material objects, rules deduced by mathematicians simply did not 
agree with observation. Material impediments, as Galileo called fric- 
tion, air resistance, absence of perfect smoothness and hardness, or the 

like, played a very important part in his physics from 1602 through 
1609. 

Having found a simple arithmetical law for a natural motion, 
Galileo thought next of measuring short intervals of time instead of 
merely equalizing them. Near the bottom of f.107v he drew a diagram 
of the device that he used from then on for measuring the times of 
motions. In Two New Sciences he described its simplest form, in which 
flow of water from a large pail through a slender tube in the bottom 

was collected during each motion, was weighed on a sensitive balance, 

and the weights were treated as measures of the times.”” The sketch on 
f.107v suggests (and the precision of Galileo’s few surviving records of 
timings confirms) my belief that in fact Galileo built and used a some- 
what more reliable and consistent means of starting and ending flows 

°° At this time Galileo could measure only overall speeds and did not yet 
have a way to time brief motions. Because the times had been equalized, 
the distances were direct measures of overall speeds. It did not occur to 
Galileo at first to consider them as simple distances also, so he did not sum 
the successive odd numbers and perceive the times-squared law at once. 

°” Galileo, Two New Sciences, tr. Drake (2d ed. Toronto 1989), pp. 169-70. 
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Galileo’s earliest surviving measurements of accelerated motion, f.107v, volume 72, 
Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by 

permission). The squared numbers in the left margin are barely legible in reproduction 
(see text). 
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than mere removal and replacement of the thumb or a finger at the 
end of the tube. That simple procedure has, however, been found to 

give results twice as reliable as Galileo asserted in his later book, and 
his own extant timings confirm this.*® 

The rate of flow of water from Galileo’s device was 3 fluid ounces 
per second, very nearly indeed. This round number in an old standard 

unit was mere coincidence, because Galileo was not attempting to 
measure time in any accepted unit, let alone in astronomical seconds. 
He always worked entirely in ratios and proportionalities, from which 
any unit of measurement would of course cancel out. 

For practical reasons, Galileo did use a standard unit of weight; 
namely, the grain, of which there were 480 to the fluid ounce. Galileo’s 
recorded times are in grains weight of flow of water from his timing 
device. Later he adopted as his unit of time the flow of 16 grains of 
water from that device; 16 grains weight is almost exactly 1 gram in 
c.g.s. units.°? That unit will be called the tempo (plural, tempi). How 
Galileo came to adopt it will be explained below. 

Galileo’s first recorded timing was noted on f.154v in the form of a 
column of numbers, totalled as 1,000 + 107 + 107 + 107+ 16 = 1,337 

(grains weight of water collected during a motion from rest.) That was 
his timing of fall through 4,000 punti = 376 cm. It was his least exact 

timing, being about & second too high. From his collecting vessel 

Galileo first poured off 1,000 grains, probably into a container marked 
as holding that amount. He then marked on the collection vessel the 
level at which the remainder stood, and later on he used that mark as 

°§ Galileo said that in more than a hundred timings along inclined planes, 
agreement with the times-squared law had been found never to vary more 
than one-tenth of a pulsebeat. Dr. Thomas B. Settle reported in 1961 that 
with little practice he had achieved about double that precision. Cf. Settle, 
“An Experiment in the History of Science,” Science 133 (1961), pp. 19-23. 

°° Settle avoided the nuisance of repeated weighings by collecting flows in a 
graduated cylinder and taking 1 cc. as 1 gram. It is a curious fact that 
Galileo, though he did not have a graduated cylinder, used volumetric 
determinations in place of weighings by marking his collection vessel, as 
will be seen. That 1 gram of water represented 1 tempo for Galileo and was 
also the unit for Settle’s ratios of times was purely coincidental, since the 

rates of flow were doubtless very different. 



HISTORY OF FREE FALL 40 

representing 320 grains (the rounded sum of 3 x 107.) The final figure, 

16 (grains), was indirectly weighed; it represented the weight of the 

collecting vessel damp, less its dry weight. As a former medical stu- 

dent Galileo was familiar with that way of accounting for fluid that 

adhered to the sides of a vessel after pouring from it. 
Directly beneath 1,337 Galileo entered 903, a second timing in grains 

flow during a motion from rest. That was his timing of fall from 2,000 
punti = 188 cm. (about 6 feet), a very convenient height at which the 
timing with Galileo’s device did not require difficult action on his part. 
(To dislodge a weight from double that height, as before, in exact 
coordination with the starting of flow, was less simple.) Timing of 903 
grains for fall 2,000 punti is nearly exact; I calculate that 911 or 912 

grains would be precise at the latitude of Padua (taking g = 980.7 

cm/sec), and that Galileo’s finding was little more than a second too 

low. In this case there is also evidence that Galileo had marked the 
level at which 903 grains stood in the collection vessel before he 
weighed the water. That is suggested by the fact that there was no 
column of figures, totalled, as before (and as on f.189v1 a bit later), and 
it is confirmed by a number on f.151v which Galileo had obtained 
when he first set out to relate fall to the pendulum. In order to under- 
stand the initial steps, it should be mentioned that Galileo used swings 
of pendulums only through a small arc to the vertical, for a practical 
reason. The only swing that could be timed with precision was from 
the instant of releasing the bob to the sound of impact with a block 
that had been fixed against a side of the bob when hanging plumb. 

On f.151v there are several diagrams intended to represent geomet- 
rically some distance of fall from rest and the length of pendulum 
swinging to the vertical in a related time. There is also a freehand 
sketch of two meshed gears, and the calculation 53 x 30=1,590. As 
already said, Galileo measured lengths with a carefully engraved ruler 
60 punti long. He also habitually first eliminated the fraction 2 when 
performing a multiplication or a division. Thus the f.151v calculation 
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stood for 2612 x 60 = 1,590, the length in punti of the measured pendu- 

lum which, by my calculation, swings at Padua through a small arc to 
the vertical during the flow of 903 grains of water through Galileo’s 
timing device—exactly the flow he had recorded for fall 2,000 punti.© 

Now, the pendulum that takes the same time to the vertical as does 
fall through 2,000, in any units whatever and anywhere, is in fact (to 

the nearest digit) 1,621 units long, not 1,590. Galileo’s small error in 

timing of fall through 2,000 punti had resulted in shortage of 31 punti 
for the pendulum that would time that fall exactly by swing to the 
vertical through a small arc. Although Galileo’s two timings had been 

exactly consistent, the length-ratio aS (= 1.2579) was considerably 
, if 

above the correct a = 1.2337, or aS to four significant places. 

Galileo’s skill as an experimentalist is illustrated by the pendulum 
length which he recorded on f.151v as being 1,590 punti. That figure 
can have been obtained only by finding the pendulum whose swing to 
the vertical through a small arc accompanied flow of 903 grains weight 
of water through his timing device. Implied is his having started with 
a pendulum about 5 feet long, and then having patiently adjusted it 
until water flowed precisely to the previously marked level while the 
pendulum swung to the vertical. This procedure throws light on the 
sketch of two meshed gears, seen also on f.151v but appearing out of 
place on a page bearing diagrams relating fall to the pendulum. 

When he had measured the pendulum for 903 grains flow, we might 
expect Galileo next to find the pendulum timed by 1,337 grains. That 
would be longer, and very inconvenient to alter in length repeatedly as 
before. Running the string over a nail in a movable upright and an- 
choring it to a bench would allow the nail to be raised and lowered by 
gears and a crank. Such a scheme accounts for the sketch. In the end, 

— = 66814 grains of flow however, Galileo timed the pendulum for 

= The precision of this measurement, though it was of no use for the problem 
Galileo was addressing, helps to explain the almost perfect values he had 
for the units described in the Epilogue. His punto of 0.94 mm should be 
0.9422119204, and his tempo of 1/92 second should be 1/91.88024932 sec- 
ond, if my calculations are correct. 
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as being 870 punti in length, and then he timed the doubled pendulum 

of 1,740 punti at 942 grains of flow. At any rate that is what is implied 

by the working papers which Galileo preserved. 
From the pendulum measurements Galileo now had at hand, a table 

of the kind shown below could be compiled. Though I doubt that 
Galileo troubled to form a table, mine will serve to show the way in 

Length of Pendulum Time to the Vertical 
in punti in grains flow 

668 1/2 

942 

3,480 SS, 

6,960 1,884 

i 13,920 2,674 

3,768 

which he arrived at his discoveries by simply applying the theory of 
ratio and proportionality set forth in Euclid’s Elements. My table has 
been extended far enough to show the source of a very important 
number found in two of Galileo’s surviving working papers, on one of 
which he was writing when he first recognized the law of fall in times- 
Squared form from its mathematically equivalent mean-proportional 
form. 

The first column was formed by successive doubling, and the sec- 
ond by alternate doublings. Except for a slight discrepancy with the 
second timing, each column separately is accordingly in continued 
proportion. Galileo’s new time unit, the tempo, came into being when 
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he related the two columns horizontally, so to speak. His original mea- 
sure of time in grains of flow through his timing device having been 
completely arbitrary, he was free to alter it in any ratio he pleased.*! 
Taking each time to be the mean proportional between 2 and the 
length of pendulum, the two columns become related line by line. The 
same numbers result also, almost exactly, from division of each time in 

grains by 16, so 16 grains of flow became 1 tempo—the new unit 
adopted as a result of this application of the Euclidean theory of pro- 
portion. 

Because division by 16 of the times in grains weight of flow did not 
exactly produce that mean-proportional relation between the two col- 
umns, Galileo made an adjustment which resulted in his changing 
27,840, as seen above, to 27,834. That work was done on one of the 

working papers of which only a part survives. On the blank side he 
wrote, in 1609, a note on another topic, cut it out, and pasted it on f.90. 

That was lifted at my request, and on the hidden side I saw the num- 
ber 27,834, twice, with enough words to identify it as a “diameter.” 
Galileo’s diagram and calculations were thrown away with the part of 
the page cut off, but they had been finished before Galileo discovered 
the law of fall, because 27,834 played a crucial part in the calculation 
on f.189v1 which put that discovery into Galileo’s hands. 

With his adoption of the tempo as the unit of time, Galileo had the 

pendulum law in a restricted form; that is, for any set of pendulums 

successively doubled in length. It would have been a difficult task to 
test it for successively tripled pendulums, let alone for any other inte- 
gral multiples, and quite impossible to establish it experimentally in its 
complete generality. What Galileo did next is seen on f.154v (on which 
he had entered his first two timings.) He now calculated the mean 
proportional of 118 and 167—the times to the vertical, in tempi, for the 
two pendulum lengths 6,960 and 13,920 punti—getting 140 (tempi.) The 
mean proportional of those two lengths is 9,843, so if his restricted 
pendulum law were perfectly general, a pendulum 9843 punti long 
would swing to the vertical in 140 tempi. 

