

Two New Sciences

Including Centers of Gravity and Force of Percussion

Second Edition

Translated, with a New Introduction and Notes, by

Stillman Drake

Also Including

History of Free Fall: Aristotle to Galileo

by Stillman Drake

Galileo Galilei

Two New Sciences

Including Centers of Gravity and Force of Percussion Second Edition

Translated, with a New Introduction and Notes, by Stillman Drake

and

Stillman Drake

History of Free Fall Aristotle to Galileo

With an Epilogue on π in the Sky

Wall & Emerson, Inc.
Toronto, Ontario • Dayton, Ohio

Two New Sciences:

Copyright © 1974 by The Regents of the University of Wisconsin System Copyright © 1989 by Stillman Drake

Originally published in 1638. This translation first published by The University of Wisconsin Press.

Illustrations in the Introduction reproduced with permission of the Biblioteca Nazionale Centrale of Florence. Photographed by Dr. Franca Saba-Principe of the Institute and Museum of History of Science, Florence.

History of Free Fall:

Copyright © 1989 by Stillman Drake

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photography, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Orders for this book or requests for permission to make copies of any part of this work should be sent to:

Wall & Emerson, Inc.
Six O'Connor Drive
Toronto, Ontario, Canada M4K 2K1

Telephone: (416) 467-8685 Fax: (416) 352-5368

E-mail: wall@wallbooks.com Web site: www.wallbooks.com

Cover Design: Alexander Wall

Canadian Cataloguing in Publication Data

Galilei, Galileo, 1564-1642

Two new sciences, including centers of gravity and force of percussion, 2nd ed. And History of free fall: Aristotle to Galileo: with an epilogue of "Pi" in the sky

First work, Two new sciences, is translation of: Discorsi e dimostrazioni matematiche. Includes bibliographical references and index.

ISBN 0-921332-50-5

1. Mechanics - Early works to 1800. 2. Physics - Early works to 1800. 3. Motion - History. 4. Mathematical physics - History. 5. Galilei, Galileo, 1564-1642. 6. Physics - History - 17th century. I. Drake, Stillman. History of free fall. II. Title. III. History of free fall. OC123.G13 2000 531 C00-932120-9

Deinted in Connells

Printed in Canada.

First printing of combined edition in year 2000.

A Note from the Publisher

Stillman Drake devoted his life to studying, understanding, translating, and interpreting the works of Galileo. In addition to translating Galileo's writings and making them accessible to English readers in an accurate rendition with all the lucidity and good humor of Galileo's own pungent and entertaining style, Drake strove to get inside the man, to understand his milieu, his mind, and his genius. Drake published extensively on Galileo and Galileo's world.

One of the issues that is of greatest interest about Galileo, especially for readers of *Two New Sciences*, is how Galileo came to his understanding of the times-squared law of free fall. This is the subject matter of Drake's short monograph *History of Free Fall: Aristotle to Galileo*, which, though available separately, is appended here, where it can be certain to come to the attention of readers of *Two New Sciences*. It can considered part of the commentary on Galileo's monumental text.

Byron E. Wall, Publisher

Galileo Galilei **Two New Sciences**

Table of Contents

Preface	vii
Introduction	xiii
Glossary	
Mathematical expressions	xxxvii
Physical terms	xxxix
Short Titles	xlv
Two New Sciences	
Dedication	5
Printer to the Reader	7
Table of Principal Matters	9
First Day	11
Second Day	109
Third Day	147
Fourth Day	217
Appendix: On Centers of Gravity	261
Added Day: On the Force of Percussion	281
Bibliography of Editions and Translations	309
Index	313

This work is respectfully dedicated to the memory of

Antonio Favaro (1847–1922)

whose lifelong devotion to the study of Galileo's books and manuscripts alone made it possible.

Preface

Except for some small but significant amendments, the text and notes of my original translation of Galileo's last and most important scientific book remain unchanged in the second edition. The Preface and Introduction have been entirely rewritten. Parts of the 1974 introduction have been transferred to this preface, and other parts omitted, to make room for more information about Galileo as an experimental physicist than was known a decade ago.

The only source of information about Galileo's experimental work is volume 72 of the Galilean manuscripts at the National Central Library of Florence. Into that volume were bound, undated and in no comprehensible order, Galileo's working papers on motion from 1602 to 1637, the eve of publication of *Two New Sciences*. He had saved those notes in labeled folders over many years, having intended ever since 1604 to compose a book on motion along lines similar to those seen in the Third Day of *Two New Sciences*. He had indeed made a fair start on this in 1609, shortly before he heard of the newly invented Dutch telescope, improved on it, and neglected physics in favor of astronomy for a long period.

Nearly a century ago the working papers bearing theorems or problems were transcribed and printed in the definitive edition of Galileo's works supervised by Antonio Favaro. Pages bearing only diagrams and calculations, without full sentences, were not included. Those turn out to have been the pages on which Galileo noted his chief measurements. From them it has been possible to determine the units he employed, the apparatus he used, and the procedures he followed in making his fundamental discoveries in physics, and also others which he never published. Arranged in their order of composition and considered together with theorems found on other pages or in the text of *Two New Sciences*, those notes tell a story of the origin of modern physical science. It is not the story on which historians of science were generally agreed in 1974, nor did I then foresee the extent to which that would in time be modified by Galileo's working papers.

The purpose of my 1974 translation was to provide a readable and reliable version of the original text, including supplemental material from Galileo's own hand that was omitted from the 1914 version by Crew and De Salvio. Also, they had allowed intrusions of historical preconceptions, anachronistic technical terms, and some misleading translations. As one of the pivotal figures in the

viii Preface

history of science, Galileo should above all be represented accurately, whether what he wrote was correct or mistaken.

As an example of inaccuracies which mar the excellently styled and attractively printed translation published in 1914, it had Galileo say:

There is, in nature, perhaps nothing older than motion, concerning which books written by philosophers are neither few nor small; nevertheless I have discovered by experiment some properties of it which are worth knowing and which have not hitherto been either observed nor demonstrated.

Alexandre Koyré, the outstanding 20th-century analyst of the Scientific Revolution, remonstrated long ago that the phrase "by experiment" was unjustifiably inserted, Galileo's own word having been simply comperio, "I find." The gratuitous phrase was found particularly offensive by Koyré because he held that Galileo had made no use of experiment in the modern sense. Koyré credited Galileo's successes entirely to blind faith in mathematics.

Professor Crew replied in defense of his translation that Galileo's "I find" implied experiment, for there was no other way in which he could have determined, for example, what law agreed with actual free fall. Galileo's steps to the times-squared law, now completely recovered, have vindicated the physicist Crew. Of course that hardly justifies his treatment of comperio, because implications belong in glosses or notes, and not in the text of a modern translation. Readers deserve to know what Galileo said. as distinguished from what anyone else believes he meant. As remarked in my former preface, if Galileo's role in the evolution of experimental physics had to be judged only from one isolated sentence of his, then nothing worth saying about it could ever be deduced; if not, then further information relating to Galileo's experiments would remove any misapprehension arising in this way. Inaccuracies of that kind hardly afforded sufficient grounds for making a new translation.

Other types of inaccuracy, however, are less easily brushed aside. One was the excessive use in translation of modern terms having technical meanings in physics. Near the beginning of the Fourth Day, the Crew translation reads:

Imagine any particle projected along a horizontal plane.... The particle will move along this plane with a motion that is uniform and perpetual.

The word "particle" has now a special sense in physics quite different from that of Galileo's word mobile, a thing capable of

Preface ix

motion. Our modern physical particle is essentially weightless, whereas Galileo's whole discussion at this place depended on the concept of heaviness. In this instance a modern technical term was used to replace a different and obsolete technicality. In other places, words like "velocity" and "gravity" were literally rendered from *velocità* and *gravità*, by which Galileo meant only "speed" and "heaviness," not a vector quantity and a force.

Even these sources of potential misunderstanding, however, did not seem to me to demand a whole new translation with all its attendant labor and trouble. What ultimately changed my opinion was detection of a seemingly trivial error, grammatically merely the adoption of singulars in place of Galileo's plurals in one sentence. But that sentence was of crucial importance to proper understanding of Galileo's physics and also his mathematics. It contained his entire argument against the prevailing belief among natural philosophers that speeds during fall grow proportionally to the distances fallen from rest. Its mistranslation had long concealed the essential nature of Galileo's reasoning and a novel mathematical insight—that of one-to-one correspondence between members of two infinite sets. It made Galileo appear guilty of an elementary blunder in the subject of his greatest expertise and longest years of careful study.

Checking further, I found that this mistranslation occurred in modern French, German, Russian, and I believe all versions but one, a Spanish translation in 1945. Yet Galileo's words had been faithfully translated into English in 1665 and 1730, as also into Latin by 1699. Evidently the distortion must have arisen from a misunderstanding of Galileo's thought, after modern discoveries in medieval works on motion and the consequent attempts to link them with Galileo's physics. That is a different kind of error in translation from the others. When theories of what Galileo should have said are allowed to alter his own words, it is time to call a halt.

Detection of this modern and widespread mistake, simply by attending to Galileo's exact words in 1638, shed new light on other aspects of his analysis of motion. As one might expect, related mistranslations in other passages also became apparent, some of them doubtless inadvertent and others induced by a wish to prove medieval influence on the pioneer modern physicist. In the 1914 translation the medieval concept of "mean speed" was substituted for Galileo's clear "one-half the final speed" in his very first theorem on naturally accelerated motion. In his proof of that, the word totidem occurred twice but was untranslated in the English version. Koyré himself published a similarly careless

Preface

X

translation, while mistakes in handling totidem occur also in the French and German texts. Totidem meant "as many as," which in a mathematical proof entails the idea "in precisely the same number, whether known or not." That was in fact the essential basis of Galileo's proof, which signaled the pioneering use of one-to-one correspondence already mentioned. This concept is of the highest importance now in dealing with infinite aggregates—something that Euclid had banned from ancient mathematics by his axiom that the whole is greater than its part.

Clearly no previous translation of *Two New Sciences* remains truly reliable for the purposes of serious historians of either physics or mathematics. Galileo's physics was of such seminal importance that not only specialists, but all readers, deserve an accurate rendering of his book. Doubtless faults will be found in this one, for "Never hath book been printed but error hath affixed his sly *imprimatur*"—a motto of unknown origin which hung on the wall of the copy-editor who guided my first book into print a generation ago. But at the least, some widespread and serious errors of translation have been avoided herein.

The text of Two New Sciences here presented is essentially that of the first edition with one important addition, published posthumously in 1655, and one further dialogue intended for the first edition but then withheld by Galileo. Some of the other additions and corrections dictated by Galileo after he became blind are included in footnotes. A very serious mistake created by editorial meddling with the 1638 edition in 1655 has been corrected in the Third Day (note 45.) Minor textual variants duly noted in the definitive Italian edition are not included, but can be found in volume VIII of Favaro's Opere di Galileo Galilei (Florence, 1898), to which page references are supplied throughout this translation, in boldface type.

To minimize footnotes, two principal devices have been adopted. First, much that would ordinarily go into notes has been placed in the Introduction and the Glossary of foreign and technical terms. Second, liberal use of square brackets has been made within the text, as less distracting to the reader than are superscripts and footnotes. Words or phrases given in Italian or Latin, alone or followed by their English equivalents, permit any reader to decide for himself on some genuine problems of meaning. Bracketed English words are glosses, phrasing certain ideas more completely than in the original. In general, bracketed material can be skipped over without disturbing the grammar of the text.

Finally, I wish to say something about the form and printed title of the book, to put readers into the spirit in which it was

Preface xi

written. The dialogue form had appealed to Galileo at the outset of his career, and he returned to it in his last two books. His first manuscript on problems of motion, written probably at Siena in 1586-7 and left unfinished when he returned to Florence, was in the form of a teacher-pupil dialogue. That permitted friendly discussion in place of didactic expositions, with any formal theorems and proofs inserted only if necessary. Galileo's first booklet, published under a pseudonym in 1605, was a dialogue between two peasants reasoning about a supernova that suddenly appeared late in 1604. It sardonically reflected actual debates of Galileo as professor of mathematics against a Paduan professor of philosophy who believed the new star to be below the moon.

During the 1620s Galileo composed a book to which he always referred in letters as "my dialogue on the tides." In 1630 he took it to Rome for licensing by Catholic censors. When they had approved it, subject to some changes, the pope ordered that tides not appear as title and subject of the book, which was printed in 1632 simply as Dialogue of Galileo Galilei. That is the book for which Galileo was tried and condemned as suspected of heresy. Since 1744 it has always been called "Dialogue Concerning the Two Chief World Systems," but that was never its true title. Church censors could not have approved such a title after 1616, when Catholic authorities ruled that motion of the earth was absurd and foolish. The apocryphal title now used has misled scholars to this day about Galileo's intention when writing his Dialogue.

Galileo was much annoyed by the title-page of the present book as printed at Leyden in 1638, which has been reproduced in facsimile here and literally translated. He had sent to Paris his own title for this book, which can be reconstructed roughly as follows, from a letter written by Galileo at the time:

Dialogues [of Galileo Galilei] containing two whole sciences, all new and demonstrated from their first principles and elements so that, in the manner of other mathematical Elements, roads are opened to vast fields; [and discourses] filled with infinite admirable conclusions [by which] more remains to be seen in the world than has been seen up to the present time.