On the other side of the same page, f.154r, Galileo wrote the note filo 

6! The unit of length could have been altered instead, but Galileo had re- 
corded previous careful measurements made with his ruler. It was easier to 

take a new time unit than to graduate another ruler. 
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br. 16—“the string is 16 braccia long.” From two lines drawn and la- 

beled by Galileo at Padua, I measured one braccio as containing about 

620 punti. At 615 punti per braccio, length of the pendulum would be 

9,840 punti, or about 30 feet. Such a pendulum could be hung from a 
window over the courtyard of the University of Padua and timed, 
protected from wind. At Padua it would reach the vertical through a 
small arc in 141 tempi, by my calculations. Thus Galileo was fully 
assured of the complete generality of his pendulum law in mean-pro- 
portional form that is mathematically the same as our law that periods 

of pendulums are as the square roots of their lengths. 
In order to finish linking fall with the pendulum, Galileo needed 

one bit of information that has not yet been identified, the time of fall 
through a distance equal to the length of a timed pendulum. The 
length he chose was 2 x 870 = 1,740 punti, and that fall takes 850 grains 
flow of water. The figure 850 exists in Galileo’s extant working papers, 
but only by implication. At top left on f.189v1 there is a column of 
figures, added to total 1,988, in which two separate pendulum timings 

are recognizable; subtotals are added here in parentheses: 

13 + 530 + 320 + 180 (=1,043) and 95 + 320 + 530 (=945), total 1,988. 
The numbers 180 and 95 represented actual weighings of collected 
water, while the number 13 represented adjustment for unweighed 
water adhering to the sides of the collecting vessel. The other two 
numbers, 530 and 320, were weights in grains found by pouring water 
from the collecting vessel to marks previously made. The mark for 320 
grains had been made during the very first timing, as noted earlier. 
Hence the mark for 530 grains had been placed when a timing of 850 
grains was made, and 850 grains of flow does time the fall through 
1,740 punti. Thus the column of figures totalled at the top of f.189v1 
recorded two separate timings of a pendulum of length 1,740 punti, 
one through a very wide and the other through a very small arc, doing 
this for a reason unrelated to his discovery of the law of fall. 

In the central calculation on f.189v1, the ratio used was time of 

pendulum 1,740 punti to time of fall through 1,740 punti, or = = 1.108 

* Galileo was diverted into a problem he had considered in 1602, before he 
had any means of timing brief motions. Discussion of this would unneces- 
sarily complicate the present monograph. 
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The working paper f.189v1 on which Galileo was writing when he first recognized the 
law of fall independently of pendulums. Manoscritti Galileiani in the Biblioteca 
Nazionale Centrale di Firenze (reproduced by permission). 
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to four places, of which the square is 1.228. Time to the vertical 

through a small arc, for any pendulum, has to the time of fall through 

a distance equal to the length of that pendulum, the ratio 

5p = 1.1107... Thus Galileo’s measured time-ratio had been nearly 

exact. In the crucial calculation on f.189v1 it put into Galileo’s hands 
the times-squared law of fall. We have only the final step in a series of 
calculations, of which others had been made on the discarded part of 
the f.90°v after Galileo had adjusted 27,840 to 27,834. 

The time 280 tempi, for which Galileo calculated distance of free fall 
on f.189v1, was simply double the 140 tempi at which he had timed the 
30-foot pendulum that had for him firmly established the generality of 
the pendulum law. What Galileo calculated on f.189v1 was one-half the 
fall in time 280, which he then doubled and entered in a Latin state- 

ment: “The vertical whose length is plunti] 48,143 is completed in 280 
tempi.” In cgs units, that says that fall of 4514 meters takes 3.043 sec- 
onds; I calculate the time at Padua to be 3.038 seconds. 

The final step in Galileo’s work looks odd; to get half the fall sought, 
he multiplied 6,700 by 100,000 and divided that by 27,834. If we write 

8 
this as Sasa it is easier to see how 6,700 represented a ratio rather 

than a number. Because Galileo did not use decimal fractions, but 

integers (and ratios thereof), he had to keep track of order of magni- 
tude as he went along, and adjust by a power of 10 at the end. Writing 

27 for 6.7, that was the ratio of double the time for which distance of 

fall was sought, to the time of fall through a known distance, in this 
instance 4,000 punti, timed at 1,337 grains flow = 83.5625 tempi (Galileo 

wrote 6,700 for 6,7011.) Because his timing of fall through 4,000 punti 

was a second high, we might expect Galileo’s calculation for so long 

a time as 3 seconds to be very defective. It was not, because in his 
calculations (using ratios only) t had cancelled out. I factor Galileo’s 
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f.189v2, with adjustment of Galileo’s timing of fall through 4000 punti and the 
general rule for descents along inclines differing in slope and in length. 
Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (repro- 
duced by permission). 

47 
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8 

Galileo (had he used symbols) would have thought of as the general 

ratio of a distance fallen to the pendulum length swinging to the verti- 

cal in the same time. This factoring gives: ale: = 4 fall in time 

procedure as below, utilizing the ratio a =g for the relation that 

2 
ee : 7 ; and since : = g, Galileo’s end result was mathematically 

no different from ours using a local gravitational constant. 
Before Galileo noted redundancies in his calculations with ratios, he 

would never have “squared a time” (or a measure of time), an opera- 
tion that as yet made no physical sense. The product Tt, above, arose 
by compounding ratios, a legitimate operation in Euclidean proportion 
theory, (though Euclid himself used it only geometrically, and did not 
define “multiply” except for integers.) Nor was the ratio / used di- 
rectly by Galileo in his (now lost) preliminary calculations; it arose as 

the product of two occurrences of his ratio = when calculating from 

a distance fallen to a length of pendulum, through related times. 
Galileo’s probable steps can be reconstructed in more than one order, 
with the above clues as a guide to the ratios he formed, though there 
are further clues making the order fairly certain.© 

® The factor that Galileo in fact used was not g but the square root of g, 
which is the relation between times when a pendulum and a fall having the 
same length are compared. It is the square root of g that I call “Galileo’s 
constant”; the length he used was 1,740 punti, as explained above. 

*: Squaring a length did have a legitimate physical sense in terms of areas, 
and units had long been in use that were analogous to our square foot or 
Square mile. Even now we name no unit the “square second” or “square 
years,” and Galileo did not perform mathematical operations until he per- 
ceived them to have a clear meaning. 

65 eer : 
The principal clues are two uses of a ratio that has not been mentioned, in 
brief calculations on f.189. 
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Perceiving redundancies in his procedure step by step with ratios, 
Galileo next took directly the mean proportional between the distances 
4,000 and 48,143, recognized this to be almost the half of 27,834, and 
drew at lower left on f.189v1 the diagram that he used from that day 
on to relate times and distances in fall by the mean-proportional rule. 
On f.189v2 he used his new-found law to correct his one poor timing 
(for fall through 4,000 punti) from 8312 tempi to 80%, almost exact. 
Then on f.115v he summarized what he had found, this time writing 
p.(for punti) 48,143, confirming my initial assumption that the same 
unit had been used in 1604 that was first identified from later notes of 
Galileo’s.© 

Next, having found the law of free fall, Galileo wondered whether it 

held also for descent along an inclined plane. Taking up again f.107v 
(from which we started), he entered in the margin of his tabulation 
(distances rolled after each of 8 successive equal times) the first eight 
square numbers. Each, multiplied by the first distance, gave the corre- 
sponding measured roll almost exactly. Returning to f.189v2, Galileo 
conjectured a compound ratio for descents along planes differing both 
in slope and in length, found it defective, and by arithmetical test 
found the correct rule. Using that rule, he calculated on f.189r his 
arithmetical confirmation of a theorem he had sent to Guidobaldo del 
Monte in 1602. 

It is no wonder that Galileo preserved all his life f.189v1, on which 
he had arrived at the times-squared law of fall. That led him at once to 
a host of further theorems and solutions of problems, of which the first 
have just been mentioned. In 1608 he arrived at the parabolic trajectory 
of horizontally launched projectiles, as the result of a new set of careful 
measurements of actual uniformly accelerated motions. 

°° The first page it was possible to explain was f.116v, belonging to discovery 
of the parabolic trajectory in 1608. that was done in 1973, leaving discovery 
of the law of fall still unsolved. In 1975 that appeared to be explained by 
f.107v, except for the delayed entry of the square numbers. 
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Applications of the Law 

The law of fall remained unpublished until 1632; then it was included 

(without proof) in Galileo’s famous Dialogue.* Later in that same year, 
to his annoyance, a related discovery of his was published by Bona- 
ventura Cavalieri, a mathematician of outstanding ability who had 
studied at Pisa under Galileo’s ablest former pupil, Benedetto Castelli. 

Cavalieri intended no plagiarism; his book was on uses of the parab- 
ola, and he included in it a proof of the proposition that when heavy 
bodies are projected along the horizontal, the paths of fall are parabolic 
in form. He thought mistakenly that this had already been published, 
without proof, by Galileo, who was saving it for his final book on 
motion.© 

The path of a heavy body falling not from rest, but while it was 
already moving horizontally, was not identified exactly until four 
years after the work described in the previous chapter. Its discovery, in 
1608, led Galileo to investigate next the case of oblique projection, in 
which the initial motion is other than horizontal. From his working 
notes on that problem, much more is now known about Galileo as an 
experimental physicist than was the case in 1973, when his steps to the 
parabolic trajectory were first reconstructed. 

*” Galileo, Dialogue Concerning the Two Chief World Systems, tran. S. Drake 
(Berkeley, 1953, 1967), cited hereinafter as Dialogue. The law of fall appears 
at p. 222. 

68 When he learned from a friend what Cavalieri was publishing, he was 

much vexed, but after seeing his Specchio Ustorio he spoke of it with admi- 
ration in his own Two New Sciences (p. 49). This incident shows that the law 
of fall was put to use by Galileo’s acquaintances well before he announced 
it publicly. 
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The path taken by a projectile was, for Galileo, a “natural” motion 

from the moment at which it began falling freely, as when a ball left 

the hand, or a cannonball left the mouth of a cannon. From that mo- 
ment on, the motion of the body was subject to the law of fall, and 
accordingly has its proper place at this stage of the story, though pub- 
lished some years later. 

The history of previous speculations about the motion of a heavy 
body propelled into the air dates from some remarks in the Physics of 
Aristotle. To him, projectiles had a “forced” motion, and precisely for 
that reason did not merit attention in his own physics as the science of 
nature. By his definition all “forced” motion was contrary to nature. 
But near the end of his Physics, Aristotle included two views about 
persistence of “forced” motion after the “force” had ceased (or ap- 
peared to have ceased) to act. Some, he said, ascribed this to the air (or 

other medium) which rushed into the place behind the body to pre- 
vent existence of a void space. In so doing, it pressed the body onward. 
Aristotle disapproved of that explanation, usually called “antiperista- 
sis.” He preferred another in which the air acquired some of the force 
impelling the body before it left the hand (or any agent causing mo- 
tion.) This moving air, accompanying the body at first, could keep it in 
motion, though not for long. It was a principle of Aristotle’s that any- 
thing violent must soon come to an end. 

During the Middle Ages the path of a hurled object was more ex- 
plicitly described. So long as the impelling force remained stronger 
than the natural tendency to fall, the body continued in a straight line. 
But that force became diminished by contending against the tendency 
to fall, which tendency, being natural, was never weakened. Thus a 
point was reached at which the tendency to fall was more powerful 
than the supposed remaining force, and the body fell to earth. Belief in 
a conflict between nature and force obstructed recognition of the inde- 
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pendent composition of two motions, even though it had been ana- 
lyzed in antiquity by the author of Questions of Mechanics, then attrib- 
uted to Aristotle.” 

In 1537 Tartaglia, as a mathematician, conceived of motion as con- 
tinuous. He recognized that the path of even the swiftest cannonball 
must be curved downward from the instant at which it became free to 
fall, and assumed its two nearly-straight paths to be joined together by 
a circular arc.”° In 1546 he emphasized the reasons for his description 
of the trajectory as not curved at the start, explaining to an artil- 
leryman that for his purpose of analyzing this geometrically, he had 
treated the “forced” motion as straight, with no great departure from 
observable facts. 