The idea of progress, let alone indefinite progress foreseen by Galileo here, was most uncommon at his time. Physical science in particular was supposed to have been completed by Aristotle in antiquity. Galileo was aggrieved not only at omission from the title of his vista of future progress in science, but at its failure to caution readers that he claimed no more than his having provided a secure base for physics, as Euclid's *Elements* had done for mathematics.

xii Preface

I acknowledge with gratitude fellowships granted in 1971–2 and 1977–8 by the John Simon Guggenheim Memorial Foundation and a research year allowed by the University of Toronto, which made possible this translation and its accompaniments. The original translation had the benefit of suggestions from Vittorio de Vecchi, now deceased, and from James H. MacLachlan and Michael Mahoney. In verifying typescripts against the original text and other translations, as also in the reading of proofs, I have had immeasurable assistance from my wife, Florence Selvin Drake, a patient collaborator in this as in all my activities.

Introduction

This, Galileo's last and scientifically most enduring work, is a book on physics that opened the road for Newton's immortal *Mathematical Principles of Natural Philosophy* half a century later, and for the new activity that Newton called "experimental philosophy"—a more appropriate phrase than our now customary (and somewhat redundant) "experimental science."

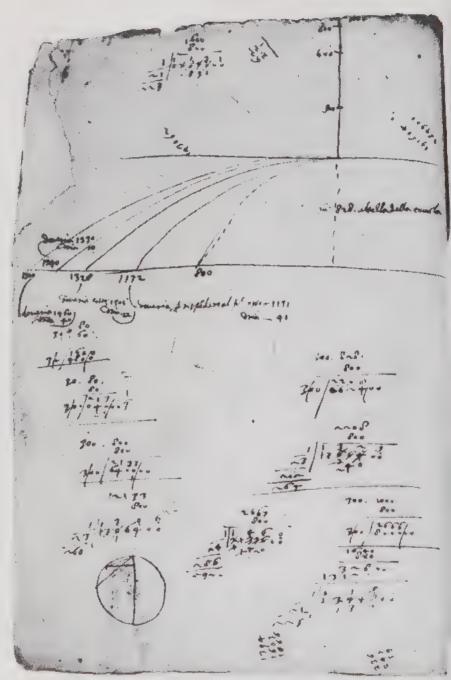
The word "physics" was coined by Aristotle from the Greek quoic, nature, to name the science of nature. At the basis of such a science he placed motion. In that, Galileo agreed with him. But Aristotle firmly declared that the method of physics could not be mathematical, and there Galileo vigorously disagreed.

Two New Sciences marks the beginning of recognizably modern science in many ways, notably through its elementary mathematical physics—which seemed a contradiction in terms to Aristotelians who dominated the science taught in universities of the time.

In his *Metaphysics* Aristotle gave his reason for excluding the method of mathematicians from his science of nature. The things mathematicians reason about are not material, he said, but everything in nature has matter. Besides, the precision of pure mathematics was not to be expected in nature. Galileo, who was no metaphysician, took a different view, writing in 1632:

Just as the accountant who wants his calculations to deal with sugar, silk, and wool must discount the boxes, bales, and other packings, so the mathematical scientist, when he wants to recognize in the concrete the effects he has proved in the abstract, must deduct any material hindrances; and if he is able to do that, I assure you that things are in no less agreement than are arithmetical computations. The trouble lies, then, not in abstractness or concreteness, but with the accountant who does not know how to balance his books.

Long before, in his youthful dialogue on motion, Galileo had offered mathematical arguments that bodies of the same material fall with equal speeds through the same medium, regardless of weight. Falling, which (with Aristotle) Galileo called natural motion, would not occur unless the bodies were of some material, but what that material was had no effect on the motion so long as it was the same material for both bodies, descending through the same material medium. Hence the purely logical grounds behind Aristotle's objection against using the mathematical method need not apply against a science of natural motions, and Galileo was to



Galileo's working papers, Mss. Galileiani, vol. 72, f. 116v. (See p. xxix.)

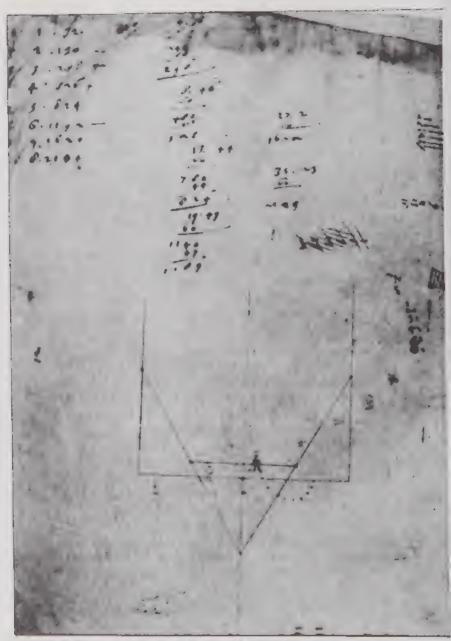
become extraordinarily skillful in the use of mathematics for analyzing those phenomena.

Two New Sciences includes Galileo's "new science of motion" in mathematical form, set forth in Latin in the Third and Fourth "days" of Italian dialogue. Very little was said about the way in which he had arrived at his new science. An autobiographical passage in the First Day, however, accords with things recently learned from Galileo's working papers about his work in 1602-04 with pendulums and inclined planes. Light is thus shed on what Galileo knew at the start, not specified in his books. Living readers wished to know his discoveries and their proofs, not how Galileo was led to them. Historians long tried to reconstruct his probable approach by seeking clues not in Galileo's papers, but in the writings of others before him, or in philosophies of science and nature. Since Galileo was not given to acceptance of authority, those sources remain purely speculative. His working notes surely provide a sounder basis for recovering his approach to the mathematical physics ultimately presented in Two New Sciences.

Examination of Galileo's working papers in 1972 revealed the presence of unpublished documents. One, f. 116v, bears Galileo's experimental measurements of horizontal projections of a ball at different speeds, a kind of investigation that he was not then known to have undertaken. Other pages, less easy to interpret at the outset, seemed likely to throw light on the method he adopted in other discoveries in physics before his work on the parabolic trajectory (which Newton called "Galileo's theorem.") In 1975 I offered an explanation of measurements recorded on f. 107v. which seemed likely to have been the discovery document for the times-squared law of distances in free descent from rest.² Ten years more were spent in identifying and understanding all the entries on other related pages. Those have now revealed Galileo's step-by-step progress, by measurements and calculations, in his discovery of the law of the pendulum, and then from that, almost at once, the law of fall, first rigorously proved in Two New Sci-

^{1.} Cf. "Galileo's experimental confirmation of horizontal inertia," *Isis* 64 (1973) 291–305, and "Galileo's accuracy in measuring horizontal projections," *Annali dell'Instituto e Museo di Storia della Scienza* 10:1 (1985) 3–14.

^{2.} Cf. "The role of music in Galileo's experiments," Scientific American 232 (June 1975) 98-104.



Galileo's working papers, Mss. Galileiani, vol. 72, / 107v

ences but already firmly established by measurements early in 1604.1

It is a curious fact that at the opening of Book II of his unpublished Pisan *De motu*, in 1590, Galileo had already stated the method he would follow, and had identified its source:

The method that we shall follow in this treatise will be always to make what is [being] said depend on what was said before, and if possible, never to assume as true that which requires proof. My mathematicians taught me this method.

Galileo's mathematicians were Euclid, Archimedes, and Ptolemy. Archimedes had been the first to mathematicize physical thought, so it is natural to say (as many do) that Galileo simply adopted the method of Archimedes. But that is not quite exact, because Archimedes never appealed to actual measurement in any of his proofs, or even in confirmation of his theorems. Neither did Galileo in his Pisan days. But a dozen years later he began to make careful measurements of natural motions, and a new kind of mathematical physics soon emerged, truly Galilean and no longer properly Archimedean. It was inspired by Ptolemy's example in astronomy, grounded in nothing but measurements of angles and times made as accurately as possible with the instruments that were available. Galileo grounded his physics in painstaking measurement of distances and times during purely gravitational motions. His apparatus will be described in due course.

The most surprising fact about Galileo's discovery of the law of fall three decades before he was able to offer conclusive mathematical proof for it was that the discovery, as historically made, had required prior discovery that pendulum periods are as the square roots of lengths. The law of fall *could* have emerged in the way suggested by f. 107v, without prior investigations of the pendulum. Indeed, the law of fall *could* have been discovered in such a way in antiquity, by Archimedes or any other Euclidean mathematician who interested himself in physical phenomena. But the law could not have been known to apply to the actual fall of heavy bodies near the earth's surface without the carrying out of measurements, an activity neglected by physicists until the time of Galileo—and by Galileo himself during his early years—for reasons to be further explained below.

^{1.} Cf. S. Drake, "Galileo's Constant," *Nuncius* 2:2 (1987), 41–52. For the pre-Galilean background, see my *History of Free Fall: Aristotle to Galileo* (Toronto, 1989).

The most useful and interesting introduction to this book, I believe, especially for those who read *Two New Sciences* for the first time, will be one which provides readers with a fairly complete account of Galileo's previously unknown activities as a mathematical and experimental physicist during the years 1602–09. That there was a far simpler way in which the law of fall might have been discovered, long before 1604, has merely misled those who sought to explain the historical discovery.

The only measurements essential to discovery of the timessquared law of fall were measurements of distances from rest at the ends of some accumulating equal intervals of time. No times had to be formally measured; equalizing times, easily done by the use of musical beats, was enough. To hit upon the law of fall it would suffice to equalize times within, say, \$25 second—and any one can detect errors of that magnitude in regular beats of a half-second or so. Timing vertical free fall directly in such a way would be difficult, but the law is the same for sliding on an incline, or for roll of a ball down a smooth plane gently tilted. Speeds attained differ, but the ratios of speeds are the same as during fall. None of the means required for recognition of the times-squared law were lacking in antiquity, and the mathematics needed to prove that it governed straight natural descent from rest was available in Euclid's Elements, Book V, with the exception of a single concept that eluded Galileo's grasp for many years.

What was lacking in physics, from the time that Aristotle coined that word to name the science of nature, was the idea that actual measurement could contribute anything of real value to any science. The object of science, as set by Aristotle, was to find out the hidden causes of events in nature. Measurement could not reveal underlying causes of the kind required by philosophers. So measurement had no place in physics.

Of course it was not the abstract concept of "measure," used by Euclid, that was absent from physics for two millennia; it was actual measurement of accelerated motions. In medieval times, mathematicians deduced quite a number of basic facts about uniformly accelerated motion, by a rule now called the mean-speed or Merton rule, arbitrarily assigning a measure of speed for any uniformly accelerated motion from rest. But that speed was incapable of being directly measured, for they chose the speed during the middle instant of a completed motion from rest. No mathema-

Those had to be occult qualities, hidden behind the measurable phenomena and detectable only by subtle verbal reasoning about the essences of things.

tician stated that fall exemplified uniformly accelerated motion. Medieval natural philosophers decided that it did not, and could not. Until about 1550, no one suggested it even as a possibility. Then Domingo De Soto asserted that fall was a case of uniformly accelerated motion, but he did not offer measurements in support of his innovation. He merely intended to furnish a simple example of "uniformly difform motion," as it had been called by medieval mathematicians, and he may not have known why no one else had previously suggested the fail of heavy bodies.

What had made it seem impossible that fall could properly exemplify truly uniform acceleration was medieval impetus theory. Natural philosophers, as physicists were then called, had given the *cause* of acceleration in fall as successive quantum-jumps of impetus, an occult quality (force) impressed in the falling body at the end of each small motion from rest. The accepted medieval mathematical formulation of this implied that speeds in the first and second halves of a time from rest were as 1:2. But it had been shown that in *uniform* acceleration those speeds are as 1:3. That is why for two centuries, while natural philosophers were debating nearly everything else about motion, none had raised the question whether fall might be uniformly accelerated motion. It was unthinkable to give up a cause once found—nor did De Soto name an alternative *cause* for uniformly difform motion in fall.

Had Galileo got his idea of the law of fall from De Soto's book, he would in all probability have tested it indirectly by measurements of the kind set forth below, which he made, but for a different purpose. His working papers do not suggest a test of the 2:1 ratio. Nor did he find the law in the simple way that I supposed a dozen years ago, from f. 107v. Galileo worked "the hard way," so to speak, using the pendulum law that he had first found from measurements. His pioneering calculation of a long distance fallen during a considerable time (3.04 seconds) was needlessly complicated by consideration of pendulums. Only when he perceived that some superfluous steps could be cancelled out from his lengthy series of calculations in ratios and proportions did Galileo recognize the law of fall in its simple times-

^{1.} On one page, f. 152r, begun at once after recognition of the times-squared law, Galileo attempted to fit impetus theory to it by assigning the square numbers 4 and 9 to times and triangular numbers 10 and 15 to distances, in conventional units of hours and miles. Inconsistent speed ratios emerged, and he abandoned impetus theory along with "impressed force." See p. 159 for Galileo's denial that any cause of acceleration was required in physics.

squared form. His calculated distance for fall in 3.04 seconds, in our units, was 45 1/4 meters—a fall that could not have been timed precisely in 1604; yet Galileo's complex calculations brought him almost exactly to the modern result.

We often laugh at people for doing things the hard way, but it does have the advantage that facts are learned in the process which might be missed along an easier path. Galileo proceeded step by step, without guessing, and learned much from steps that in the end were seen to have been theoretically unnecessary.

Only a year or two before I commenced examining Galileo's working papers on motion, I published my opinion about the most plausible path for him to have taken to the law of fall. He had long assumed that acceleration in fall is of brief duration only, which he could have tested by watching a ball on a gentle slope and noting how its speeds grew. This might be done simply by marking its places at regular counts of 1, 2, 3,.... The distances between marks continue increasing, and using a string as long as the first distance, the lengths will measure 1, 3, 5,..., making the total distances 1, 4, 9,...—the squares of the times 1, 2, 3,.... In that procedure, even rather rough measurements could have led Galileo to the law of fall in the course of testing a mistaken assumption that had delayed for several years his understanding of natural motions. How different Galileo's actual procedure was could be discovered only by studying his working papers.

The problem that concerned Galileo when he wrote f. 107v arose from an impasse in work he was doing, by lack of a rule for increase of speed during natural (spontaneous) motions of heavy bodies. When most of the entries were made on f. 107v, he had no device yet for timing any one motion. Those entries show that he equalized eight times, within $\frac{1}{64}$ second (the accuracy of a good amateur musician), while a ball rolled down a plane tilted 1.7° . For speeds in natural descent, he thus found the odd-number rule $1, 3, 5, 7, \ldots$ Having found what he sought, he laid the page aside. Eight square numbers were added later, in different ink and a bit smeared. Just when and why those were noted on f. 107v will be seen in due course, for the whole story is logical and plausible when the documents are correctly ordered, each being then seen to have had a purpose in terms of those preceding it.

Having found a simple rule by equalizing times, it occurred to Galileo that much more might be done if he could measure very

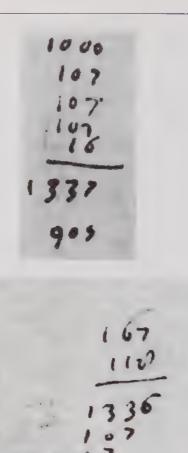
^{1.} Careful measurements made in any standard unit might well make the odd-number progression much less likely to be recognized; cf. my *Galileo Studies* (Ann Arbor 1970), n. 8, p. 238.

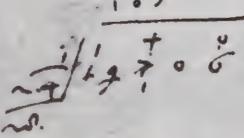
short times, individually. At the end of f. 107v he sketched a device for letting water flow during each motion, rather more elaborately than he later described it in the Third Day. There, Galileo goes on to say that he weighed the flows on a sensitive balance and took the weights as proportional to the times. His working papers bear this out and imply that he weighed the flows in grains (1/480 fluid ounce), flow being at 3 ounces per second. But each flow was not always weighed in its entirety. Flows were caught in a glass cylinder on which Galileo made marks as he went along, to be used volumetrically in subsequent weighings. Also, he weighed indirectly any water adhering to the collecting vessel when its contents were poured into the weighing vessel, by simply subtracting its dry from its damp weight.

The first recorded timing appears on f. $154v^1$ as 1,000 + 107 + 107 + 107 + 16 = 1,337, the timing in grains flow for fall through 4,000 punti of 0.94 mm. each in our units, or 3.76 meters, nearly 12 feet. The final 16 grains was for unweighed water on the sides of the vessel. Galileo marked the level where 320 grains stood before weighing, rounding from 3 x 107. Next he timed the half-fall, 2,000 punti or about 6 feet, at 903 grains, marking that level before weighing the water. What he then did can be found from the number 1,590 on f. 151v, a page devoted mainly to some geometric models relating pendulum and fall.

Galileo now sought the length of the pendulum which swings through a small arc to the vertical while a body falls 2,000 punti from rest. In modern theory, that length is 1,621, and not 1,590—a number that tells us a good deal about Galileo as an experimentalist. It is exactly the length of pendulum which, at Padua, swings to the vertical through a small arc during flow of 903 grains

- 1. All the documents were published in reduced facsimile, ordered and dated by years, in my monograph *Galileo's Notes on Motion* (Florence 1978) with cross-indexing and descriptive notes. Some slight changes of ordering, within years, have been indicated by subsequent findings.
- 2. This marking was used on f. 189 ν , the page on which Galileo was writing when he first recognized the times-squared law of fall and drew the mean-proportionality diagram that he used for all such calculations thereafter.





Galileo's working papers, Mss. Galileiani, vol. 72, f. 154v.

weight of water at 3 fluid ounces per second. Actual fall through 2,000 punti at Padua takes 911 or 912 grains of flow instead of 903. Galileo's slight error in timing that fall (less than 0.01 second) resulted in a pendulum 31 punti or about 3 cm. shorter than would time fall of 2,000. There is only one way in which Galileo could have arrived at the length 1,590.

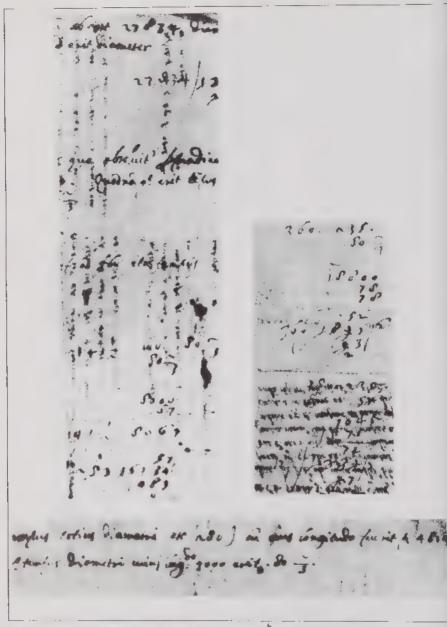
Starting with a pendulum about 5 feet long, Galileo placed a block against the side of the bob while it hung plumb, and then patiently adjusted the length until flow of water during swing to the block filled the vessel to his 903-mark. That was a tedious procedure, but it was the only exact way of finding the pendulum for a given flow of water. To find the pendulum for 1,337 grains flow in the same way would be troublesome, as that would be some ten feet long and hard to adjust repeatedly. So instead, Galileo found the pendulum for 1.337/2 = 6681/2 grains flow, getting its length as $870 \ punti$. He then doubled this length and found 942 grains flow to be the time of a pendulum of length $1.740 \ punti$.

Length of pendulum in punti	Time to the vertical in grains flow
870	668 1/2
1,740	942
3,480	1,337
6,960	1,884
13,920	2,674
27,840	3,768

From these data alone, by successively doubling lengths and alternately doubling the times, Galileo could have made a simple tabulation of the kind in the table. Perhaps he did, on f. 90^b, before most of that page was cut away and discarded in 1609.

Instead of 27,840, the adjusted number 27,834 appears on the fragmentary page f. $90^{b}v$, together with words identifying it as a "diameter" (of the previous pendulum, 13920). That adjustment was used in establishing exact continued proportionality among

^{1.} The working papers leave no doubt that Galileo used the sound of the bob striking a fixed block for stopping flow of water. The same mode of judging times was employed by Marin Mersenne a few years later, who doubted that it had occurred to Galileo by reason of his statements about isochronism of pendulums in this book.



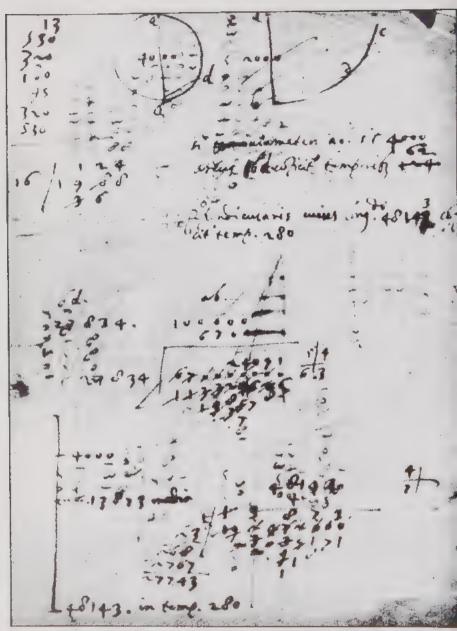
Galileo's working papers, Mss. Galileiani, vol. 72, f. 90^bv and parts of f. 115.

the data used by Galileo for his final calculations, and it is found again on f. 189 ν 1, where 27,834 was crucial in Galileo's first calculation of a long fall (mentioned earlier).

To the numbers in the above table Galileo applied the theory of ratios among continuous magnitudes in Euclid, Book V. Numbers in the first column are, of course, in continued proportion, with the factor 2; those in the second are very nearly in continued proportion with the factor we write as $\sqrt{2}$, which to Euclid and to Galileo was the mean proportional between unity and 2. Thus the numbers in either column were connected vertically, so to speak, but not horizontally. All the numbers would be related if each time were made the mean proportional between 2 and the pendulum length. Galileo's unit of time was completely arbitrary, so he now adjusted it to fulfill this new condition. The same result was very nearly attained simply by dividing each time in grains by 16, so he adopted a new unit of time, the *tempo*, as flow of 16 grains, or 1/30 ounce of water, for purposes of calculation. In our units, that is one gram of flow and 1/32 second of time.

At this point Galileo had the pendulum law for successively doubled pendulums, and wondered whether it held for other ratios. If the law were perfectly general, then the pendulum whose length was the mean proportional of any two of the above would have its time equal to the mean proportional of the two times, stated in tempi. On f. 154v Galileo found the mean proportional of 118 and 167, the times in tempi for pendulums of 6,960 and 13.920 punti (for 1.888/16 = 118 and 2.674/16 = 167). On the other side of the page he wrote filo br[accia] 16, "the string is 16 braccia," an Italian measure equivalent to about 23 inches or 615-620 punti. The mean proportional of 6,960 and 13,920 is 9,843 nunti, which would be 16 braccia, about 30 feet. Galileo's calculated mean proportional time was 140 tempi. What he had done was to hang a 16-braccio pendulum from a window over the courtyard of the University of Padua and time it, protected from wind. Modern calculation of its time to the vertical shows that to be 1.53 seconds, or 141 tempi, at the latitude of Padua.

Only one more measurement was necessary in order for Galileo to calculate distance of fall in a given time from a known time and distance of fall, using its relation to pendulums. For the needed fixed ratio he chose that of two times: of vertical fall equal to the length of a pendulum whose time to the vertical was known. For this ratio Galileo timed fall through 1,740 punti and got 850 grains of flow, or 53 1/8 tempi. I call the ratio of the times for a pendulum and a fall having equal length "Galileo's constant," for it is the same everywhere, whatever the units and what-



Galileo's working papers, Mss. Galileiani, vol. 72, f. 189v1.

ever the local gravitational acceleration. In modern theory the constant is $\frac{\pi}{2\sqrt{2}} = 1.1107...$; Galileo had 942/850 = 1.1082. The

square, $\frac{\pi^2}{2^3}$, is the ratio of distance fallen to length of the pendulum

timing the fall by swing to the vertical through a small arc. Although Galileo did not regard gravitation as a force and did not use a local constant of gravitation like our g, his equivalent to that was $(1.1082)^2 = 1.228 \ punti$ per $tempo^2$.

On f. 189 ν 1 Galileo calculated the distance fallen in 280 tempi, double the time of the 30-foot pendulum by which he had confirmed the generality of his pendulum law. His calculation was made in a series of steps via related pendulums. The final step is on f. 189 ν 1; the rest were probably on the lost part of f. 90 $^{\rm b}$, on which 27,840 was adjusted to 27,834 and proportions were made exact. Though Galileo did not use decimal fractions, we may adapt the previous tabulation as follows to represent his revision on f. 90 $^{\rm b}\nu$ (which would have been written with rational fractions):

Length of pendulum in <i>punti</i>	Time to the vertical in tempi
869.81	41.71
1,739,625	58.99
3,479.25	83.42
6,958.5	118.0
13,917	166.8
27,834	236.0

That Galileo's work on f. 90^b is correctly represented above is corroborated by his final step, in which he did not calculate with 1.337/16 = 83.5625, the time in *tempi* for fall of 4,000 *punti* as measured on f. 154 ν , but with 83.42 as found above. The pendulum of length 3,479 1/4 was regarded as that which would time fall through 4,000 *punti*, at this stage of the work; in fact it was too long, because of the error in the original timing of that fall on f. 154 ν . Why that error did not affect the results obtained by Galileo will be seen in due course.

Galileo's final step on f. 189v1 is not the only clue to his procedure. On the same page, when it was still a blank sheet, he had entered these two calculations:

180 (131/100) = 235.8 and 57 (132/100) = 75.24.

The first result is recognizable as a time in tempi for the last pendulum above, while 75.24 is the time in tempi for fall through 3,479 $\frac{1}{4}$ punti, the adjusted pendulum assigned to time of 1,337 grains flow, timing fall through 4,000 punti by Galileo's figures on f. 154 ν . The time 57 tempi from which this was calculated is time of fall through 2,000 punti, rounded up from 903/16 = 56.44. The second calculation using a similar ratio may be left for later discussion.

G, its counterpart in the modern theory of pendulum and fall is $\frac{(4/\pi)^4}{2}$. That ratio converts any given time of a fall (from rest) to the time of fall through the length of pendulum timing double that fall. It will be convenient to symbolize "time of fall" by t_f and "time of pendulum to the vertical" by t_p ; thus $t_f4000 = 83.42 = t_p3479.25 = t_p[f4000]$, where p[f4000] denotes the pendulum timing fall of 4,000 punti, and 83.42 is in tempi.

Calling the ratio 1.314± "Galileo's ratio," and denoting it by

Galileo, if he had worked in symbols, might have written $G = \frac{1}{2} (\frac{1}{p})^2$, f being any distance of fall and p being the length of pendulum timing that fall by swing to the vertical through a small arc. In theory, $\frac{1}{p} = (\frac{4}{\pi})^2 = 1.621138...$, a pure constant unaffected by the units of length and time chosen, or by the strength of the gravitational field. Galileo's data did not give him 1.621..., but $\frac{\pi^2}{2}$

1.628, and 2.000/1,628 = 1.2285, a bit under $1.2337... = \frac{\pi^2}{8} = g$ in exact "Galilean" units. As I have shown, the ratio 2.000/1,628 can be factored out from the final step of Galileo's first calculation of a distance of fall in *punti* from a given time in *tempi*, on f. 189 ν 1. Alternatively, we could factor out the ratio G = 1.31 or 1.32, since that is $\frac{1}{2}(\frac{1}{2}(\frac{1}{2}))^2$ with $\frac{1}{2}$ taken as 1.628 instead of 1.621. Because of the two surviving calculations using G, it is very likely that Galileo's series of calculations involved G (and not $\frac{1}{2}$ ρ , as I supposed previously).