A manuscript by Guidobaldo del Monte contains a remark that tra- 
jectories are either parabolic or hyperbolical.”1 He gave the same two 
methods of drawing their shapes that Galileo offered in his last book, 
by using a hanging chain or a tilted metal plate on which a rolling ball 
left its trace as it moved. Perhaps Galileo appropriated these ideas of 
Guidobaldo, who died in 1607. But the exact reverse may be true, for 

the two men corresponded and exchanged ideas over many years. The 
manuscript, now at Paris, is undated, and it is unlikely that Galileo 

ever saw it. 
At the end of his Pisan De motu, in 1591, Galileo proposed the ques- 

° This, the most ancient treatise on mechanics known, will be mentioned 

below as Galileo’s source for another important idea of his. It was probably 

written by a pupil of Aristotle’s, or by his contemporary Archytas of Tar- 

entum. Galileo owed the basic idea from which he later developed vector- 

addition to the very first Question; cf. Aristotle, Minor Works (Loeb edition, 

1936) pp. 337:12-339:35. 

70 See S. Drake & I.E. Drabkin, Mechanics in Sixteenth-Century Italy (Madison, 

1969), pp. 84, 103. 

” Cf. Drake & Drabkin, op. cit., p. 48. 
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tion why forced upward motion remains straight farther, the more 

nearly vertically projection has begun. His diagram compared several 

paths differing in steepness of projection, but beyond that he at- 

tempted no description of the trajectories. In 1591 Galileo still accepted 

the concept of “impetus” as a force impressed into the thrown body, 

regarding its continued motion thereafter as forced. But in 1597, when 

he lectured on Questions of Mechanics, he appears to have perceived 
from Question 33” that an “impressed force” was a superfluous as- 
sumption. What remained with a ball could be only the motion it had 
shared with the hand, as Galileo later wrote.” 

In October 1604, trying to derive the law of fall logically from some 
incontestable principle,”* Galileo postulated that all speeds during fall 
from rest are proportional to the distances traversed. He based that 
mistaken postulate on his observations and measurements of percus- 
sion effects—“machines that act by striking,” as he wrote at this time. 
Those effects are in fact proportional not to the speeds, but to their 
squares. Galileo had observed that a given weight, falling from a 
height and then from double the height, strikes twice as hard. He 
reasoned that the weight being the same, and its speeds different, the 
speeds must create any difference in effect, and therefore be related as 
are the distances fallen. 

During the next four years Galileo tried various ways of joining this 
wrong concept of “speed” with his correct theorems about distances 
and times in fall, always in vain. The reason for his seemingly obtuse, 
and certainly stubborn, adherence to an incorrect rule of proportional- 

ity for speeds was (of course) sound reasoning from an erroneous 
principle. The principle was that there can be no such thing as mathe- 
matically instantaneous speed. Only motion has speed, and motion 
requires time. The time allowed could be made as small as one wished, 

but not zero. If the time is supposed to vanish, the motion must vanish 
along with it. Similar ancient reasoning had afforded the very basis of 

” Question 32 began: “Why do objects thrown ever stop travelling?” and 
Question 33 went on: “Again, why does the body travel at all except by its 
self-carriage [avtov dopav] when the discharging force does not follow 
and continue to push it?” 

” Dialogue, p. 151. 

“ Translated in my Galileo at Work, pp. 102-3. 
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Zeno’s paradoxes, to which Aristotle offered many refutations by ut- 

terly rejecting the idea of literally instantaneous speed. 
Toward the end of 1607 Galileo began arranging his various theo- 

rems about motion with the thought of composing a book on the sub- 
ject. To some proofs still technically uncompleted he added necessary 
lemmas, and many further theorems occurred to him which he wrote 
out. In the course of this work he hit upon a solution of the difficulties 
with regard to “speeds” that had been holding him back. On f.164 he 
drew this diagram, and wrote: 

Marvellous! Now, is motion through the vertical AD swifter than that 
through the incline AB? It seems so, since equal spaces are traversed 

more quickly along AD than along AB. But it also seems not; because, 
drawing the horizontal BC, the time through AB is to the time through AC 
as AB is to AC, whence the same momenta of speed [exist in motion] 
through AB and [through] AC; and indeed that speed is one and the same 
with which, in equal times, unequal spaces are passed that have the same 
ratio as do the times. The momenta of speed of things falling from a height 
are as the square roots of distances traversed. 

Freed from his long misapprehension that speeds in fall were pro- 

portional to the distances from rest, Galileo was at last in a position to 
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measure speeds in fall correctly. That put into his hands the means of 

verifying another proposition that he had long believed true, but had 

had no way of actually testing—that in principle, horizontal motion 

should continue at uniform speed.” 

It was early in 1608 that Galileo probably put his inclined plane ona 

table, let the ball roll down from measured heights, then along the 

table briefly, and finally fall to the floor. The distance was then mea- 
sured from each point where the ball struck the floor to the point 
vertically beneath the end of the table. The speeds of projection being 
proportional to the square roots of the heights, all horizontal distances 
measured would follow that same proportion, assuming his long- 
standing belief correct. His first set of measurements was not pre- 
served, but it probably confirmed Galileo’s belief within 4 puntz; that 
is, within half a centimeter for projections out toa meter and more. 

Some later data are on f.116v of Galileo’s working papers, written 
probably in the early summer of 1608. When that page was published 
in 1973, and explained as the discovery-document for the parabolic 
trajectory, I supposed this to have been Galileo’s first testing of the 
concept I then called “horizontal inertia.””° Measured distances of pro- 
jections shown on it departed from his calculations by as much as 40 
punti, but Galileo appeared not to have been disturbed by that; in fact, 

he noted the differences with care on the same page. In 1973, nothing 

whatever was yet known about his measurements in 1604, whence the 
accuracy to +3% implied by f.116v aroused incredulity among other 
historians of science. 

It was generally believed that Galileo had not actually made any 
experimental measurements at all, let alone accurately. Once Galileo’s 
steps to the pendulum law and the law of fall were fully known, it 
became evident that f.116v recorded results of a more sophisticated set 
of experimental measurements than at first supposed. Notations on 
that document previously unnoticed, or if noticed, not then under- 

° For his mathematical proof in the Pisan De motu, see I.E. Drabkin & S. 
Drake, Galileo On Motion and On Mechanics (Madison 1960), Chapter 14. 

, Inertia being a dynamic concept, it has no place in Galileo’s mature phys- 
ics. Its place was taken by the conservation of motion as presented in the 
Second Day of the 1632 Dialogue. 
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f.116v, on which Galileo first noted the parabolic path of horizontally launched 
projectiles. Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze 

(reproduced by permission). 
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stood, can now be explained in full. 
First of all, Galileo’s word doveria’’, which I had translated “it 

should be,” was in his time equivalent to modern dov[e]rebbe, “it would 

have had to have been.” That was made clear in the 1611 edition of 

John Florio’s Queen Anne’s New World of Words, an Italian-English dic- 

tionary including an appendix on learning the Italian language. Florio 
remarked that he had never seen even an Italian grammar that cor- 
rectly explained the fine distinctions in Italian modal conditionals, 
adding that nothing in the language was responsible for so many ab- 
surd mistakes made by Englishmen. 

Galileo’s reason for measuring and recording the differences be- 
tween projections and the advances calculated from the first pair of 
data was that his measures on f.116v had been obtained in more than 
one way. He did not expect them to be in agreement, and hoped to 
learn something more from the recorded differences. Nothing of that 
kind would have been even suspected in 1973. 

To reconstruct the experimental set-up for f.116v, we must observe 
carefully everything on it before making any unnecessary assumptions 
about Galileo’s procedures, or his figures, or his words. For example, 
look at the notation: pu. 828 altezza della tavola—“828 punti height of the 
table,” which clearly relates to the length of a vertical line from table to 
floor. But it is necessary also to notice that, unlike most of the lines on 

the page, this is a dotted line. Whether the height of the table was ever 
adjusted to 828 punti is uncertain; but entries show us that Galileo 
started this work with his table-top 800 punti above the floor, and later 
adjusted it to 820 punti. Probably he intended to raise it to 828 punti, as 
indeed he had a valid reason to do. But it is possible (and indeed 
likely) that he became too deeply interested in his discovery of the 
parabolic trajectory to finish what he had been doing. For Galileo had 
not started out to find the shape of any path; he came upon that 
incidentally to other calculations, as will be seen. Knowing already 
that horizontal motion is uniform in the absence of any impediment 
greater than air resistance, he began work on f.116 to verify experi- 
mentally the independent composition of two different tendencies to 
motion in the same body, a conception sure to be challenged by up- 
holders of Aristotelian natural philosophy who were by 1608 in the 

77 ; 
doveria = dovrebbe 
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habit of automatically contradicting everything that Galileo wrote. 
At the top center of f.116v, Galileo calculated the mean-proportional 

of a number and its double, in his usual manner. We would now 

multiply the smaller number by V2, but Galileo took the square root of 
their product. The first number was 800. Most of the other calcula- 
tions—which involved more than a number and a double—are less 
simple. But at lower right, and unused in the body of the document, 

the short-cut calculation was repeated for 820. It was not repeated for 
828, which would have given 1,171. 

There is more than one way to carry out these measurements, and 

they do not all give the same results. Probably Galileo had already 
simply set his grooved inclined plane on a table, without any concern 
about either its height or the angle of the plane. That was done early in 
1608, and his measurements were not saved. Coming off the plane, the 
ball would strike the table and bounce. That would not greatly matter, 

so long as it rolled on the table before it fell to the floor.” Galileo did 
not know whether this made a difference, but recognized that it might. 

To eliminate or at least reduce any bouncing, two procedures were 
available. A board of the precise thickness to receive the ball on its 
lowest point exactly when it left the plane could be placed on the table, 
or a curved deflector could be grooved to match the width of guiding 
groove in the plane. Those procedures will not yield identical lengths 
of projection. The first causes the ball to roll on its lowest point, at least 
briefly; and that will suffice to increase its speed just before it starts to 

fall freely. While in the groove, the ball rolls on a reduced radius. If it is 

then allowed to roll on its entire radius, some of its energy of rotation 

is converted into speed of forward advance. By changing the mode of 
deflection, Galileo had increased the length of his initial projection 
from 800+ punti to 820 punti. 

No doubt he was surprised by this, because he had meant only to 
eliminate, or reduce, any bouncing. But having seen that the distance 
of projection was also affected, it naturally left him wondering how 
much it could be increased. Before describing how he found out, I shall 
first explain the +, added above after 800. I calculate projection to be 

”8 Very little energy would be lost by the bounce of a bronze ball on a hard- 
wood table. The main thing was to assure horizontal motion at the time the 

ball left the table, as will be seen. 
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804—about where the solid curved line in Galileo’s diagram meets the 

floor. He then drew a dotted line to represent 800, a projection not 

actually measured, but it was much simpler to use in calculations of 

mean proportionals by the extraction of square roots. 
A guiding groove is quite necessary when the plane is given a con- 

siderable tilt, to assure projection always along the same line. Even a 
small imperfection in the groove will send the ball flying out of it 
when the motion becomes very swift. To prevent that, Galileo covered 
the groove with limp vellum; the weight of the bronze ball pressed this 
down enough to keep it rolling quite straight.” Thus Galileo noted 828 
punti to be the maximum initial projection, after vertical descent of 300 
punti along the plane. It is very doubtful that he ever knew the reason 
for this, which is that the lowest point of the ball remained in contact 

with the vellum covering during its entire roll. 
Next comes the question why 828 punti should appear as the height 

of the table, when it had been found as the maximum length of projec- 
tion for descent of 300 punti. There was a reason for this. Vertical 
descent during roll along the plane and height of the final drop to the 
floor are interchangeable in this kind of experimental measurements. 
Distance of projection remains the same for vertical descent x and drop 
y as for vertical descent y and drop x. As said earlier, whether Galileo 
completed such a trial is uncertain, but there can be no reasonable 

doubt that he had discovered experimentally a great deal more about 
motions on inclined planes (and off them) than he eventually pub- 
lished. 

His table was about the normal height, and the highest that Galileo 
had to reach when placing the ball was about six feet, so he could 
easily bend down to observe its paths. Those were then sketched on 
f.116v, and they appear parabolic. The calculations on the page are 
such as to have assured Galileo that they must be indeed semi-parabo- 
las. A letter that he wrote in February, 1609, confirms that he was then 
studying phenomena of artillery shots, and a diagram in it also con- 
tains a sketch of a parabolic path. 

” CF£ Two New Sciences, p. 169. 
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As mentioned at the beginning, all previous writers on the paths of 
projectiles regarded those motions not as natural, but “forced’”—in- 

cluding Galileo himself in his youth. But after he abandoned the con- 
cept of “impressed force” in favor of conserved motion, he came to 
regard the motions of projectiles as natural motions from the moment 
when any outside force ceased to act. In 1609 he started making tables 
of heights and distances for shots fired at different elevations of a 
mortar, later completed and published in his last book.2? The symme- 
try of parabolas makes it possible to reduce such calculations to equiv- 
alent horizontal trajectories. But there is another class of oblique 
projections that are not so reducible, and to that Galileo next turned 
his attention. 

When a ball rolls from the end of an inclined plane without any 
horizontal deflection, its fall to the floor is not a simple parabolic curve, 
though this is a natural motion from the moment that a finger is lifted 
from a ball held at rest on an incline. No force is imparted to the ball at 
any time (Galileo did not regard gravity as a force, but as a natural 
tendency downward.) These constituted a new class of projections be- 
longing to his physics as the science of natural motions, and on f.114v 
there is a freehand sketch of seven descents, after rolls of different 
lengths along an inclined plane, with the projections measured in 
punti. Also, on f.81r, we have a diagram on which were recorded the 

results of some quite sophisticated (and remarkably accurate) experi- 
mental measurements of oblique projections. From those records it is 
possible to determine exactly what equipment was used by Galileo, 
and how he went about investigating a problem in physics that he was 
unable to solve, and about which he therefore never published any- 

thing. 
In 1973, calculating from the data on f.116v (using modern informa- 

tion and procedures), I noticed that there was an apparent systematic 

loss of gravitational energy in Galileo’s results. At that time I em- 
ployed this, incorrectly, to estimate the angle at which the plane had 
been tilted. That angle does not matter when all projections are hori- 

zontal, as critics were quick to point out. Eventually I realized that the 

8° There Galileo took care to point out that his tables would not apply to 
high-speed artillery shots, because resistance of the air became great 
enough to alter the shape of trajectory very considerably. 
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Galileo’s records of measured projections from the ends of inclined planes without 

horizontal deflection. 
Above, part of f.114v; and below, f.81r. Manoscritti Galileiani in the Biblioteca 
Nazionale Centrale di Firenze (reproduced by permission). 
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seeming loss was the result of his using a grooved plane, into which 
part of the ball always extends. Its forward acceleration is thus dimin- 
ished, while the equivalent energy goes into rotating the ball. No en- _ 
ergy, of course, is lost, and Galileo’s measurements proved to have 
been uncannily accurate when all the physical factors were taken into 
account. 

It is from the data concerning oblique trajectories of the kind de- 
scribed above that the diameter of Galileo’s bronze ball and the width 
of the guiding groove in his plane can be deduced. The ball was 20 
punti, or just under 19 mm, in diameter, and the groove was between 
8mm and 9mm wide. The same plane was used in 1604 and 1608-9, 
being a little more than 2 meters long. In his final work on oblique 
trajectories Galileo added another plane, described in his last book as 
12 braccia (or about 7 meters) in length. This was butted against the 
other plane to permit a roll of 9,600 punti, required for the work re- 

corded on f.81r. 
Also from the data on oblique projections it is possible to deduce 

the angles at which Galileo fixed his plane, and why he chose those 

angles. The freehand sketch on f.114v indicates an angle of about 26° 
(as I noted in 1973), and the data on f.81r later threw light this seem- 
ingly strange choice. More precisely, Galileo’s angle was 26.57°, which 
is arctan 2, an angle that can be constructed very exactly by two 
simple measurements. One has only to make sure that the height 
above the table is exactly one-half the distance along it from one end of 
the plane to the other. Galileo’s reason for that choice was that he 
wanted the horizontal advance at the moment of projection to be dou- 
ble the vertical motion downward. 

There is abundant evidence that the work on f.116v was also carried 
out with the plane at this same angle, once all the data in the working 

papers are fully understood. For the measurements behind f.81r, three 
different angles of plane were employed, and three lengths of roll, and 
three heights of drop. The angles chosen were arcsin 1, arcsin %, and 
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arcsin 142, or 19.47°, 9.59°, and 4.78°—all seemingly irregular, but actu- 

ally easy to set with precision and designed to maximize Galileo’s 

chances of recognizing simple numerical ratios, if any were to be 

found.®! 
These investigations of the paths of bodies in free fall after motion 

initiated by descent along inclined planes serve to illustrate the fruit- 
fulness to mathematical physics of the law of free fall. In the course of 
Galileo’s applying it, he hit upon a new idea for explaining the places 
and speeds of the planets in terms of the law of fall, outlined many 
years later in his famous Dialogue of 1632.” In a very different way, 
Johann Kepler®* had attempted to account for the planetary orbits in 
his first book, from which Galileo had taken the data that had led him 
to his discovery in 1601 that planetary distances from the sun could be 
related directly to orbital speeds in the Copernican system. One entry 
added in 1609 to an earlier diagram of concentric circles, representing 
planets with the sun at the center, cannot have been made before the 
writing of f.91, on which Galileo proved that times in fall from rest are 
measures of speeds acquired. Close similarity between the form of his 
discovery in 1601 and that of the law of fall then led Galileo to the 
“Platonic cosmogony” that he set forth near the beginning of his 1632 
Dialogue. There he speculated that all planets were created at a place 
beyond Saturn (then the outermost planet known), and moved toward 
the sun with uniformly accelerated motion until each had reached the 
speed at which God had ordained it to circle the sun forever. Planetary 

8 rears 
The first two angles and rolls were such as to produce a speed of projection 
and its double. For the third, that would have required an impracticably 
long plane; Galileo used half that length, and even that required him to 
make a second plane about 20 feet long. 

2 Dialogue, p. 29. 

*° See the Epilogue for more on “Kepler’s problem,” as this may be called. 
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deflection from straight accelerated to uniform circular motion was by 
special act of the divine will, in Galileo’s scheme. 

This speculation is wrong, but not randomly so; it is wrong by a 
factor of 2, so to speak.™ Newton, asked about it, replied that for the 

sun to hold the planets in orbit in such a case, its gravitational power 
would have to be doubled at the instant of deflection into circular 
motion. Galileo certainly had no idea whatever of universal gravita- 
tion, and in the Dialogue he denied that he, or anyone, knew what held 

planets in orbit.® Yet it is interesting that his mathematics of ratios and 
proportionality, applied to physical concepts such as distance, speed, 
and time, led him to a speculation that is not entirely unrelated to facts 
undiscovered until long after his death. 

It is noteworthy that Galileo put the times-squared law of distances 
in spontaneous natural descent to use, applying it to previously un- 
solved problems of physics, and so did Cavalieri, independently, arriv- 
ing at one of the same solutions. During a whole decade following its 
publication in 1638 by Galileo and also by a friend and correspondent 
of his, nearly all professors of natural philosophy rejected it on meta- 
physical grounds of the kinds summarized in the next chapter. The 
two views of science, one as something useful to mankind and the 

other as only a branch of philosophy, still live on in wordy disputes 
today. 

84 Because Galileo worked entirely with ratios, the factor of 2 in both terms 
would simply have cancelled out. Those who scorn his “Platonic cosmog- 
ony” as unscientific do not take into account the mathematics he employed 
when they resort to algebraic equations. What those prove is that the 
scheme was wrong, not unscientific. Most scientific theories started out in 
incorrect forms. 

*° Dialogue, p. 234. 
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Reception of the Law, 1632-49 

Galileo first publicly announced his law of fall in 1632, using it in his 
Dialogue for calculating time of fall from the moon to the earth. Only a 
“probable argument” in support of one consequence® of the law was 
offered in 1632. Not until 1638, in his Two New Sciences, was the law 

derived from the definition of uniformly accelerated motion as motion 
in which equal increments of speed are acquired in equal intervals of 
time. It is highly probable that Galileo was still unable to formulate a 
rigorous proof of the law from that definition alone until shortly before 
his last book went to press, as one scholium”® in it appears to allude to 
a proof resembling the “probable argument” set forth in the earlier 
Dialogue, not used in the printed text of 1638. 

The occasion for stating the law of fall in the Dialogue was an absurd 
calculation by the Jesuit Christopher Scheiner® of the time it would 
take a cannonball to fall to earth from the moon;. Assuming the fall to 

°° The double-distance rule for uniform motion following uniformly acceler- 
ated motion from rest, which Heytesbury had deduced in the 14th century. 
See Galileo, Dialogue (tr. S. Drake, Berkeley 1953), pp. 227-30. 

*” To Proposition 23; see Galileo, Two New Sciences (tr. S. Drake, 2d. ed., To- 
ronto 1989), p. 196. When this scholium was written, proof of Proposition 1 
probably still depended on an appeal to areas. In its final form (pp. 165-6) 
the appeal is to one-to-one correspondence of lines and congruence of tri- 
angles which contain them. 

88 At the time Scheiner published his statement he was not unfriendly toward 
Galileo, but by the time of the Dialogue he had become a vindictive enemy 

over priority in the discovery of sunspots. 
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be straight to earth at 12,600 German miles per hour, taken as the 

orbital speed, Scheiner put the time at more than six days. On the 

author’s assumptions, Galileo noted, the time should be less than four 

hours, the radius of orbit being less than one-sixth of the circumference 
described in 24 hours, making his claim wrong by a factor of 36. Fora 
correct calculation, Galileo’s spokesman said: 

First of all, it is necessary to reflect that the motion of descending bodies 
is not uniform, but that starting from rest they are continually acceler- 
ated... But this general knowledge is of no value unless one knows the 
ratio according to which the increase takes place... 

The odd-number rule of distances was next stated, and then the law 

of fall: 

...In sum, this is the same as to say that the spaces passed over by the 
body starting from rest have to each other the ratio of the squares of the 
times in which those spaces were traversed. Or we may say that the 
spaces passed over are to each other as the squares of the times. i 

This statement of the law went unnoticed among the hostile critics 
of the Dialogue,” perhaps because it did not explicitly mention the 
proportionality of speeds in fall directly to times, which might have 
aroused some adherent of Albert of Saxony, or a follower of Varro, to 

object. Friendly critics, however, noted that in preparing to make his 
own calculation, Galileo wrote: 

...let us suppose we want to make the computations for an iron [can- 
non]ball of 100 pounds which in repeated experiments falls from a height 
of 100 braccia in 5 seconds... 

ay Dialogue, pp. 221-2. 