It is a curious fact that in Galilean units, and only in those, the square of a time of fall from rest is the length of the pendulum which times double that fall by swing to the vertical through a

^{1. &}quot;Galileo's physical measurements," American Journal of Physics 54:4 (1986), p. 305.

small arc. Thus the square of 57 tempi is 3,249, and 3,249 punti is the length of pendulum timing fall of 4,000 punti. Galileo would not have recognized this at first, because his error in timing fall of 4,000 punti led him to think the length would be 3,480. He may have noticed it after he used the law of fall to correct his wrong timing, but he never mentioned it because the relation obviously does not hold in other units than his own, which he did not publish and no one else ever used.

It should be clear from what has been said that once the pendulum law was known, Galileo could calculate from times and lengths of pendulums to times and distances of fall. The first time he did that was on f. 189v, and he saw at once that the steps involving pendulums could be cancelled out, leaving the law of fall in its mean-proportional form—mathematically identical with the times-squared form. Using this relation, he amended his timing of fall 4,000 punti, the least accurate measurement recorded (about 1/30 second too high.) It had not affected his calculation, for it cancelled out with Galileo's pendulum steps. That exemplifies what can be learned by doing things step by step, in ratios and proportionalities without equations or any arbitrary constants dependent on the units adopted.

Knowing the law of fall, Galileo wondered next if it applied also to descent along an inclined plane. On f. 107v he already had a set of very accurate measurements for such a descent. He now took up that page again, squeezing into its margin the first eight square numbers. Each, multiplied by the measured distance from rest in the first time, was seen to give almost exactly the corresponding measured distance. The times-squared law did apply to all straight descents in gravitational motion, and Galileo's working papers early in 1604 show a sudden burst of theorems and problems on natural motions.

A second spurt of activity began late in 1607, when Galileo consolidated his theorems, completed unfinished proofs, and added some new findings. In the course of this he resolved a paradox that had puzzled him, recognizing that speeds acquired in natural descent are as the square roots of the vertical distances from rest—not, as he assumed in 1604, as the measured distances. This enabled him (on f. 116 ν) to measure the distances of horizontal projection when a ball leaves a table at speeds whose ratios are known. Conservation of speed and the independent composition of horizontal and vertical motions thus established, speeds in fall were seen to be directly proportional to times from rest. Also the semiparabolic trajectory of horizontal projectiles was found, and extended (by symmetry) to low-speed projectiles fired at any ele-

vation of the gun. Several basic theorems presented in the Fourth Day were already established in 1609, when Galileo began to compose a book on his new science of motion but was diverted by the advent of the telescope.

Reading *Two New Sciences* with this information about the work behind it three decades earlier, most of the puzzles vanish that have troubled historians. They arose from the belief that Galileo reached his mature physics not directly from phenomena of nature, but by brooding over speculative natural philosophy. At first he did the latter, but everything changed when he began carefully measuring actual motions. As he had his spokesman ask sarcastically in the 1605 peasant dialogue, "What has philosophy got to do with measuring anything?" In that activity, he wrote, it is only the mathematicians that one is obliged to trust.¹

In Galileo's working papers there are clues to the origin of the science of material strength presented in the Second Day, as well as to Galileo's pendulum experiments mentioned in the First and Fourth days, but here the work on motion should suffice. It now remains to explain Galileo's mathematical approach, different from ours because he did not use algebra. Galileo never wrote an equation in his life, whereas we tend to think of physics mainly in terms of physical equations. The physical constants that loom so large in our thinking simply cancel out in proportionalities of the kind that Galileo used exclusively in his physics.

Galileo was able to deal rigorously with mathematically continuous magnitudes, such as distances, times, and speeds, in a sense that many people today are not. Being trained in elementary algebra but not in the Euclidean theory of ratios and proportions among such magnitudes, we may remain unaware of some fundamental assumptions that underlie algebraic manipulations of equations which we perform by rote and habit. In contrast, Galileo was constantly aware of the meaning of "same ratio" because (as will be seen in his text) he had to make use repeatedly of its exact Euclidean definition. That is not the case with us, and it was not the case with medieval writers on motion either. They had created an arithmetical theory of proportion because of defects in the text of Euclid, Book V, as transmitted by an Arabic version on which medieval Latin translators commented inently. Not until the mid-16th century was the authentic text properly understood. The essential difference between medieval and

^{1.} S. Drake, Galileo Against the Philosophers (Los Angeles 1976), p. 38.

Galilean physics is rooted in the impossibility of dealing with continuous change by arithmetic alone under Euclid's definition of "number."

The price that Galileo paid for his adherence to Euclid's rigorous proportion theory was a restriction of his mathematical physics to comparisons of ratios between magnitudes of the same kind. This relational—and hence relativistic—feature of his laws of physics is now often overlooked at the cost of full understanding of his thought, especially in contrast with that of medieval natural philosophers. And just as Galileo completed his work, Descartes introduced algebra into geometry without any new definition of "number," so that mathematical physics swiftly became incommensurable with that of Galileo. An illustrative example may assist in clarifying the situation.

Algebraically, speed is now represented by a "ratio" of the space traversed to the time elapsed. For Euclid and for Galileo, no proper ratio could exist except between two magnitudes of the same kind. Now, whatever space and time may be, they are not magnitudes of the same kind; or, if they are, that is thanks to Einstein, and it is not something which Galileo would have seen as capable of rigorous proof. We, no longer bound by Euclid's definition of ratio, can write $\bar{v} = \frac{9}{4}$ as a definition of average speed, and we can give rules such as s = vt for uniform motion and $s = kt^2$ for uniformly accelerated motion. Such expressions entail a metaphysics in which we can calculate individual speeds from given times and distances, whereas Galileo could compare those things only in pairs alike in kind -with no metaphysics but only mathematics. Our rules imply for us compactly all the relationships that it took Galileo many pages to state and prove, but they also imply much that he was far from stating, and would have viewed as based on rash assumptions. Equation-physics is not conceptually equivalent to proportionality-physics, because it asserts more (and sometimes asserts more than we know for certain.)

Modern algebraic notation provides no way of maintaining the classic Euclidean restrictions on ratios. The very essence of an equation is that any term can be transposed from one side to the other by operational rules. With proportionalities, no transfer was made unless all terms represented magnitudes of a single kind. The fact that numbers as such are all of a kind does not justify algebraic manipulation of *physical* equations unless we assume that each physical magnitude is commensurable with all others, or that a given physical magnitude can be *precisely* measured by our measuring some other kind of physical magnitude. That may be

true, and no doubt Platonists would assert it, but it is plainly evident that Galileo took great care never to assume this. Had Newton taken the same care, perhaps Einstein would not have had to overturn (or undermine) Newtonian physics. And when Einstein named inertial systems "Galilean," he inadvertently did Galilean physics a disservice; Galileo never asserted any vis inertiae or "force of inertia" as Newton did. Galileo's mature physics was purely kinematic, as shown by his rejection of the "impressed force" imputed to impetus in the 14th century. That was to him a gratuitous causal assumption on the part of philosophers, as "antiperistasis" had been to Aristotle. In his Dialogue, Galileo ridiculed them both in favor of simple conservation of motion:

There must be something conserved in the stone, apart from any motion of the air.... When you throw it with your hand, what is it that stays with it when it has left the hand, other than the motion received from your arm which is conserved in it?

Newtonian inertia, a dynamic concept, was superfluous in kinematics and therefore it had no more place in Galileo's mature physics than did any other asserted entity for which no definite measure was yet known. Newton first specified the criterion for existence of an "impressed force," and how it was to be measured both as to magnitude and direction. Many blame Galileo for his inability to invent inertia—and then credit him with founding dynamics. That is surely an abuse of language. Some do this by imputing to Galileo a "circular inertia," though all he said was that "keeping up with the earth" was a *motion* that was indelibly impressed in every body resting on its surface. Conservation of geocentric speed was a purely kinematic concept, measurable by Galileo. As he pointed out, birds flap their wings to move with respect to the earth, not to keep up with its daily rotation.

00

Few historians of science accept the conclusions that have been roughly summarized above from my studies of Galileo's notes on motion. But those conclusions give a framework for

^{1.} That was done in a historically very interesting discussion in the 1632 *Dialogue*, the Aristotelian spokesman supposing in error that Galileo assumed an impressed force, and Galileo's spokesman showing that conservation of motion sufficed. In my translation (Berkeley 1953) this discussion occupies pp. 142–56.

Galileo's activity in physics to which *Two New Sciences* conforms remarkably well. It opens not in a university, but in the Venetian arsenal. Galileo's interlocutors start by discussing a question arising not from philosophical speculations rooted in metaphysics, but from shipbuilding. From the casual answer of a workman, they pass on quickly to the role of proportionality in the strengths of material structures, hardly the sort of thing that interested natural philosophers. A few words about the speakers may belp readers to feel at home among the Renaissance Italian beralds of modern science.

The three interlocutors in *Two New Sciences* bear the same names as those in Galileo's *Dialogue*. Two had been close friends of his, whose memory he thus perpetuated. Filippo Salviati was born at Florence in 1582 and died during a visit to Spain in 1614. In the *Dialogue* Salviati played the part of Galileo's own spokesman. Giovanni Francesco Sagredo, born in 1571, was a Venetian who studied with Galileo at *Padua* and remained his close friend from 1600 until he died in 1620. In the *Dialogue* he spoke for the intelligent layman curious to learn, playing the role of an uncommitted person for whose support the two others contended.

Philosophical tradition was defended by Simplicio (Italian for a celebrated ancient commentator on Aristotle). Though not an actual living person like the others, he doubtless represented active critics of Galileo such as Cesare Cremonini at Padua and Lodovico delle Colombe at Florence. Though poorly versed in mathematics, both were masters of the brand of metaphysically based science prevalent in universities since their origin.

The roles of these interlocutors are not quite the same in this book as in the Dialogue. There, Galileo's views had always been attributed to a certain Academician known to the speakers, a practice not exclusively followed here. It was important to the author that a long treatise on motion, read aloud by Salviati, be understood verbatim as Galileo's, in the Latin then universally adopted among the learned throughout Europe. The Italian used in discussing this presentation of Galileo's new science of motion creates a unique role for Salviati when he enters the debates, in that we have an aged Galileo commenting on work done thirty years before. In the Dialogue it was principally the work of another, Copernicus, that had been in question, and Salviati spoke for that against its rivals and critics. But in Two New Sciences he represents a mellowing Galileo who, viewing his own completed work, is more willing to recognize merit in questions raised about it. Sometimes he comments paradoxically, as though much still remained to be resolved.

Other interlocutors also may be seen differently from before. Thus little remains in Simplicio of that stubborn loyalty to the current dogmas of Aristotelian professors which naturally marked his previous performance. The new sciences being introduced were not as fatal to traditional philosophy as the Copernican doctrine was in the Dialogue. Simplicio even regrets his past neglect of mathematics. Here, even Simplicio may be seen as a spokesman for Galileo-for the young Galileo, schooled in Aristotelianism and demanding to be shown that errors existed in the old physics. It is the young student Galileo who speaks when Simplicio rejects sarcastically the idea that regardless of weight, bodies fall with like speed, saying that one would have to expect birdshot to fall as fast as cannonballs. And indeed, how would Galileo have reacted on first hearing the new idea that had been inaugurated by G. B. Benedetti, a decade before Galileo was born?

Sagredo still represents the intelligent layman, but not in an atmosphere of violent conflict between two rivals over the fixity or motion of the earth, as in the *Dialogue*. Sagredo raises questions that had once puzzled Galileo, taking some positions on problems of local motion that are found in his early writings but that he later rejected. Sagredo speaks for Galileo during the years from his move to Padua to the maturity of his new sciences, a period nearly coinciding with Sagredo's own active intellectual life.

In the added "day" here appended, Simplicio was replaced by Paolo Aproino, a pupil of Galileo's in 1608 who lived to see in manuscript a part of *Two New Sciences*, but died in the year that it was published. Aproino speaks not as an Aristotelian, no such interlocutor being needed in discussing the force of percussion. Neither does he speak for the young Galileo, as Simplicio had done. Aproino was introduced as one who had been present at some experiments by Galileo, which he described along with their often surprising results. Replacing Simplicio, Aproino speaks not for the student Galileo, but for Galileo's students, the first ever to have been introduced to recognizably modern physics.