* Pierre Fermat was anything but a hostile critic, praising the book highly 
when he sent it to Pierre Carcavy. But Fermat thought he had proved the 
law to be false. After Galileo’s derivation of it in Two New Sciences appeared 
nue became the subject of heated debates, Fermat supported the law; see 
elow. 
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Clearly, round figures were taken here in order to make the ensuing 
calculation simple, and easy for readers to follow. But Marin Mersenne 
took this to be an assertion of fact. After he verified the length of the 
Florentine braccio, he felt certain that Galileo had never carried out 
careful experiments. From Genoa, G. B. Baliani wrote to Galileo asking 
how he had arrived at his figures, which did not conform with 
Baliani’s findings. And long afterward, in 1665-6, Newton took the 

above passage as describing actual results, although it is obvious that 

neither Galileo, nor anyone else, had made repeated experiments with 
a 100-pound cannonball (if there was such a thing) from a height of 
nearly 200 feet.”! 

Baliani, who had been in correspondence with Galileo since 1614 
and visited him at Florence in 1615, was in 1611 in charge of the arse- 
nal at Savona, where he had first made experiments relating to the fall 
of heavy bodies. It was doubtless in 1615 that Galileo gave him the 
information of which Baliani wrote to Benedetto Castelli in 1627:” 

...Composing the treatise on solids of which I have spoken, it happened 
that, without seeking this, I found (as it appears to me) well proved ina 
very surprising way a proposition that Signor Galileo had told me to be 
true without his adducing to me the demonstration; and this is that in 
natural motion, bodies go increasing the speeds in the proportion of 1, 3, 
5, 7, etc., indefinitely; however, he adduced to me a probable reason, that 

only in this proportion greater, or lesser, spaces preserve always the same 
proportion. I do not explain further because I know I am speaking with 
one who understands... 

*! Tt is a commentary on the state of the literature in 1665 that Newton did not 
have access to authentic experimental measurements of acceleration in fall, 
three decades after the law became known. Galileo eventually replied to 
Baliani that for the purpose of showing the enormous error of his oppo- 
nent, it made no difference what numbers were used in this calculation. 

* Antonio Favaro, ed., Opere di Galileo... (Florence, 1935) vol. 13, p. 248. 
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The treatise on solids to which Baliani alluded was the book on 

motions of heavy bodies he published in 1638, deriving the law of fall 

from the pendulum law, which he postulated from actual measure- 

ments. He sent a copy to Galileo,” who had become blind and could 
not study the diagrams accompanying Baliani’s theorems. Thanking 

Baliani for the book, Galileo remarked that in his own book he had 
reasoned ex suppositione, in the style of Archimedes. He had then of- 
fered experimental evidence that his definition of uniform acceleration 
agreed with natural phenomena, and in that agreement, Galileo told 

Baliani, he counted himself fortunate. In the same letter he explained 
why he had used arbitrary data in the Dialogue,* and how a correct 
determination could be made by using a very long pendulum and 

counting its oscillations during two successive crossings of the merid- 
ian by a fixed star. 

It is noteworthy that when the times-squared law of fall was even- 
tually found and proved in the 17th century, the independent experi- 
ments of Galileo and Baliani that led to it had led also to the law of the 
pendulum. That law was of interest to musicians; it appears to have 
been first discussed among them in the 1630’s, when quite possibly it 
had been independently discovered by Marin Mersenne in France or 
G. B. Doni in Italy, and perhaps both. But pendulums had played no 
part in any theory of fall before the 17th century, and seemed not to 
interest the natural philosophers who opposed the law of fall in the 
years following 1638. 

The best-known supporters of the fall law were Mersenne and 
Pierre Gassendi, both at Paris. Its two most vigorous opponents were 
also French—Pierre Cazré and Honoré Fabri.” Cazré cited impact ex- 

* G.B. Baliani, De motu naturali gravium solidorum (Genoa, 1638). Baliani was 
unaware that Two New Sciences had been published, and though some cop- 
ies had reached Rome, Galileo had only a proof copy sent to him for prepa- 
ration of errata. 

* Galileo’s troubles with the Roman inquisition over that book had caused 
him to neglect replying to Baliani’s earlier inquiry. The letter is translated 
in my Galileo at Work (Chicago 1978), pp. 399-401. 

*° Whether Baliani should be called an opponent of the law is a complicated 
question. In 1638 he offered his own proof in its support, but in 1646 he 
Proposed a different law, with an analysis very similar to that of Fabri in 
the same year. 
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periments in support of a quite different law of fall, while Fabri con- 
ceded that Galileo’s experiments implied the times-squared law and 
simply denied that measurements of any kind, however precise, could 
reveal the philosophically true laws of nature—for fall or anything 
else. Curiously enough, the only mathematician outside Italy who 
thoroughly understood Galileo’s derivation of the times-squared law 
was also French. This was Jacques-Alexandre Le Tenneur, who vindi- 
cated Galileo’s law in 1649, writing at Mersenne’s request after Fabri’s 

publication. Like his contemporary, the celebrated mathematician 
Pierre Fermat, Le Tenneur was a lawyer and counsellor to a provincial 
parliament. 

Mersenne, an outstanding authority on musical history and theory, 
was an ingenious and careful experimentalist in physics whose corre- 
spondence with scientists and philosophers of the 17th century is the 
source of much information about the law of fall. In particular, the 

thought of René Descartes on this subject is known only from his 
letters to Mersenne. Descartes’ interest in the law of fall began with a 
question addressed to him by Isaac Beeckman in 1618. Beeckman’s 
own answer to this, not the same as that of Descartes, was entered in 
his journal for that year. It is of interest as reflecting a physical ap- 
proach similar to that of Albert of Saxony (as I understand that) when 
he mathematicized impetus theory in the 14th century, except that 
attraction by the earth now took the place of impetus. Beeckman 
wrote:”° 

...With this agreed, things are thus moved downward toward the center 
of the earth [through] empty space. In the first moment, as much space is 
traversed as possible by attraction of the earth. With this motion continu- 
ing, in the second moment a new motion is added by attraction, so that 

double the space is run through in this second moment. In the third 
moment the doubled space remains and to it is added a third by attrac- 
tion of the earth, so that in [this] one moment a space triple the first space 
is run through... 

In Beeckman’s mathematization, this separation of numbered mo- 
ments was then abandoned, and continuous uniformly accelerated 

motion emerged—if we allow the kind of reasoning by which one 
could also prove that the diagonal of a square equals the sum of two 

*6 In his journal for late 1618; this and later passages are from Clagett, pp. 
417-18. 
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sides of it. In the opening lecture of a course in calculus it is not 

unusual to offer this startling proposition initially, drawing a right 

triangle whose hypotenuse is not a line but a series of small steps. 

Students are then invited to consider the steps more numerous, and 

smaller, until they become too small to imagine, and are asked 

whether they could then safely treat the result as a line. In Beeckman’s 

diagram, ADE and ACB were equal right triangles, so placed that 

A [E] B was the diagonal of a square whose side was double AD. His 
proposition was: 

...Since these moments are individua, we have a space such as ADE 
through which a thing falls in one hour. The space through which it falls 
in two hours doubles the time-ratio [i-e., is to the space fallen in the first 
hour as the square of the time-ratio]; that is, the ratio of ADE to ACB is the 

square of the ratio of AD to AC. 

The argument proceeded by dividing each square into smaller 
squares and noting that those may be again divided interminably. No 
appeal whatever was made to the rigorous Euclidean theory of pro- 
portionality for mathematically continuous magnitudes. The 

vanishingly small areas were simply regarded as points, in this reason- 
ing, which was not essentially different from that used by GP. de 
Roberval in his treatise on indivisibles”” two decades later. 

Beeckman reasoned only about motions, and though he spoke of 
attraction toward the earth, he did not introduce the idea of any force. 

His account of fall was purely kinematic—and although the validity of 
his mathematical argument is dubious, he thus arrived at the times- 

squared relationship. Descartes understood his question differently 
and dealt it as a problem in which force was to be considered. He 
reasoned as if a whole square could not be ignored just because its area 
is small, though it would be all right to disregard half of it. His dy- 
namic solution was not the times-squared law. Nevertheless, after 
reading Two New Sciences twenty years later, Descartes wrote to 
Mersenne that he had once arrived at the same conclusion as Galileo, 

*” It was this that induced Newton to remark that the hypothesis of indivisi- 
bles seems a trifle harsh. Roberval’s use of the word “indivisibles” was 
rooted in medieval denunciations of them, in turn traceable to the pseudo- 
Aristotelian On atomic lines. In 1635 Bonaventura Cavalieri used the same 
word very differently, to denote elements having one less dimension than 
the magnitude treated as containing them. 
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but then came to see that there is no unique law of fall. Every body 
falls in the way best suited to its material essence, which could be 
learned only by studying the Cartesian principles of philosophy. It 
might happen that something fell according to Galileo’s law, but that 
was not usually the case in Descartes’ mature opinion. 

In 1639 Mersenne published in French an abridged paraphrase of 
Two New Sciences. Though he approved Galileo’s law of fall, he added 
that he saw no reason for rejecting proportionality of speeds in fall to 
distances fallen. Mersenne’s prowess as an experimentalist was not 
matched by mathematical perceptivity. In 1645, at Paris, a book was 
published by Pierre Cazré, S.J., which bore the scornfully anti-Galilean 
title: 

Demonstrative Physics, in which are determined the ratio, measure, 

mode, and power of acceleration of motion in natural descent of heavy 

bodies, against the pseudo-science of the same motion recently thought 
up by Galileo Galilei, Florentine philosopher and mathematician. 

Pierre Gassendi, after corresponding with the Jesuit father, replied 
publicly in defense of Galileo in 1646, also at Paris, with a book enti- 

tled: 

On the proportion in which falling heavy bodies are accelerated. Three 
letters. In reply to as many letters by the reverend father Pierre Cazré, S.J. 

One principal point at issue among natural philosophers and math- 
ematicians during 1638-49 was to be Galileo’s assertion, in Two New 
Sciences, that it was as false and impossible for uniform acceleration to 
be proportional to distances fallen (or to be fallen) from rest, as it is for 

instantaneous motion to occur. That statement, which had been at least 
implicitly questioned by Mersenne, was frequently challenged in the 
1640s. It continues to be branded as false by some. A number of mod- 
ern critics of Galileo, beginning with Ernst Mach, have made a point of 
refuting it by appealing to a simple differential equation.”® Galileo's 
statement had been made in reply to this assertion by Sagredo:” 

That the falling heavy body acquires force in going, the speed increasing 

8 Of course it is possible to differentiate with respect to distance instead of 
time. The result is an exponential equation in which the body cannot start 
from rest, a concept satisfactory to mathematicians but a trifle harsh for 

physicists. 

”” Two New Sciences, p. 160. 
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in the ratio of the space, while the momentum of any given percussent is 

double when it comes from double height, appear to me as propositions 

to be granted without repugnance or controversy. 

To which Salviati replied, in part, as follows: 

And yet they are as false and impossible as that motion should be made 
instantaneously, and here is a very clear proof of it. When speeds have 
the same ratio as the spaces passed or to be passed, those spaces come to 
be passed in equal times; if therefore the speeds with which the falling 
body passed the space of four braccia were the doubles of the speeds with 
which it passed the first two braccia, as one space is double the other 
space, then the times of those passages are equal; but for the same mov- 

able body to pass the four braccia and the two in the same time cannot 
take place except in instantaneous motion. 

There was more to the reply, but this completed his “clear proof.” 
Cazré’s opposition related chiefly to the ensuing part, concerning the 
force of impact. Gassendi replied at great length, exposing many falla- 
cies in Cazré’s alternative law of fall, which in effect made speeds 

through successive equal distances increase as successive integral 
powers of 2. Cazré’s impact experiments, interpreted to refute 
Galileo’s law of fall, made his theory a dynamic one. 

About a year before he discovered the law of fall, Galileo had car- 

ried out equivalent experiments. Later, misled by their results,! he 

attempted to derive the times-squared law of fall from the “effects of 
machines that work by striking,” which led to his famous letter to 

Paolo Sarpi of 16 October 1604. But the matter of present interest is 
reception of the times-squared law after its proof, not the evolution of 
that proof.’ 

Salviati’s reply to Sagredo was explicitly called a clear proof of the 
falsity and impossibility of two propositions, and that is what it was. 

He took the impact effect as a measure of speed, whereas in fact that 
depends on the square of the speed acquired in fall. From 1608 on he 
avoided this mistake, into which Cazré fell later. 

"' The relation of Galileo’s first attempted derivation of the law of fall, written 
for Sarpi, to the definition of “speed” at which he arrived in 1608, was 
discussed in my “Galileo’s discovery of the law of free fall,” Scientific Amer- 
ican (June 1973), pp. 84-92. At that time I believed the discovery to have 
involved a bit of good luck. 
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Yet even the peerless mathematician Fermat did not recognize it as 
having proved anything. Writing to Gassendi in 1646, Fermat said that 
doubtless Galileo had had a proof, but did not set it forth. Rather than 
wasting valuable time in long replies to Jesuit opponents, he said, the 
task was to supply a proper mathematical proof for Galileo. This 
Fermat proceeded to do, in classical Archimedean style, and his proof 
took a half-dozen pages.’ There is no getting around Fermat's argu- 
ment in support of Galileo’s position, and there is also no way of 
substantially shortening that argument that I can find. But neither was 
there anything wrong with Galileo’s “very clear proof” in 1638, which 
took only one sentence. Fermat simply did not recognize it to be a 
mathematical proof because it assumed a principle banned from classi- 
cal Greek mathematics by the final axiom in Euclid’s Elements, Book 
1—“The whole is greater than the part.” 

That axiom excluded the infinite from Euclidean mathematics, per- 
haps because Greek philosophers had got themselves into a host of 
paradoxes by attempting to deal with it. Galileo introduced the infinite 
into Renaissance mathematics in the First Day of Two New Sciences by 
applying the concept of one-to-one correspondence between members 
of two infinite sets to the positive integers and their squares.’ In the 
Third Day that same concept, applied to geometry, gave him his basis 
for deriving the law of fall. In 1646 Baliani published the second edi- 
tion of his 1638 book on the motions of heavy bodies and of fluids, 
with an added section asserting that the odd-number rule of spaces in 
equal successive times during fall was not exactly true. In that new 
section, Baliani’s original kinematic account of fall remained as before, 
but the new section gave a dynamic account, related to medieval im- 
petus theory but offering a mathematical analysis differing completely 
from that of Albert of Saxony. Baliani now declared that the times- 
squared law was only an approximation to the truth. 

The year 1646 saw not only Gassendi’s reply to Cazré and Baliani’s 

102 Oeuvres de Pierre Fermat, vol. III (Paris, 1896). 

1 See pp. 40-44 in the translation cited earlier. The discussion was preceded 
and followed by geometrical and material examples. 
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shift from a kinematic to a dynamic theory, but a third book, Fabri’s 

detailed treatment of impetus theory in opposition to Galileo, pub- 

lished at Lyons by his pupil Mousnier.'* The last- named book gave 

occasion to Mersenne, whose specialty was not mathematical analysis, 

to invite Le Tenneur’s comments, resulting in the first (and for a long 

time the only) book!” whose author clearly understood the principle 

of one-to-one correspondence and saw its role in Galileo’s one-sen- 

tence argument in refutation of the hypothesis of proportionality of 
speeds to distances in fall from rest. One paragraph from Le Tenneur’s 
book cannot do it justice, but will show how briefly the proportionality 
of speeds in fall to distances fallen could be refuted mathematically: 

If possible let the heavy body fall through two equal spaces AB and BC so 
that the speed at C has become double that which it had at B. Certainly, 

under the hypothesis, there is no point in the line AC at which the speed 
is not double that at the [unique] homologous point in line AB... There- 
fore the speed through all AC was double the speed through all AB, just 
as the space AC is double the space AB; therefore AC and AB are tra- 
versed in equal time. 

This, of course, comes down to saying with Galileo that the hypoth- 
esis is as false and impossible as is instantaneous motion. For speeds to 
be as distances fallen, some discontinuity must exist in motion from 
rest. A body cannot fall through distances d and 2d in the same time in 
continuously accelerated motion, in the mathematical sense of “contin- 
uous.” 

The impetus-theory of fall by quantum-jumps, from rest to a uni- 
form speed and from that to the next, entailed an infinitude of dis- 
continuities in speed. That had not disturbed Buridan or Albert of 
Saxony, who regarded motion as a successive process and treated ac- 
celerated motion as proceeding by a succession of new speeds.’ The 
mathematics of continuity was not yet accessible at their time because 

™ Tractatus physicus de motu locali (Lyons, 1646). 

ee J.A. Le Tenneur, De motu naturaliter accelerato (Paris, 1649). 

ee Discontinuity occurred at the end of each part of the motion, in Albert’s 
analysis as in, Buridan’s description. Only the “first” motion from rest was 
free of impetus. The initial discontinuity at its end being allowed, all the 
others followed logically and causal explanation was complete for any 
number of parts taken. 
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of the medieval corruption of Euclid, Book V. 

Even after Galileo applied the mathematics of continuity to acceler- 
ation in fall, discontinuity did not bother Fabri, perhaps because the 

propriety of regarding very small things as simply non-existent—valu- 
able in philosophy, but hazardous in strict mathematics—went un- 

questioned among natural philosophers who demanded causes above 
all else in scientific reasoning. 

Like modern quantum theory, the impetus theory of fall entailed an 
indeterminacy, Each uniform speed, however brief, corresponded with 
neither a unique point in space nor a unique instant of time. Natural 
philosophers did not see indeterminacy as an unsatisfactory element 
in causal accounts of phenomena. Indeterminacy had been given a 
name in the Middle Ages—“the latitude of forms’”’—which thereby 
became an entity deserving analysis, in the scholastic tradition of ter- 
minological debates. 

What is surprising, in the 17th-century rebirth of impetus theory to 
combat the times-squared law, is not merely the revival of discontinu- 
ity and indeterminacy in physics, but also the clear inability of even 
some mathematicians, as natural philosophers, to recognize lacunae in 
their own reasoning after the rationale of continuity had been reintro- 
duced by restoring Euclid, Book V. Fabri, who has to his credit some 

valuable contributions to the beginnings of modern mathematical 
physics, is an example of this surprising loyalty to traditional physics. 

Fabri wrote, “A body falling freely will go faster in the vertical than 
it will along an inclined plane. Therefore it must start faster. Hence 
there must be some speeds along the plane that are not present in 
straight fall.” Galileo had said that in order to reach any speed from 
rest, a body must pass through every lesser speed. To postulate actual 
infinitude of speeds was an inadmissible assumption for Fabri, who 
remained oblivious to the infinitude of speeds by which motion along 
an inclined plane must exceed the number of speeds existing in free 
fall, however great that number might be. Aristotle’s rejection of any 
actual infinite in nature did not forbid incommensurable magnitudes 
in mathematics, and as a mathematician Fabri, had he tried counting 

speeds along the diagonal, and down the side, of a square, could not 
fail to see that no unit could measure both the quantities. 

In the following theorem, proof, and commentary, Fabri seems 

aware of this, but unwilling to accept the mathematical solution. He 

evaded it by a metaphysical subterfuge: 

Theorem 61. Naturally accelerated motion is not propagated through 
every degree of slowness. 

Since there are as many of these degrees of propagation as there are 
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instants through which the motion endures, because new impetus is 

made in single instants (as shown in our Metaphysics), then if infinite 

instants were permitted, the propagation would not be through every 

degree of slowness that this series of degrees did not include. ”” For [a 

body] clearly begins to move more slowly on an inclined plane than 
straight down in a free medium, and in a dense medium as against a rare 
one (that is, more slowly in water than in air.) Therefore that degree of 
slowness with which it begins to move on a slightly inclined plane is not 
contained among those with which it moves straight down. 

Fabri’s commentary went on to challenge Galileo directly: 

By what is said here, Galileo is rejected on two counts. First, it is in vain 
that he assumes infinite instants without necessity, and second, the ratio 
he gives is not convincing. Indeed, he calls rest “infinite slowness” from 
which the movable [thing] then recedes—and no doubt his motion would 
then proceed to be propagated through all degrees of slowness. But 
against him: first, rest is not in fact slowness, as it cannot have motion. 

Second, fast motion ensues immediately from rest as also from slow mo- 
tion. Third, motion does begin, and therefore with something, so the ini- 

tial motion is not infinitely removed from rest. 

Le Tenneur observed that this was nothing more than a debate 
about terminology. The final sentence above shows that Fabri con- 
ducted it as terminologists usually proceed, since he might equally 
validly have concluded above “...is not somehow just a kind of rest,” 
which was all that Galileo had meant. Fabri’s metaphysical concern 
with words, not with physical events in the sensible world, was still 
more clearly shown a bit later: 

There is a most certain rule that no philosopher denies: When some 
experiment is such that two contrary hypotheses can stand with it, neu- 
trality can surely be deduced. Therefore Galileo cannot properly deduce 
his hypothesis from the experiments propounded, as I shall clearly 
show. 

7 One might ask how any degree could be excluded when infinite instants 
were permitted with which to associate such degrees. Fabri simply refused 
to acknowledge that there is no difficulty for those who do permit infinite 
instants. 

It is not clear here whether the hypothesis meant is the law of fall, or the 
definition of uniform acceleration. Strictly speaking, nothing can be deduced 
from experiments, despite the wish of Newton to deduce causes from the 
phenomena. Much can be discovered from experiments, but hitting on 
something is not deducing it. Deduction is verbal, and experiments are not. 
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When it is said that the second distance is triple the first, assuming equal 
times, this is not geometrically certain and accurate... For every physical 
experiment must be subject to the senses, and no matter who says that, 

however often observed, at many places and times, it is the same..., yet 
since the distances are small and insensible (as are the differences) in 
greater, less, or equal times, spaces nearly equal to triple may be 
[mis]taken for triple... I ask Galileo if he or anyone else can say whether 

one space is triple another and, if anyone says it is off by aw whether 

the experiment is convincing? 

Galileo had answered this verbal gambit in Two New Sciences: 

Aristotle says a hundred-pound iron ball falling one hundred braccia hits 
the ground before one of one pound has fallen one braccio. I say they 
arrive at the same time. You find on making the experiment that the 
larger beats the smaller by two inches... And now you would hide be- 
hind those two inches Aristotle’s 99 braccia, and speaking only of my tiny 
error, remain silent about his enormous one. 

Not just fall, but the purpose of science was at stake, as well as its 
method of pursuit, once the times-squared law had been mathemati- 
cally and experimentally established. 