Galileo's mature position—that causal inquiries might be well abandoned in physics—had no immediate appeal to his contemporaries, just as it had had no obvious source in earlier physics. It was pretty much ignored for a long time, except for occasional lip service. Thus Christiaan Huygens stated it in the preface to his *Treatise on Light*, but reverted to the mechanical philosophy early in the text. Finally it reappeared toward the end of the last century

when Heinrich Hertz wrote, in the introduction to his Principles of Mechanics:

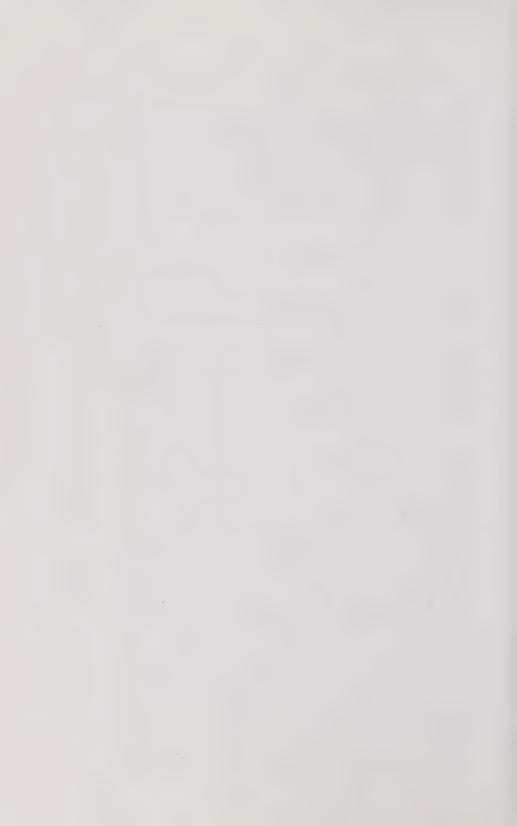
We form for ourselves images or symbols of external objects, and the form which we give them is such that the necessary consequents of the images in thought are always the images of the necessary consequents in nature of the things pictured. In order that the requirement may be satisfied, there must be a certain conformity between nature and thought. Experience teaches us that the requirement can be satisfied, and hence that such a conformity does exist.

00

All the above has been said for the purpose of suggesting certain frameworks within which the reader may consider what Galileo wrote, different from the ordinary framework of physics immediately before and again after *Two New Sciences* appeared. The glossary of physical terms will provide information concerning their handling in this translation. But the best efforts of a translator cannot prevent the intrusion of anachronistic ideas suggested by modern English words. All that can be done is to make this danger known, "as we erect a beacon to denote the presence of a shoal that we cannot remove," in the striking metaphor of Alexander Bryan Johnson's *Treatise on Language* (1836). Johnson's advice to readers of his pioneering work is also applicable to readers of Galileo's *Two New Sciences*, which was no less pioneering in character:

As, however, the following sheets are the painful elaboration of many years, when my language or positions shall, in a casual perusal, seem absurd (and such cases may be frequent), I request the reader to seek some more creditable interpretation. The best which he can conceive should be assumed to be my intention; as on an escutcheon, when a figure resembles both an eagle and a buzzard, heraldry decides that the bird which is most creditable to the bearer shall be deemed to be the one intended by the blazon.

This is a very good rule for reading any book worth reading at all, and especially a pioneering work. Not only does it assure a fair hearing to the author in return for his pains—and Galileo's pains were plentiful, both those he took to make his ideas clear, and those he received for doing so—but it assures the reader the maximum reward for his trouble. For how can a reader gain more from another's words than by forcing himself to arrive at the best which he can conceive?



Glossary

English terms used for Galileo's mathematical expressions

- composition (of a ratio)—the formation of one ratio from another by adding its terms and relating their sum to the second term; thus a:b becomes (a+b):b "by composition."
- compound(ed) ratio—the product of two ratios, in modern language, although multiplication of one ratio by another is not a Euclidean concept, and is not an easy one to define except for purely numerical ratios. To signal this special operation, the preposition "from" has been used before each component ratio. But where a magnitude (rather than a ratio) is said to be compounded from, or of, other magnitudes (as, for example, an impetus from or of two impetuses), then the preposition chosen by Galileo is usually retained.
- conversion (of a ratio)—taking, in place of a:b, the ratio a:(a-b).
- division (of a ratio)—the formation of one ratio from another by taking its first term in relation to the excess of that term over the second; thus a:b becomes (a-b):b "by division." (Heath's word is "separation," but Galileo calls this operation divisio.)
- duplicate(d) ratio—the squared ratio, sometimes called "doubled ratio," and occasionally even "double ratio," though the latter normally means merely the ratio 2:1. The distinction in terminology (doubled vs. double) was not always duly observed even in antiquity. When a possibility of confusion occurs in Galileo's text, the translation used here is "squared ratio" or "square of the ratio."
- equal in the square—said of a magnitude whose square is equal to the sum of the squares of two other named magnitudes. Galileo's phrases are potentia aequale, potentia aequipollet, eguale in potenza, and the like. What is meant is the rule of vector addition. The phrase derives from Euclid, Book X, with regard to magnitudes "commensurable [only] in the square." Euclid's word

dynamis (which became potentia in Latin) applied only to the square, and not to powers in general. Aristotle remarked that "It is by a change in meaning that a 'power' in geometry is so called' (Metaphysics 1019b. 33-34). Nevertheless, the idea that irrationals are "potentially" commensurable is not entirely unrelated to potentiality in its important philosophical sense in Aristotelian physics.

equidistance of ratios when two sets of magnitudes having the same number of terms are in the same proportion, the first and last terms of the first set are in the same ratio as the first and last terms of the second set; this equality of ratio is said to be proportionality "by equidistance of ratios." Thus, if A, B, C, D, ... X are related to a, b, c, d, ... x in such a way that a:b:A:B, b:c:B:C, and so on, then a:x:A:X "by equidistance of ratios," being equally separated in order. The old expression for this was proportionality ex aequali.

inverse ratio—the reciprocal of the ratio referred to. (Heath's expression for this is "alternate ratio.")

inverse proportion(ality)—If a:b::c:d, then a:b is said to be inversely proportional to d:c. The relationship is variously expressed by Galileo, usually by applying to the description of a proportionality the words "taken in inverse (or contrary) order," this phrase applying only to the second ratio named. The concept, perfectly familiar today, is not Euclidean, though it was used by Archimedes, Ptolemy, Pappus, and many early writers on mechanics, usually in clumsy expressions because the idea is as unnatural in geometry as it is convenient in physics.

mean proportional—synonymous with geometric mean; as we think of it, the square root of the product of the extremes in a numerical proportionality. Galileo often writes simply "mean"; in order to avoid confusion with the arithmetic mean (half the sum of two terms), the expression is completed here without square brackets.

number—multitude of units. The "least" number for Aristotle and Euclid was two, since one is not a multitude. What we call "the number one" was then often referred to as "unity." When Galileo suggested unity as in a sense "the infinite number," he was neither contradicting any current notion, nor indulging in mysticism; he was in effect

suggesting a place in the number system for something that at the time was not included in it.

- permutation (of a proportionality)—interchange of mean terms, strictly permissible only when all four magnitudes are of the same kind. Not a Euclidean expression. (Heath uses the word "alternately" in Euclid V. 16, but no corresponding word occurs in the Greek text, and to me Heath's choice would be appropriate only if we also used his choice for "inverse," q.v.)
- perturbed equidistance of ratios when two sets of three magnitudes each happen to be such that a:b::B:C and b:c::A:B, then a:c::A:C "by perturbed equidistance"; cf. "equidistance of ratios," above.
- ratio—a quantitative relationship between two magnitudes of the same kind, of which either can be made to exceed the other by multiplication. In Galileo's day, a ratio was never confused with the numbers by which it is expressed, or with a fraction; still less, with any quantity or magnitude. A ratio was strictly a relation of two magnitudes. We ignore the ancient distinctions because our concept of "number" (q.v.) is utterly different from Euclid's; our real number system includes irrationals and transcendentals, though those are certainly not "multitudes of units" any more than zero, or one, is a multitude of units.

triplicate(d) ratio—the cube of the ratio named; cf. "duplicate(d) ratio," above.

Galileo's physical terms and their English translations

braccio— a measure of length, here left untranslated. Pronounced bráh-cho; plural braccia, bráh-cha. Literally, an arm; the Florentine braccio of Galileo's time was 58.4 cm., or about an inch less than two feet. "Foot" is used here for a half-braccio. Other measures are rendered in English by using familiar approximate equivalents.

conficere—traverse. In classical Latin, this word of Galileo's for moving through a distance did not have that sense, but rather the sense of "make" or "complete" or (by transference) of "diminish," because the action of a thing often reduces or destroys it. Conficere was not in common use for motion at Galileo's time, though it is found in some of his earliest notes on motion. There, as in his published books, it alternates with peragere; conficere

seems to be relatively more frequent in his later fragments on motion. In order that the reader may know which term Galileo chose in each instance for the idea of traversing, peragere is translated as "run through," having perhaps a slightly more active sense. Other words, in more common usage at the time, are transire and pertransire, though these are seldom found in the Two New Sciences. When they do occur, they are translated as "go through" and "pass through." All the above words are associated with a distance or space; when the subject is motion itself, or time, Galileo's usual word is absolvere, translated here as "finish," or, when related to space, "cover."

equabile equable. This is synonymous with "uniform," the word commonly used by medieval as by modern physicists. For some reason Galileo seldom employed "uniform" except conjoined with, and as a further explanation of, "equable." When "uniform" occurs in

the text, it is literally translated here.

gravità—heaviness. This means the tendency of a body having weight (peso) to move downwards. Heaviness, the tendency, was not regarded as identical with weight, the property, though it was measured thereby. Sometimes both words appear in the same sentence. Occasionally gravità, which persists during free fall, is distinguished from peso, which disappears during free fall, in somewhat the way we new distinguish mass from weight, allowing for the fact that Galileo's physics deals only with bodies near the earth's surface. When the plural is used, gravità is translated "weights" for convenience of reading. It is translated "gravity" only when opposed to "levity," a quality imputed by Aristotle (but rejected by Galileo) to things that seem to go naturally upward.

impeto impetus. This word is usually treated by Galileo as freely interchangeable with momento, discussed below. In one instance Galileo speaks of the impetus of a weight that is merely laid on a stake, suggesting that impetus could be considered as existing in virtual as well as in actual motion. Impetus is sometimes treated as if synonymous with "speed," but only when two motions of the same body are being compared, so that the weight component of momento is the same in both cases and can be neglected. In the earlier Dialogue, impetus was spoken of as "impressed force," but Salviati refuses to endorse

this usage in the present book. Impetus here, like force, is more an effect than a cause of motion. It is usually not distinguished from the motion itself when the motion in question is that of a heavy body.

infiniti—infinitely many. In a few instances, "infinitely great," when the context refers to magnitude rather than quantity.

latio—movement. This translation enables the reader to know when Galileo has departed from the much more usual motus, "motion," which is synonymous. The word is uncommon in this sense, but occurs in the first published Latin translation (1544) of Archimedes' On Spiral Lines, as pointed out to me by Dr. Winifred Wisan.

mobile—moveable. This unattractive English noun, so spelled here in order to distinguish it from the adjective "movable" that also occurs sometimes, is in my opinion required because of technical and philosophical implications that would be introduced by the free translation. "movable body." That term was used by Albertus Magnus, whose pupil Thomas Aquinas disputed its propriety and preferred "movable entity," because the nature of body is not the proper subject of physics, but of metaphysics. It was Descartes, and not Galileo, who introduced the word body (cor(p)s, corpus) into modern physics. In earlier physics, the moveable (mobile) was always distinguished from the mover (movens, motor). and "moving body" as a translation of mobile might imply to the modern reader a body that causes another to move. Galileo's "moveable" is always to be thought of as a tangible heavy object near the earth's surface. It is, moreover, a thing that is acted on rather than one that acts, unless the context shows it to be both.

momento moment (pl. moments) or momentum (pl. momenta.) The latter translation is used when the context implies motion. Static moment is conceived by Galileo as the effective downward tendency of a weight acting through a lever arm, and he treats it as the product of weight and distance, in that any change in one is exactly compensated by an inversely proportional change in the other. Momentum, on the other hand, is the combined tendency of weight and speed; near the earth, an equivalent to our normal concept of momentum expressed as mv. Galileo also uses the phrase momento di..., translated "moment of" and meaning roughly

"effectiveness of" speed, or heaviness, or the like an idea sometimes also conveyed by grado di..., or

"degree of."

mutatio displacement. This term is infrequently used by Galileo, and seems not to have been meant as essentially different from latio or motus. In Aristotle, it distinguished overall change between termini from actual motion through the intervening interval, whence a "mutation" could be truly instantaneous, whereas motion could not. The translation "displacement" enables the reader to tell when this word was used; "mutation" was avoided because of its ordinary English connotation of change of quality.

parti non quante-unquantifiable parts. Cf. parti quante, below. Salusbury and Weston used the seemingly more logical term, "unquantified parts," but this creates confusion with a third classification that Galileo uses: "parts neither quantified nor unquantifiable, but corresponding to any assigned number"-that is, not infinitely numerous, but indefinitely many. The essential characteristic of "unquantifiable parts" is that they are uncountable and are devoid of size; they can exist only in infinite aggregates, which aggregates are necessarily of finite size, yet not of unique size. As individual parts, or in aggregates necessarily finite in number (if such a thing were conceivable), unquantifiable parts would have no size and would in every way be equivalent to mathematical points, except as to a physical distinction that Galileo occasionally makes between "filled" and "void" points.