10° Two New Sciences, p. 68. 
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Epilogue 

Kepler’s Problem and Galilean 
Units 

The units devised by Galileo in the course of his discovery of the 
pendulum law and the law of fall were never used for any other pur- 
pose. They were not published, nor did such units occur to others, 
though they are singularly appropriate for the study of purely gravita- 
tional motions of any kind. Why that is so will be clear when we 
review the manner in which Galileo came to adopt them early in 1604; 
that will be done briefly at a later place in this Epilogue. 

It may seem that no choice of units of length and time can be intrin- 
sically superior for the study of gravitational motions, because all 
units of measure appear to be arbitrary, and any set can be related to 
any other. At present, two different measures of length are widely 
used in science—the British foot and the metric meter. However, the 

unit of time remains the same in both systems, this being the astro- 
nomical second. 

In the British system of measurement, the acceleration due to grav- 
ity at the earth’s surface is about 32 feet per second per second; in 
metric units, that is about 9.8 meters per second per second. There is 
no difficulty in converting any data from one system into the other. In 
practice, it might be troublesome to interpret a result in other terms if 
the units of both length and time were different, but in principle that 
does not alter the situation. Distance and time are dimensionally in- 
commensurable, in the ordinary meanings of the words. Hence it is 
natural to suppose that no set of measures could have a real advantage 
over those in widespread use (or any others), but only an advantage in 
the recording of measures and the making of calculations. A mile, or 

an Angstrom unit, would be inconvenient to use for lengths in daily 
use, or a time-unit of one year or one millisecond; but only because 
large order-of-magnitude factors would be often necessary that could 

easily have been avoided. 
The fact that both systems use the astronomical second does not 

imply a time-unit any less arbitrary than our units of length. Both the 
foot and the meter are entirely arbitrary, being merely distances be- 
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tween two marks made on standard bars of some durable material, 

decreed by a government to serve as a legal definition. The second is 

no less arbitrary, for it is ae of of the time of axial rotation of the 
l 

24 ~~ 3600 

earth. Those fractions originated in ancient Babylonian astrological tra- 

dition, not in any serious scientific analysis of the measurement of 

time. 
Yet there are indeed pairs of measures, for length and time, having a 

real advantage over all others for the investigation of gravitational 
phenomena. The creation of one such pair of units was reconstructed 
in Chapter 5. Galileo named his units the punto and the tempo, and his 
determinations of them by measurements of some terrestrial gravita- 
tional phenomena were remarkably accurate. His punto of 0.94 mm, if 
my calculations are correct, was nearly A = 0.9422119204 mm, and his 

1 

91.88024982 °° 
ond. Calculations using 4 and t make the acceleration due to gravita- 

tion md (=g us : 
Zien a 

The “Galilean units” will be called G.U. Unlike the common foot- 
and-second, or meter-and-second, A-and-t of G.U. link time automati- 

cally with distance in all purely gravitational motions. 
The square of the time in T of fall through a distance in A is numeri- 

cally the same as the length in A of the pendulum timing fall through 
double that distance. No such numerical identity of measures relating 
the times and distances of any two distinct and different gravitational 
motions exists in arbitrary sets of units. It is a real advantage to link 
time with distance in the study of planetary motions (for example) 
merely by adopting suitable units. 

Motions of planets are purely gravitational in character, and yet not 
every problem that has been proposed concerning them has yet been 
solved. Kepler’s problem—to find the rationale of the places occupied 
by planets—has had a very checkered history and is still pursued by 
those who believe that something more than chance must be involved. 

In Kepler’s day, Saturn was the most distant planet known to exist, 

and he arrived at a theory under which there could not be any more 
planets beyond Saturn. In 1596 he asserted all planets to move in 
spheres that were circumscribed around the five regular solids, cen- 
tered at the sun in a certain ordering, each of those geometrical forms 
being used only once. In antiquity, Euclid had proved that exactly five 
regular solids exist, so Kepler held the number of planets to be forever 
limited to six. He had discovered that orbital radii fitting Mercury, 

tempo = = astronomical second was very nearly Tt = 
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Venus, Earth, Mars, Jupiter, and Saturn were nearly proportional to the 
radii of the spheres circumscribing the “Platonic solids", when those 
were placed in a certain order with the sun at the center of all the 
spheres. But planets beyond Saturn have been found, so Kepler’s “dis- 

covery” was no more than coincidentally almost true for the first six 
planets. 

Two decades later, in 1619, Kepler made a genuine discovery about 
the planets—that the cubes of their orbital radii are as the squares of 
their periods of revolution. That law became the cornerstone of celes- 
tial dynamics after Newton linked it to his law of universal gravitation 
in 1687. The “third law’ threw no light upon Kepler’s problem, 
however; rather, this weakened its status as a serious problem, because 

the law would hold no matter how many planets there were, or what 
their distances from the Sun might be. 

Although Galileo appears to have made no use whatever of this 
planetary law, he had found another one from Kepler’s first book, 
which was concerned primarily with the above problem." By using 
planetary data calculated by Kepler, Galileo found the speeds of planets 
to be inversely as the square roots of their orbital radii, in 1601.' In 
1608 or 1609 he linked this with the law of falling bodies he had dis- 
covered in 1604. From that, he conjectured that all the planets had been 

ue Kepler’s first and second laws, in 1609, stated that planetary orbits are not 
circular but elliptical, and that the Sun is fixed at a focus of each ellipse. 

"1 Johann Kepler, Prodromus dissertationum cosmographicum...(Tubingen, 1596). 
I translate the full title as “Prologue to cosmographical theses containing 

the world-structure mystery of the remarkable proportions of the celestial 

orbs, and the true and essential reasons for the number of skies, their sizes, 

and their periodic motions, demonstrated from the five regular geometric 

solids.” There is an English translation of the second edition (of 1621) by 
A.M. Duncan (Alberis Books, N.Y., 1981). 

2 Though this follows from Kepler’s three planetary laws, he did not deduce 
and state it, at any rate in the above form. 
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created at some place far beyond Saturn, and had reached their speeds 

by falling in uniform acceleration’? toward the Sun, God having 

turned each to circular motion when it reached its destined speed. 

Newton later remarked that God would also have had to double the 

gravitational power of the sun at the moment each circular motion 

began, to hold that planet in orbit, as mentioned earlier. 

Beyond Kepler’s first speculation about “Platonic solids,” no rule 
was advanced during the 17th century to link the observed distances 
of the planets from the sun with one another, except Galileo’s notion 
about speeds of fall from some remote place at which all the planets 
could be supposed to have been created. He described it in his Dia- 
logue as a way to flesh out a sketchy idea about the origin of the world 
found in Plato’s Timaeus.'™ 

In 1772 an amateur of science named J.D. Titius proposed an empiri- 
cal rule, usually known as Bode’s law''® because the German astrono- 
mer, Johann Bode, publicized and advocated it. As it was originally 
expressed, Bode’s law had the form: 

the orbital radius of planet n is 3x2" + 4, 

where n is the number of the planet out from the Sun. Earth, as num- 
ber 3, thus had orbital radius 10; Venus had orbital radius 7, and (by a 

special exception) Mercury had orbital radius 4, (as if n jumped to 
minus infinity.) The unit implied was A-UAj0, A.U. standing for the 
modern astronomical unit with the Sun-Earth distance = 1. 

Bode’s rule had the kind of simplicity desirable in a law of nature, 
and it appealed to numerologists because it used only the numbers up 
to 4—credited with mystical properties ever since Pythagoras in re- 
mote Greek antiquity. Now, when Bode’s law first appeared, Saturn 
was still the outermost planet known. In 1781, however, Sir William 

Herschel discovered a seventh planet, and its distance was found to fit 

113 
Cf. my Galileo at Work, pp. 64-5, 154-7. 

™ Of course Plato knew nothing of uniformly accelerated motion. He said 
that after eons of wandering in chaos, the world-bodies were put in order 
by the demiurge, and Galileo suggested a means of that ordering. 

a: For the complete story see M.M. Nieto, The Titius-Bode Law of Planetary 
Distances (Oxford, Pergamon Press, 1972). 
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the next place after Saturn, n = 8 calculated according to Bode’s law. 

Next, in 1801, the missing “planet” following Mars, for n = 5, was 
supplied by the asteroid Ceres, discovered by G. Piazzi during sky- 
searches inspired by Bode’s law. Many asteroids in this region have 
since been found. 

Bode’s law thus seemed assured. Both John Couch Adams and 

Urbaine Leverrier assumed its truth when calculating the place of a 
hypothesized next planet, needed to account for perturbations of the 
motion of Uranus. Leverrier’s calculations were so accurate that Nep- 
tune was sighted in 1846, on the very first night that the astronomer 
J.G. Galle searched the region in the sky Leverrier had determined for 
the predicted planet beyond Uranus." 

For a time the success of Bode’s law appeared complete. But accu- 
rate measurements soon revealed that Neptune was not at the Bodeian 
place for n = 9, falling far short of that. In 1846 it happened that 
Neptune’s position was such that distance had been unimportant in 
the calculations. Bode’s law thus became merely a puzzle, of little 
interest to astronomers until 1930. Then Pluto was discovered, very 

nearly where Bode’s law would place the next planet after Uranus. 
That fact restored to Bode’s law its former status of astronomical curi- 
osity. It now has too many successes, with only a single failure, for 
those to be merely coincidental. Something more than met the eye 
might lie behind Bode’s law; for there is a limit to the number of lucky 
chances that most people regard as truly credible. 

Nevertheless, there are reasons for doubting that Bode’s rule can be 
a law of nature. Natural laws are open to discovery by any astronomer, 

no matter what his base of observation may be. If one planet alone, 
third from the Sun, moved at the crucial distance in the solar system, 
astronomers on Earth would have an advantage over all others in 

discovering the law of its structure, because the most reliable and the 
most convenient unit of distance for making precise measurements is 
the observer’s own distance from the Sun. 

Moreover, although the A.U. presently used is a unit firmly rooted 

"° Early in 1613 Neptune come into direct line with Jupiter, and Galileo noted 
it as a “fixed star” in his journal of observations 233 years before it was 

identified as a planet. See S. Drake and C. Kowal, “Galileo’s sighting of 
Neptune,” Scientific American December 1980. 
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in an actual planetary placement, the Bodeian factor of 10 is not essen- 

tial in any laws of nature. The number 10 is the base of the place-nota- 
tion we prefer, but 10 has not always been chosen. Ancient Babylonian 
astronomers, who created the science of stars, chose 60. If Bode’s law 

were truly a law of nature, it would have eluded detection even on 

Earth until 1585, when decimal fractions were first introduced. 

Such considerations may be useful in determining where we ought 
to search for whatever it is that lies behind Bode’s law—for though it is 
hard to doubt that something must lie behind it, it is equally hard to 
imagine what kind of thing. Except for the place of Earth, Bode’s law 
does not give any distance beyond two significant figures (and for 
Mars not even that, giving 1.6 A. U. instead of 1.5.) But out to Neptune 
it gives them all, including the radius of the asteroid belt, arranged in 
order by a function of successive integral powers of 2, without any 
unoccupied places. That is too much to dismiss as a parade of lucky 
coincidences. 

To throw light on these puzzles, the link between Bode’s 10 and 
G.U. will be shown. First, however, some of the basic data for the five 

planets out to Jupiter will be tabulated in m.U. (or Mercury units), 
putting the semimajor axis of that planet equal to 1 rather than to 
0.3870987—its place in A.U. based on Earth = 1, used in astronomical 

tables. Distances based on that of a unique planet, Mercury—the inner- 
most'!’—avoids fractional ratios of axes for successive planets out- 
ward from the Sun. 