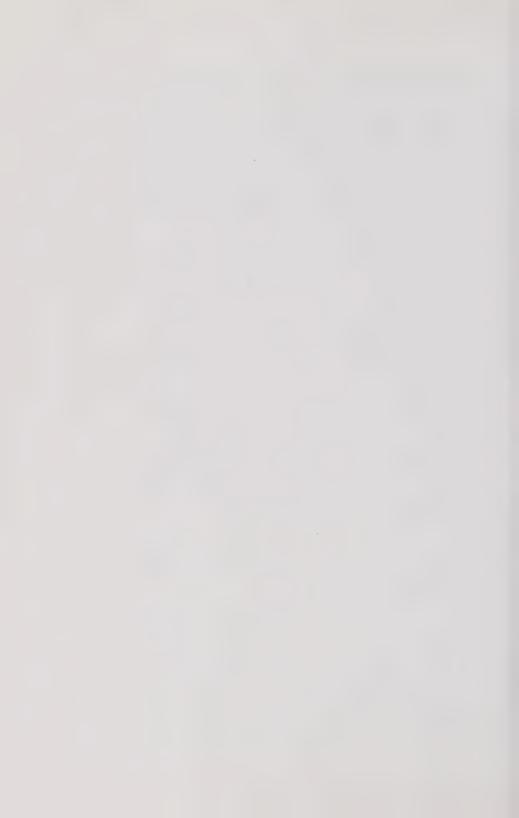
parti quante—quantified parts. This is the expression adopted by both Salusbury and Weston. The concept is a technical one, and it deserves a recognizably technical term in translation. Quantified parts are capable of being counted; hence they must have dimensions and cannot be mathematical points. Usually it is the idea of countability that is emphasized by Galileo, so that quante has chiefly the sense of "so many." Sometimes, however, the idea of size is emphasized, and then quante has the sense of "so big." Quantified parts are always capable of being divided, and hence they are not in general to be identified with the minima naturalia so important in debates of medieval Aristotelians. Minima naturalia would make up

that special class of parti quante which happened to be incapable of division for physical, rather than for mathematical, reasons. Galileo appears to accept the existence in nature of such particles (atoms), incapable of physical division without transformation into something else (such as fire, or light); but he does not discuss this concept in detail in this book.

resistente—resistent. This spelling distinguishes the noun from the adjective "resistant." It is applied to the medium, or to some other body offering resistance to the motion of the moveable under discussion.

vacuo--void. The translation "vacuum" would probably be misleading even in those passages in which the exclusion of air alone is meant, and even though Galileo does occasionally use the word voto, which means literally "void," and is so translated. Likewise, vacuo when used adjectivally has been translated as "void" rather than as "empty," because the question debated is always the possibility of void spaces in nature existing in the normal physical world, and not as the result of force or artifice. Two kinds of void were customarily debated, distinguished by their sizes. Most writers felt less repugnance against interstitial voids than against macroscopic voids. Aristotle rejected both: but, as Galileo pointed out, Aristotle's main argument had been directed against any void within which some motion was conceivable. For that reason. Galileo implied in at least one place that his dimensionless interstitial point-voids might not have been rejected even by Aristotle.

velocità- speed. The scalar quantity, without regard to direction. In the Fourth Day, Galileo does give rules for vector addition, but there speaks of impeto rather than of velocità



Short Titles Used in Footnotes

Assayer Galileo, The Assayer, in S. Drake and

C. D. O'Malley, The Controversy on the Comets of 1618. Philadelphia, 1960.

Bodies in Water Galileo, Discourse on Bodies in Water,

tr. T. Salusbury. Urbana, 1960.

Dialogue Galileo, Dialogue Concerning the Two Chief World Systems, tr. S. Drake.

Berkeley and Los Angeles, 1953 or 1967.

Mechanics in Italy S. Drake and I. E. Drabkin, Mechanics

in Sixteenth-Century Italy. Madison,

1969.

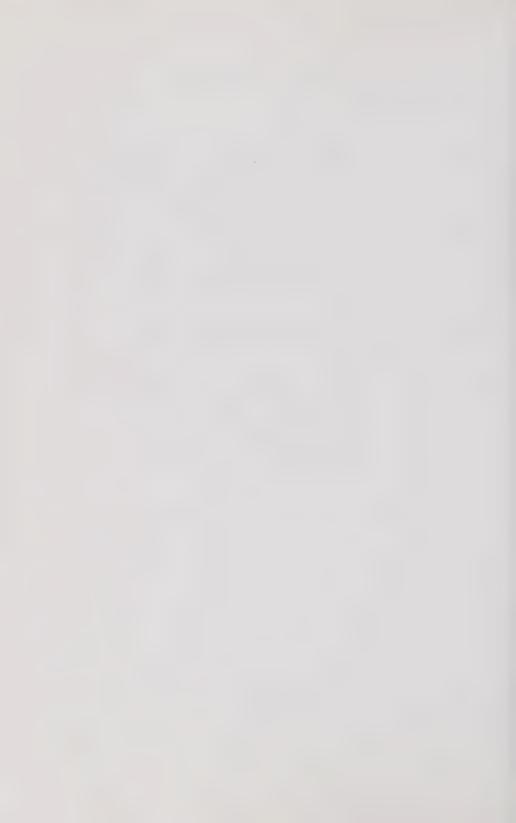
On Mechanics I. E. Drabkin and S. Drake, Galileo: On On Motion Motion and On Mechanics. Madison,

1960.

Opere di Galileo Galilei, ed. A. Favaro.

Edizione Nazionale. Florence, 1890-1910, or reprint editions (see item 14, in Bibliography). Citations without volume number refer to Vol. VIII, for which paginations are shown in the

present volume.



Two New Sciences

DISCORSI

E

DIMOSTRAZIONI

MATEMATICHE,

intorno à due nuoue scienze

Attenenti alla

MECANICA & 1 MOVIMENTI LOCALI,

del Signor

GALILEO GALILEI LINCEO,

Filosofo e Matematico primario del Serenissimo Grand Duca di Toscana.

Con una Appendice del centro di gravità d'alcuni Solidi.

IN LEIDA,
Appresso gli Essevitii. M. D. C. XXXVIII.

Galileo Galilei

Lincean Academician

Chief Philosopher and Mathematician to the Most Serene Grand Duke of Tuscany

Discourses

80

Mathematical Demonstrations Concerning

Two New Sciences

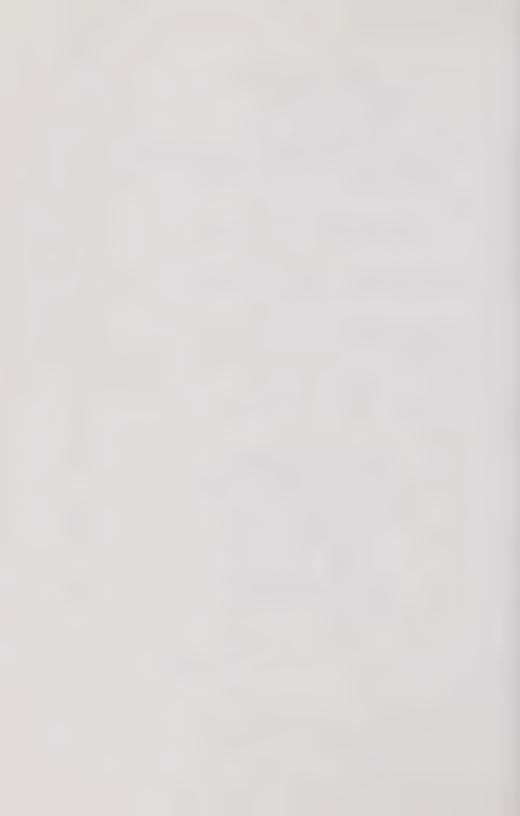
Pertaining to Mechanics & Local Motions

With an Appendix
On Centers of Gravity of Solids

Leyden

At the Elzevirs, 1638

To which is added a further dialogue On the Force of Percussion



To the very illustrious nobleman, my Lord the

Count de Noailles

Councilor to his Most Christian Majesty;

Knight of the Holy Ghost;

Field Marshal of the Armies; Sensechal and
Governor of Rovergue; His Majesty's Lieutenant at

Auvergne; my lord and supreme patron

Most illustrious Sir:

I recognize as resulting from your excellency's magnanimity the disposition you have been pleased to make of this work of mine, notwithstanding the fact that I myself, as you know, being confused and dismayed by the ill fortune of my other works, had resolved not to put before the public any more of my labors. Yet in order that they might not remain completely buried. I was persuaded to leave a manuscript copy in some place, that it might be known at least to those who understand the subjects of which I treat. And thus having chosen, as the best and loftiest such place, to put this into your excellency's hands, I felt certain that you, out of your special affection for me, would take to heart the preservation of my studies and labors. Hence, during your passage through this place on your return from your Roman embassy, when I was privileged to greet you in person (as I had so often greeted you before by letters). I had occasion to present to you the copy that I then had ready of these two works. You benignly showed yourself very much pleased to have them, to be willing to keep them securely, and by sharing them in France with any friend of yours who is apt in these sciences, to show that although I remain silent. I do not therefore pass my life in entire idleness.

I was later preparing some other copies to send to Germany, Flanders, England, Spain, and perhaps also to some place in Italy, when I was notified by the Elzevirs that they had these works of mine in press, and that I must therefore decide about the dedication and send them promptly my thought on that subject. From this unexpected and astonishing news, I

concluded that it had been your excellency's wish to clevate and spread my name, by sharing various of my writings, that accounted for their having come into the hands of those printers who, being engaged in the publication of other works of mine, wished to honor me by bringing these also to light at their handsome and elaborate press. Thus these writings of mine are to be revived through their having had the good fortune to fall under the award of so great a judge. In that marvelous combination of many virtues that render your excellency admirable to all, with incomparable magnanimity and out of zeal for the public good, to which it seemed to you these writings of mine should contribute, you have desired to widen the limits and boundaries of their honor.

Now that matters have arrived at this stage, it is certainly reasonable that, in some conspicuous way. I should show myself grateful by recognizing your excellency's generous affection. For it is you who have thought to increase my fame by having these works spread their wings freely under an open sky, when it appeared to me that my reputation must surely remain confined within narrower spaces. Hence to your name, illustrious Lord, it is right that I dedicate and consecrate this offspring of mine. To this action I am impelled not only by the accumulation of my obligations, but by self-interest as well, for if I may be permitted to say so, you are now obliged to defend my reputation against anyone who attacks it, you having entered me in the lists against all adversaries. Wherefore, advancing under your banner and your protection, I humbly make obeisance to you, and wish you, as the reward of these graces, the summit of all happiness and greatness. From Arcetri, the sixth of March 1638.

From your Excellency's

Most devoted servitor GALILEO GALILEI

The Printer to the Reader

Civil life being maintained through the mutual and growing aid of men to one another, and this end being served principally by the employment of arts and sciences, their inventors have always been held in great esteem and much revered by wise antiquity; and the more excellent or useful an invention has been, the greater the praise and honor given to its inventors, even to the point of deifying them, manking having by common consent wished to perpetuate the memory of the authors of their well-being through that sign of supreme honor. Similarly, those are worthy of great praise and admiration who by the acuity of their minds have improved things previously discovered, revealing the fallacies and errors of many propositions put forth by distinguished men and received as truth for many ages. For such exposure is praiseworthy even if the discoverers themselves have but removed something false without introducing the truth, which is hard to acquire. Thus the prince of orators declares: "Oh. that we could get at truth as easily as we refute falsehood!"1

And indeed such praise has been earned by these last centuries of ours in which the arts and sciences discovered by the ancients, through the work of perspicacious talents and by many tests and proofs, have been brought to great and ever-increasing perfection. This is particularly evident in the mathematical sciences, in which (omitting many others who have worked in them with great success) our Signor Galileo Galilei, Lincean Academician, has earned the highest place rightly and beyond any doubt, and with the applause and approval of all experts, both by his having shown the inconclusiveness of many arguments concerning various conclusions, confirming this through sound demonstrations with which his previously published works are filled, and also through things discovered by means of the telescope -which device first appeared in these our lands, but was brought to much higher perfection by him. For he gave us news before anyone else of those four companions of Jupiter, of the true and certain nature of the Milky Way, of sunspots, of the rough surface and dark spots of the moon, of three-bodied Saturn,

horned Venus, and of the nature and location of comets—all of these being things never known by ancient astronomers or philosophers, so that it may be said that he has restored astronomy and presented it to the world in a new light. Inasmuch as it is in the skies and heavenly bodies that the power, wisdom, and goodness of the supreme Creator appear more evidently and admirably than in the rest of created things, all this enhances the greatness and merit of a man who has opened up this knowledge and rendered such bodies distinctly visible despite their great and almost infinite distance from us. For it is commonly said that seeing teaches more in a single day, and with greater certainty, than can instruction however many times repeated. And as another says, intuitive knowledge is on a level with definition.

The grace conceded to this man by God and nature (though only through many labors and vigils) is still more evident in the present work, wherein he is seen to be the discoverer of two whole new sciences, which he has conclusively-that is, geometrically-demonstrated from their first principles and foundations. What renders this work even more remarkable is that one of these two sciences concerns an age-old subject, among the most important in nature, which has been the subject of speculation by all great philosophers, and upon which many volumes have been written. I speak of local motion, a matter containing an infinitude of wonderful properties, none of which has been previously discovered or demonstrated by anyone. The other science that he has demonstrated concerns the resistance which solid hodies make against separation by force, a subject of great utility, especially in the mechanical arts and sciences, and likewise full of phenomena and theorems not previously noticed.

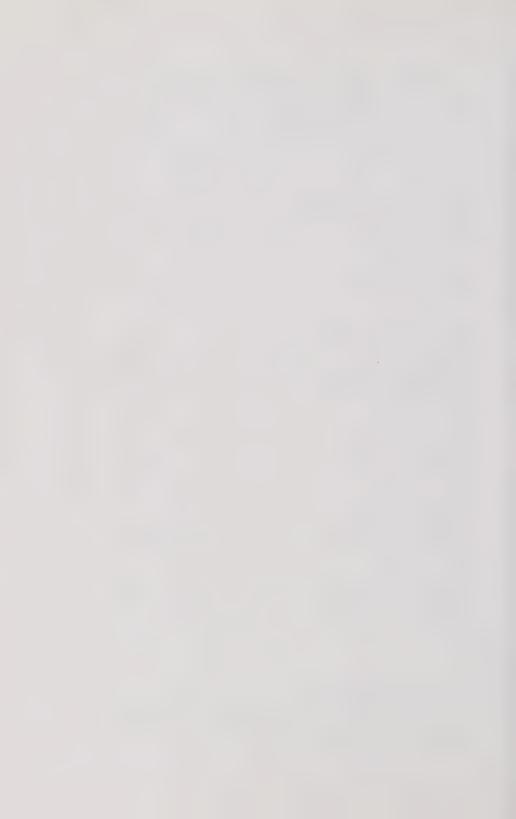
Of these two new sciences, full of propositions that will be boundlessly increased in the course of time by ingenious theorists, the outer gates are opened in this book, wherein with many demonstrated propositions the way and path is shown to an infinitude of others, as men of understanding will easily see and acknowledge.