Writing m for Mercury and M for Mars, the principal data are pres- 
ently measured as follows: 

117 ‘ , a 
It is not certain whether there is an outermost, and in the selection of units 
it is always advantageous to adopt a unique case if there is one. 
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Period in earth as Eccentricity of orbit | Rotations per period | 

ep tr 

Because ratios are entirely independent of the units chosen, they 
cannot favor observations made from a particular planet. The ratios in 
the first column are relevant to Kepler’s problem, and to Bode’s law. 
The first, V[/m] = 1.868595722, may look like a random assortment of 
digits, but it is far from being that.'!8 In the logarithms called “natural” 

(to the base e), Vin = 1+ = = 1.868588964 (= logio 10e), to six signifi- 

cant figures. Thus the Bodeian “unit” 10 puts in its appearance at once, 
in the first non-trivial distance-ratio, Vm—which remains numerically 

the same no matter what unit of distance is adopted. 
The last column is not usually regarded as containing data of any 

special interest, but will serve to make it clear that the Earth day, the 

unit in which time is measured, is really a ratio. Astronomers on other 
planets would use different measures of time from ours, since every 
planet rotates axially while it orbits the sun, and two stable measures 
of time suffice to establish a unit satisfactory for use in astronomical 
measurements. 

The distance of Mercury in m.U. is, of course, trivial. But in A.U. 

18 So is E/m = 2.583320461 far from being a random collection of digits; 10 In 
In (eE/m) = (E/m). It follows that its reciprocal, m/E = 0.3870987, is 
likewise non-random, and another independent illustration of this will be 
given presently. 
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Mercury’s semimajor axis is the reciprocal of E as above, making it 
0.3870987.'"° Now, suppose that instead of putting E = 1, as in A.U., or 

E = 10 as in Bode’s law, we were to put E = That will be done 

below. Italic initial letters will represent measures in G.U. units, while 
ordinary letters continue to mean measures in m.U. as in Table 1. One 
further assumption is seen at the head of Table 2, in order to put 
sidereal periods into units other than the arbitrary Earth day. 

In Column 3 we have the distances of planets from the Sun in 

Bode’s-law units. By putting E= the figures in the first column had 

to have the same ratios to E as those in Column 3 have to 10, while 

those in Column 4 have those same ratios to 1—which is how they 

were measured in the first place. 

- 
e210 Table 2: Putting E = an 

y’ RAE _ VeE 
Dre, 

1 2 3 | 
Orbital radius Sidereal period Circumference Radius in A.U. | 

(in 4 x 1074) (in t x 10°) of orbit 

m 0.616086716 0.6989085354 3.870987001 0.3870987 

V 1.151218156 1.785229369 7.233317001 0.7233310 

Jah 1.591549431 2.901931271 10.000000000 1 

M 2.425030301 5.457996351 15.23691476 1.5236915 

J 8.280519739 34.42206 52.20280400 5.2028040 

S 15.18152703 85.47300834 95.38834756 9.5388348 

U 30.52897772 243.7929396 191.8192243 19.1819224 
N 47 83839973 478.1858513 300.5775303 30.0577530 

i 62.76999504 718.7368677 394.3955106 39.4395511 

™ The autoroot of 7 is p, such that p® = 1; (x? + p*\/p*=10m/E_ to6 significant 
figures, at 3.870983. 
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Orbits are elliptical, as Kepler was the first to discover. When we 
take the orbits to be circles, with the semimajor axes as their radii, 

= ~ simply transforms the Bodeian planetary distances into orbital 

circumferences. That is a mathematical consequence of the reciprocal 
relation between m.U. and A.U., not a “cosmological mystery” of the 
kind Kepler attempted to penetrate in his first published book. But it is 

‘ een : 2 
not a merely mathematical consequence that the ratio =m and its recip- 

= are related to the ratio oe astronomically, and hence gravita- 

tionally, and thereby physically. Mathematics simply makes it easy to 
recognize astronomical relationships that would otherwise go unno- 
ticed. 

It alters the nature of puzzles about Bode’s law when we know that 
the unit of solar distance it implied for the planets has a real meaning, 
though not the meaning that Bode’s law derived from it. The number 
10 which Bode’s law gave to the Sun-Earth distance was a step in the 
right direction. The next move is to bring in 7; or rather, to put 7, 2, 

and V2 into our units and automatically link our measures of distances 
with measures of times through gravitational phenomena. But that is 
done by Galileo’s constant.!”° 

The symbol 10 is involved in point-shifts of one place either way,”! 
usually associated with a difference in order of magnitude. When 
working with astronomical magnitudes it is often necessary to move 

the point many places, symbolized by the use of 10°”. If we used 
binary arithmetic, that same symbol would be used to denote order of 

magnitude, but it would then mean 2°", which lies at the very heart of 
Bode’s law. 

Next, neglecting position of the point, in decimal notation the digits 
remain the same in V2, V200, etc. or in V20, V2000 etc.; but the digits in 

rocal 

12° Galileo’s constant is x over 2 times the square root of 2; its square is g, the 
universal acceleration due to gravitation in G.U. 

“1 In any place-system of numeration, that operation uses the symbol 10, but 
that symbol does not mean the number ten except in our decimal system. 
In binary notation, for example, 10 means the number two, and that num- 
ber appears in nearly all natural laws. 
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the two sets differ by the factor V10, or 10%. Since in gravitational 

phenomena, all distances are as the square roots of certain times, we 

would expect units automatically linking every distance with some 

time, when expressed in binary notation, to mingle together two 

things we regard as different in kind—the order of magnitude factor, 2, 

and the factor which can preserve digital integrity in sets of square 

roots after one-place point-shifts, which in binary notation is the 

square root of two. Kepler’s third law and Bode’s law may be related 

in a way concealed from us by our habit of taking the symbol 10 always 

to mean the number ten. The exponent 32 in Kepler’s law relating 

distance-ratios of planets to their sidereal period, when applied in G.U. 

is In Mn. 

There is nothing remarkable about Galileo’s having used 2 and V2 
in his discovery of the pendulum law, when we now look back at 
Chapter 5. He used doubling of lengths because that is easy to do with 
precision, and it did not lead immediately into impracticable lengths in 
experimental measurements. He used mean proportionals mathemati- 
cally equivalent to V2, because the rigorous Euclidean theory of ratio 
and proportion for mathematically continuous magnitudes—not just 
for numbers—suggested that to him. In retrospect, it ceases to be puz- 
zling that Galileo arrived at the unique constant of gravitation that is 
the same everywhere in the solar system, though that seemed the most 
puzzling fact revealed by his working papers when it was first noticed 
a few years ago. 

What is most noteworthy in Table 2 is that the distances in Column 
1, if we neglect orders of magnitude shown at the top, are almost 

2 
exactly in G.U., with m~=|7'| =0.6168502751... out to infinity. It 
was for that reason that V’ was assigned the value VE, relating G.U. 
directly with m.U. To show how those two sets of units may be physi- 
cally related requires a digression here into pendulums and fall. 

From the modern equations for distance fallen from rest, f, and for 
time of pendulum p to the vertical through a small arc, 

f=ghandt="x\y% 

it is easily deduced that when any fall from rest is timed by a pendu- 

lum-swing to the vertical, distance fallen is my the pendulum length; 
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and that when any length is specified, that pendulum takes 6 times 

as long to reach the vertical as a body takes to fall from the height 
equal to the length of the pendulum. It was, in fact, the latter measure- 
ments that gave to Galileo the pendulum law, a day or so before he 

discovered the law of fall from it. It is the ratio a= Vg =1.11072 that 

I called “Galileo’s constant,” of which the square, g, is the gravitational 

acceleration in G.U. 
Galileo’s punto and tempo entailed acceleration not quite g (= 1.2337), 

but close to that, as 1.228 punti/tempo*. He could not apply his units to 
planetary data, because at his time there were no measurements of 
celestial distances in conventional units such as miles. Only their ratios 
were measurable. That is not so today. Mercury, 57.9 million km from 

the Sun, has the “orbital radius” 0.616 x 104 punti. That is almost ex- 
actly the measure in G.U. shown for Mercury in A, in Table 2.'” 

Next, turning our attention to the unit of time, the sidereal period of 

Mercury is 87.969256 Earth days, or 0.69834x10? tempi, which is 
nearly m’ in the same table. It is accordingly clear why the name 
“Galilean units” is appropriate for measures of length and time that 

make g exactly g = ne and also why G.U. are of particular use for 

relating orbital radii and sidereal periods. 
It is a remarkable property of G.U. that in its measures, the square 

of any time of swing to the vertical through a small arc by a pendulum 
of length 1A is the length of pendulum timing fall from rest through 
distance 2 mA. Hence when purely gravitational phenomena (such as 
fall and the swing of a pendulum) are measured in G.U., lengths and 
times are no longer incommensurable in terms of physical science. Also, 
in calculations performed when data are in G.U., the time of fall at 
acceleration g through orbital radius r is Vr, the square root of that 
same radius when measured in m.U.—neglecting orders of magnitude. 
If we take those also into account, a point-shift of two places is re- 

quired in order to have 10’ (the square root of 10") apply to the peri- 

12 Unfortunately the mean distance in kilometers is reported only to 3 signifi- 
cant figures, so though we can put the punto at 0.94 mm, we need more 
information to make calculations beyond 3 places. 
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odic times. 
When we calculate the time for half-swing of the pendulum as long 

as is the semimajor axis of Earth in G.U., we find this to be almost the 

same as _ as shown in Table 2. Taking Venus’ period in Earth days, 

V’ = 224.700789, and dividing by 24 (hours per day) and 3,600 (seconds 
: 1 

per hour), we find t implied to be almost exactly Galileo’s tempo = 92 

of a second of time. 
It suffices here to have indicated the importance of 7 in the sky, and 

the fundamental roles of squaring and point-shifting in planetary rela- 
tions of the kind I call non-Keplerian.’”* 

There exists a convergent series of operations, by which any number 
greater than 1 will become F/m; it is the series: 

In, +1, In, 10, V, repeated. 

This converges to 2.583322768, which will remain unchanged. It is as if 
Efn = 2.583320481 were a gravitational maintenance of this relation, 
rendering stable the orbits of the first and third planets. Neglecting 
relative orders of magnitude, the square of the ratio /m is nearly G, the 

Newtonian constant of gravitation. 
The kind of relation sought by Kepler geometrically, and in Bode’s 

law arithmetically, in which each solar distance leads to the next, ap- 
pears to exist with respect to the first four planets only. It is 

y = (In In 10x”), in which x being Vin, y = Fm; and x being EW, e* = Mm. 

10m ree: 
Because Vin = 1 + =r to 6 significant figures, while oie mp to 

the same degree of accuracy, p (which is 1.854105969) being the au- 

toroot of m, such that p? = 1, the first four semimajor axes in A.U. can 
be obtained from 1, the number 2, exponential operations, squaring, 

and point-shifting. 

Kepler’s problem may have been a valid one after all, and the 
Galilean units may play an essential role in its solution. If so, the final 

chapter in the history of fall has not yet been written by scientists. 

™ For more information on such relations see my Galileo: Pioneer Scientist, 
University of Toronto Press (in press). 
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Two New Seiences 
Galileo Galilei 

This is the acclaimed translation by Stillman Drake of 
Discourses and Mathematical Demonstrations Concerning Two New 
Sciences Pertaining tc Mechanics and Local Motions. It is the work 
written by Galileo in the last years of his life, while under 
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