Table of the Principal Matters That Are Treated in the Present Work

First new science, concerning the resistance of solid bodi to separation.	es	ürst Day,	page 11
What may be the cause of cohesion.	II Se	econd Day,	page 109
Second new science, of local motions. Of uniform motions, page Of naturally accelerated motion, page 153		hird Day,	page 147
Of violent motion, or of projectiles.		ourth Day,	page 217
Appendix of some propositionand demonstrations concerning the center of gravity of solids.	v ns		page 261
	[v1]		
[Of the force of percussion. ²	Ac	dded Day, - p	page 281]

1. This table of contents reversing the essential content of the two first days, was prepared by the Elzevirs.

^{2.} Sometimes called the Sixth Day, this incomplete dialogue was first published in 1718, as part of the second collected edition of Galileo's works. A so-called Fifth Day, first published by Vincenzio Viviani (1622–1703) in 1674, does not belong to this book.



Interlocutors: Salviati, Sagredo and Simplicio

Salviati. Frequent experience of your famous arsenal, my Venetian friends, seems to me to open a large field to speculative minds for philosophizing, and particularly in that area which is called mechanics, inasmuch as every sort of instrument and machine is continually put in operation there. And among its great number of artisans there must be some who, through observations handed down by their predecessors as well as those which they attentively and continually make for themselves, are truly expert and whose reasoning is of the finest.

Sagredo. You are quite right. And since I am by nature curious, I frequent the place for my own diversion and to watch the activity of those whom we call "key men" [Proti] by reason of a certain preëminence that they have over the rest of the workmen. Talking with them has helped me many times in the investigation of the reason for effects that are not only remarkable, but also abstruse, and almost unthinkable. Indeed, I have sometimes been thrown into confusion and have despaired of understanding how some things can happen that are shown to be true by my own eves, things remote from any conception of mine. Nevertheless, what we were told a little while ago by that venerable workman is something commonly said and believed, despite which I hold it to be completely idle, as are many other things that come from the lips of persons of little learning, put forth, I believe, just to show they can say something concerning that which they don't understand.

Salv. You mean, perhaps, that last remark that he offered when we were trying to comprehend the reason why they make the sustaining apparatus, supports, blocks, and other strengthening devices so much larger around that huge galley that is about to be launched than around smaller vessels. He replied that this is done in order to avoid the peril of its splitting under the weight of its own vast bulk, a trouble to which smaller boats are not subject.

Sagr. I mean that, and particularly the finishing touch that he added, which I have always considered to be an idle notion of the common people. This is that in these and similar frameworks one cannot reason from the small to the large, because many mechanical devices succeed on a small scale that cannot exist in great size. Now, all reasonings about mechanics have their foundations in geometry, in which I do not see that largeness and smallness make large circles, triangles, cylinders, cones, or any other figures [or] solids subject to properties different from those of small ones; hence if the large scaffolding is built with every member proportional to its counterpart in the smaller one, and if the smaller is sound and stable under the use for which it is designed, I fail to see why the larger should not also be proof against adverse and destructive shocks that it may encounter.

Salv. The common notion is indeed an idle one, so much so that with equal truth its contrary may be asserted; one may say that many machines can be made to work more perfectly on a large scale than on a small one. For example, take a clock that is both to show the hours and to strike; one of a certain size will run more accurately than any smaller one. The common idea is adopted on better grounds by some persons of good understanding when, to explain the occurrence in large machines of effects not in agreement with pure and abstract geometrical demonstrations, they assign the cause of this to the imperfection of matter, which is subject to many variations and defects.

51

Here I do not know whether I can declare, without risking reproach for arrogance, that even recourse to imperfections of matter, capable of contaminating the purest mathematical demonstrations, still does not suffice to excuse the misbehavior of machines in the concrete as compared with their abstract ideal counterparts. Nevertheless I do say just that, and I affirm that abstracting all imperfections of matter, and assuming it to be quite perfect and inalterable and free from all accidental change, still the mere fact that it is material makes the larger framework, fabricated from the same material and in the same proportions as the smaller, correspond in every way to it except in strength and resistance against violent shocks [invasioni]; and the larger the structure is, the weaker in proportion it will be. And since I am assuming matter to be inalterable—that is, always the same it is evident that for this [condition] as for any other eternal and necessary property, purely mathematical demonstrations can be produced that are no less rigorous than any others.

Therefore, Sagredo, give up this opinion you have held, perhaps along with many other people who have studied mechanics, that machines and structures composed of the same materials and having exactly the same proportions among their parts must be equally (or rather, proportionally) disposed to resist (or yield to) external forces and blows [impeti]. For it can be demonstrated geometrically that the larger ones are always proportionately less resistant than the smaller. And finally, not only artificial machines and structures, but natural ones as well, have limits necessarily placed on them beyond which neither art nor nature can go while maintaining always the same proportions and the same material.

Sagr. Already I feel my brain recling, and like a cloud suddenly cleft by lightning, it is troubled. First a sudden and unfamiliar light beckons to me from afar, and then immediately my mind becomes confused, and hides its strange and undigested fancies.

From what you have said, it seems to me, must follow the impossibility of constructing two similar and unequal structures of the same material that would have proportionate resistance. But if that is so, it will be impossible even to find two sticks of the same wood that differ in size and are nevertheless similar in strength and stability.

Salv. So it is, Sagredo. And the better to make sure that we both have the same idea, I say that if we shape a wooden rod to a length and thickness that will fit into a wall at right angles, horizontally, and the rod is of the greatest length that can support itself, so that if it were a hairbreadth longer, it would break of its own weight, then that rod will be absolutely unique [in shape and size]. For example, if its length is one hundred times its thickness, then no different rod of the same material can be found which has, like this, a length one hundred times its thickness, and is just able to sustain its own weight and no more; for longer bars will break, and shorter ones will be able to sustain something more than their own weights. And what I have said about the state of self-support, assume to be said about any other constituents [constituzione]; thus if a scantling can bear the weight of ten like scantlings, a [geometrically] similar beam

will by no means be able to bear the weight of ten like beams.

Here you and Simplicio must note how conclusions that are true may seem improbable at a first glance, and yet when only some small thing is pointed out, they cast off their concealing cloaks and, thus naked and simple, gladly show off their secrets. For who does not see that a horse falling from a height of three or four braccia will break its bones. while a dog falling from the same height, or a cat from eight or ten, or even more, will suffer no harm? Thus a cricket might fall without damage from a tower, or an ant from the moon. Small children remain unburt in falls that would break the legs, or the heads, of their elders. And just as smaller animals are proportionately stronger or more robust than larger ones, so smaller plants will sustain themselves better. I think you both know that if an oak were two hundred feet high, it could not support branches spread out similarly to those of an oak of average size. Only by a miracle could nature form a horse the size of twenty horses, or a giant ten times the height of a man unless she greatly altered the proportions of the members, especially those of the skeleton, thickening the bones far beyond their ordinary symmetry.

Similarly, to believe that in artificial machines the large and small are equally practicable and durable is a manifest error. Thus, for example, small spires, little columns, and other solid shapes can be safely extended or heightened without risk of breaking them, whereas very large ones will go to pieces at any adverse accident, or for no more cause than that of their own weight.

Here I must tell you of a case really worth hearing about, as are all events beyond expectation, especially when some precaution taken to prevent trouble turns out to be a powerful cause thereof. A very large column of marble was laid down, and its two ends were rested on sections of a beam. After some time had elapsed, it occurred to a mechanic that in order to insure against its breaking of its own weight in the middle, it would be wise to place a third similar support there as well. This suggestion seemed opportune to most people, but the result showed quite the contrary. Not many months passed before the column was found cracked and broken, directly over the new support at the center.

Simp. A truly remarkable event, and most unexpected, if indeed this was due to the addition of the new support in the middle.

Salv. It surely did result from that, and to recognize the cause of the effect removes the marvel of it. For the two pieces of the column being placed flat on the ground, it was seen that the beam-section on which one end had been supported had rotted and settled over a long period of time, while the support at the middle remained solid and strong. This had caused one half of the column to remain suspended in the air; and, abandoned by the support at the other end, its excessive weight made it do what it would not have done had it been supported only on the two original [beams], for if one of them had settled, the column would simply have gone along with it. And doubtless no such accident would have happened to a small column of the same stone, if its length bore to its thickness the same ratio as that of the length to the thickness of the large column.

Sagr. Thus far I am convinced of the truth of the effect, but stop short of the reason why any material, in becoming larger, should not by that very accumulation [of size] multiply its resistance and its strength. I am the more puzzled by seeing other cases in which there is a much greater increase in hardiness and resistance to rupture than there is in size of material. For example, if two nails are driven into a wall, and one is twice as thick as the other, it will hold not only twice the weight, but three or four times as much.

Salv. Say eight times, and you will not be far from the truth. But this effect is not contrary to that other, although superficially it seems to be.

Sagr. Then smooth out for us these rough spots, Salviati, and clear up these obscurities, if you have any way of doing so, for indeed I am beginning to think that this subject of resistance is a field full of beautiful and useful considerations. And if you are willing that it be made the subject of our discussions today, that will be most welcome to me, and I believe to Simplicio.

Salv. I cannot refuse to be of service, provided that memory serves me in bringing back what I once learned from our Academician [Galileo] who made many speculations about this subject, all geometrically demonstrated, according to his custom, in such a way that not without reason this could be called a new science. For though some of the conclusions have been noted by others, and first of all by Aristotle, those are not the prettiest; and what is more important, they were not proved by necessary demonstrations from their primary and unquestionable foundations.

Since, as I say, I want to prove these to you demonstratively, and not just persuade you of them by probable arguments, I assume that you have that knowledge of the basic mechanical conclusions that have been treated by others up to the present which will be necessary for our purpose.

First of all, we must consider what effect is at work in the breaking of a stick, or of some other solid whose parts are firmly attached together; for this is the primary concept, and it contains the first simple principle that must be assumed as known. To clarify this, let us draw the cylinder or prism AB, of wood or other solid and coherent material, fastened above at A, and hanging plumb; at the other end, B, let the weight C be attached. It is manifest that whatever may be the tenacity and mutual coherence of the parts of this solid, provided only that that is not infinitefly strongl, it can be overcome by the force of the pulling weight C, of which the heaviness [gravità] can be increased as much as we please, and that this solid will finally break, just like a rope. And just as we understand that the resistance of a rope is derived from the multitude of hempen fibers that compose it, so in wood there are seen fibers and filaments stretched out lengthwise which render it even more resistant to breakage than hemp of the same length would be. In a stone or metal cylinder, the coherence of parts seems still greater, and depends on some other cement than that of filaments or fibers. Yet even these [cylinders] are broken by a sufficient pull.

Simp. If this business proceeds as you say, I understand how the filaments in wood, which are as long as the wood itself, can render it strong and resistant to the great force that is applied to break it. But how can a rope, composed of threads of hemp no longer than two or three braccia each, be made one hundred braccia long and still remain so strong? I should also like to hear your opinion concerning that attachment between the parts of metals, stones, and other materials devoid of such filaments but nevertheless, if I am not mistaken, still more tenacious.

Salv. It would be necessary to diverge to new speculations, not very relevant to our purpose, if we wanted to find the solutions of the difficulties mentioned.

Sagr. If digressions can bring us knowledge of new truths, why should they trouble us? We are not committed to any closed and concise method, but meet only for our own plea-

17

sure. If we digress now, it is in order not to lose information: who knows, if we let this occasion pass, that we shall meet with it again some other time? In fact, how do we know that we shall not discover curious things that are more interesting than the answers we originally sought? Hence I beg you to give Simplicio satisfaction: nor am I less curious about this than he is, or less desirous of knowing what that cement may be that so tenaciously holds together the parts of solids, which are nevertheless ultimately sundered. Moreover, this knowledge is necessary for an understanding of the coherence between the parts of those very filaments of which some solids are composed.

Salv. I am here to be of service, so let it be as you please. The first difficulty is how the filaments of a rope one hundred braccia long, each of these extending no more than two or three braccia, can be so solidly connected together that great force [violenza] is needed to part them. Well, Simplicio, tell me; can you not hold one end of a single thread of hemp between your fingers to tightly that I, pulling at the other end, will break it before freeing it from your hand? Surely you can. Now, if the threads of hemp were not just held strongly at one end, but were tightly held throughout their lengths by the threads surrounding them, is it not evident that it would be much harder for a person who pulled them to tear them away from one another than to break them? But the very act of twisting [in making] rope binds the threads mutually in such a way that later, when the rope is pulled with great force, its filaments will break rather than separate from one another. This is manifestly known by seeing that the filaments at the broken ends are very short, and not one braccio or more in length, as would be seen if the parting of the rope were made not by a breaking of its filaments, but by their mere separation one from another, and their slipping.

Sagr. In confirmation of this it may be added that sometimes rope is broken not by pulling it lengthwise, but merely by excessive twisting of it. This seems to me to argue conclusively that its threads have been mutually compressed among themselves in such a way that those pressing do not permit those pressed to move even that little bit that would allow the fouter turns to stretch sufficiently to encircle the rope, which in being twisted is shortened and consequently somewhat thickened.

Salv. Right you are: and now see how one truth draws another in its train. That tightly held thread, which does not obey the person who pulls on it with some force and tries to draw it out from between the fingers, resists because it is retained by a double compression, for the upper finger presses against it no less than the lower, the one pressing against the other. Doubtless if those two pressures could be separated, one alone would produce one-half the resistance that depends on the two conjoined. But since we cannot, by raising the upper finger for example, take away its pressure without also removing the rest, we need some new device to preserve finstl one pressure, finding a way in which the thread shall press itself against the finger or some other solid body on which it is situated. We have to arrange things so that the same force, pulling to free the filament, presses it only the harder, the more strongly it pulls; and this is done by winding the thread spirally around the solid.

For better understanding, I shall draw a diagram. Let AB and CD be two cylinders, between which is the thread EF, which for greater clarity we shall draw as a small cord. There is no doubt that if the two cylinders are pressed strongly one against the other, the cord FE, pulled at end F, will withstand considerable force before it will move between the two pressing solids, though if we remove one of these while the cord continues to touch the other, it will not be kept by that [single] contact from running freely. But if we hold it lightly against the top of cylinder A and wind it round in the spiral AFLOTR, then when we pull this by the end R, it will obviously begin to bind on the cylinder. If the turns of the spiral are numerous, and we pull hard, the cord will be always more compressed against the cylinder: and if the contact is extended by multiplying the [turns of thel spiral, it will be less capable of being overcome, and it will be harder and harder to move the cord in compliance with the pulling force. Now who does not see that such is the resistance of those filaments which, together with thousands of like windings, make up the thick rope? Indeed, such binding by twisting cements things so tenaciously that from a few rushes, and not very long ones, woven with but few turns, very strong cord is made that I believe is called pack twine.

Sagr. As a result of your train of reasoning, my mind pauses at the marvels of two effects for which the reasons

were never before well understood by me. One is the effect of two or three turns of hemp around the drum of a winch; this will not only hold firmly, but will not give way to slipping even though pulled with immense force by a weight it sustains. Moreover, the winch being turned, its drum can lift and draw up great stones with successive revolutions, merely by the contact of the rope that binds the drum; and the arms of a mere boy can hold that rope and draw in the slack.

The other effect is that of a simple but clever device invented by a young kinsman of mine, to enable him to descend from a window by means of a rope without cruelly cutting the palms of his hands, as had happened a short time before to his considerable injury. For easy understanding I shall make a little sketch. Around a wooden cylinder AB, as thick as a cane and four inches long, he carved a spiral channel of one and one-half turns, no more, just wide enough to fit the cord he wished to use: this entered the channel at A and emerged at B. Then he enclosed the cylinder and cord with a tube of wood or sheet metal, slit lengthwise and hinged so that it could be freely opened and closed. Holding this tube and pressing with both hands, the cord having been tied to a fixed object above, he hung by his arms, and with pressure on the cord between tube and cylinder he could at will hold himself without dropping, by pressing his hands strongly, or by relaxing his grip somewhat, drop slowly at his pleasure.

Salv. Truly an ingenious invention, though for a complete explanation of its nature I can already see dimly that some additional theory needs to be added. But I do not wish now to digress on this subject, especially since you want to hear my thoughts about resistance to breakage on the part of other bodies, whose texture is not of filaments, as is that of ropes and most kinds of wood, but whose parts cohere by reason of other causes. These, in my opinion, may be reduced to two kinds, one of which is the celebrated repugnance that nature has against allowing a void to exist. The other, when this of the void is deemed insufficient, requires the introduction of some sticky, viscous, or gluey substance that shall tenaciously connect the particles of which the body is composed.

I shall speak first of the void, showing by clear experiences the nature and extent of its force. To begin with, we may see whenever we wish that two slabs of marble, metal, or glass,

exquisitely smoothed, cleaned, and polished and placed one on the other, move effortlessly by sliding, a sure argument that nothing gluey joins them. But if we want to separate them while keeping them parallel, we meet with resistance: for the upper slab in being raised draws the other with it, and holds it permanently even if it is large and heavy. This clearly shows nature's horror at being forced to allow, even for a brief time, the void space that must exist between the slabs before the running together of parts of the surrounding air shall occupy and fill that space. It is also observed that if the two surfaces are not perfectly clean, so that their contact is not everywhere perfect, and we want to separate them slowly, the only resistance we feel is that of the heaviness lof the upper slab), whereas in rapid separation the lower stone is also lifted and immediately falls back, following the upper one only during the brief time that suffices for the expansion [distrazzione] of the small amount of air between the imperfectly fitting surfaces, and for entrance of surrounding air. Doubtless the resistance that is so sensibly perceived between the two surfaces likewise resides between the parts of a solid, and enters into their attachment at least to some extent, and as a concomitant cause.

60

Sagr. Please pause here, and allow me to mention a certain idea that has just now come to mind. Seeing the lower slab follow the upper when that is lifted with swift motion assures us that motion in the void would not be instantaneous despite the opinion of many philosophers, and perhaps of Aristotle himself.1 For if it were, the two surfaces would be separated without any resistance whatever, the same instant of time sufficing for their separation and for the running together of the surrounding air to fill the void that might [otherwise] remain between them. Thus, from the following of the upper slab by the lower, it is deduced that motion in a void would not be instantaneous. It is then further deduced that some void indeed does remain between the surfaces, at least for a very brief time; that is, for as long as the time consumed by the ambient air in running to fill this void. For if no void existed there, neither would there be any need on the part of the ambient air of running together.

^{1.} Aristotle had argued against the existence of a void by a *reductio ad absurdum* which invoked speed of motion and the principle that there can be no ratio between the finite and the non-existent or the infinite. Cf. *Physica*, 215a.24, 216a.26, and see note 26, below.

or of any other motion. Hence we must say that by force (or contrary to nature) a void is sometimes to be admitted—though in my opinion nothing is contrary to nature save the impossible, and that never happens.

But here another difficulty arises, and this is that although experience assures me of the truth of the conclusion, my mind is still not entirely satisfied about the cause to which the effect is to be attributed. For the effect of separating the two surfaces occurs prior to the [existence of this] void, which consequently follows the separation. Now, it seems to me that the cause should precede the effect, in time at least, if not in physical existence [natura]; also, that for a positive effect, there should be a positive cause. Hence I cannot see how the cause of adherence of the two slabs and their repugnance to being separated—effects that are actual—can be a void that does not exist [first], but which must follow. And there can be no action by things that do not exist, according to the definite statement of the Philosopher.²

Simp. Since you concede this axiom to Aristotle, I don't think you will ignore another that is elegant and true; namely, that nature does not undertake to do that which refuses [repugna] to be done; from this pronouncement it seems to me that there follows a solution of your problem.³ Since void space is self-refusing, nature prohibits any action in consequence of which a void would follow, and such is the separation of the two surfaces.

Sagr. Well, assuming that what Simplicio adduces is an adequate resolution of my doubt, it seems to me that this same refusal of a void should be sufficient to hold together the parts of a stone or metal solid, or of things [even] more firmly joined and resistant to division, should any exist. If for one effect there is only one cause, as I have always understood and believed (or if many are assigned, they are reducible to one), then why won't this one of the void, which surely does exist, suffice also for all resistances [to separation]?

Salv. I do not wish at present to enter into a contest as to whether the void is in itself enough, without any other retainer, to hold united the separable parts of coherent

2. Cf. Physica 225a,25-26; De anima 217a,17

^{3.} Cf. De caelo 311b.33; see also Dialogue, p. 19 (Opere, VII, 56), where the axiom ascribed by Galileo to Aristotle is the same, but does not exactly agree with the reference cited above. In this sentence, the 1638 edition reads "our problem." Favaro adopted the better reading of the Pieroni MS.

[consistenti] bodies. But I will say that the void which fights and is vanquished between two plates is not in itself enough reason for the firm bonding [collegamento] of the parts of a solid marble or metal cylinder which, strained [violentate] by strong forces pulling them directly, are finally separated and divided. Now, if I can find a way to distinguish this known resistance, that depends on the void, from any other resistance, whatever it may be, that joins with this in strengthening the attachment, and if I make you see that the former one alone is far from sufficient for the whole effect, will you not then grant me that another [resistance] must be introduced?—— Help him, Simplicio, since he is hesitating about what to reply.

Simp. Sagredo's hesitation must be for some other reason, there being no room for doubt about such a clear and necessary consequence.

Sagr. You guess right, Simplicio. I was wondering whether, since it takes more than a million in Spanish gold every year to pay the army, something besides small coins must be provided for the soldiers' pay. But go on, Salviati; assume that I grant your argument, and show us how to separate the operation of the void from all other [actions]; then, measuring this, make us see that it is inadequate for the effect we are discussing.

Salv. Your daemon is guiding you. I shall tell you first how to separate the force of the void from other [forces], and then how to measure it. To separate it, let us take some continuous material whose parts lack any resistance to separation other than that of the void. Water has been demonstrated at length, in a certain treatise of our Academician, to be such a material. Thus when a cylinder of water is displaced [within a tube], and in drawing it, a resistance is felt against the detachment of its parts, no other cause can be recognized for this than repugnance to

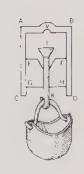
^{4.} Sagredo means to hint that the other (much greater) resistance may turn out in the end to be made up of a myriad of small resistances not differing in kind from that of the void, just as the million of gold is made up of small coins; see further at p. 66 and note 7, below. (References in bold face type are to pagination of Vol. VIII of the *Opere*, given in the margins and running heads of the present text.)

^{5.} Galileo had argued in a previous book that no internal resistance to separation existed in water, as shown by the settling of fine dust from cloudy water. For this and other arguments, see *Bodies in Water*, pp. 40 ff. (*Opere*, IV, 103-8).

a void. In order to make the experiment, I have imagined an artifice which I can better explain by a diagram than by mere words. Consider CABD here to be the profile of a cylinder of metal, or better of glass, empty within and very accurately turned, into the hollow of which there enters, with the smoothest contact, a wooden cylinder which can be driven up and down, of profile EGFH. This is drilled through the center so that through the hole there passes an iron wire, hooked at end K, while the other end, I, is broadened out in the shape of a conical screwhead. Things are so arranged that the upper part of the hole through the wood is indented in the form of a conical surface, shaped exactly to receive the conical extremity I of the iron [wire] IK when pulled down in the direction of K. Insert the wood, which we may call the piston [zaffo, a stopper] EH, in the cylinder-hole AD, not so as to reach the upper surface of the cylinder, but to remain two or three inches away. This space is first filled with water, poured in while the vessel is held with its mouth CD upward, the piston EH then being replaced while the screwhead I is kept a little way from the indentation in the wood in order to allow the escape of air pressing against the piston, which will get out through the hole in the wood, this having been drilled a little larger than the stem of the iron IK. All the air having escaped, the wire is drawn back again, scaling the piston with its screwhead I, and the whole vessel is rotated to bring it with the mouth [CD] down.

A container is now attached to the hook K, into which sand or some other heavy material is put, loading it until finally the upper surface EF of the piston is detached from the lower surface of the water, to which nothing held it joined except repugnance to the void. Then, by weighing the piston together with the iron, the container, and whatever it contains, we shall have the amount of the force of the void.

Next, to a marble or glass cylinder of the same size as the cylinder of water we attach a weight which, together with the weight of the marble or glass itself, balances the weight of all the things weighed before. If this breaks the cylinder, we can unquestionably affirm that the void alone is cause enough to hold the parts of the marble or crystal together. But if it is not sufficient, and in order to break [the cylinder] we must add four times the above weight again, then we must say that the void offers one-fifth of the resis-



tance, while the other [resistance] is four times that of the void. Simp. It cannot be denied that the invention is ingenious; yet I consider it to be subject to many difficulties that leave me in doubt. For who will assure us that air may not penetrate between the glass and the piston, even though this is well packed with tow or some other yielding material? And in order that the cone I be well fitted to the hole, it may not be enough to treat the latter with wax or turpentine. Besides, why might not the parts of water expand or rarefy? Why should not air, or exhalations, or other more subtle substances, penetrate through porosities of the wood, or even of the glass itself?

Salv. Simplicio very eleverly arrays his difficulties against us, and in part, as to the penetration of air through the wood or between the wood and the glass, he administers remedies. Beyond this, I note, we can discover for ourselves whether the difficulties advanced are valid, and at the same time acquire new knowledge. First, if it is the nature of water to suffer expansion, though [only] by force, as happens with air, then the piston will be seen to drop. Next, if in the upper part of the glass we make a small protruding indentation, as at V, then air or any more tenuous and spiritous material, penetrating through the substance or the porosity of glass or wood, will be seen to collect in the indentation V, the water giving way to it. But if those things are not observed, we may be assured that the experiment has been tried with all the proper precautions, and we shall know that water is not expansible, nor glass penetrable by any material however

Sagr. Thanks to this reasoning, I find the cause of an effect that has for a long time kept my mind full of marvel and empty of understanding. I once observed a cistern in which a pump had been installed to draw water, perhaps by someone who vainly believed that more water can be drawn [thus], or as much with less labor, than by means of an ordinary bucket. This pump had its piston and valve up above, so that the water was pumped by suction and not by impulsion, as in pumps that have the apparatus down below. As long as the water was up to a certain height in the cistern, this [pump] drew it admirably; but when the water went down below a certain mark, the pump would no longer work. The first time I noticed this event, I thought that the apparatus was worn out; but when I found a master [mechanic] to repair it, he

A P

told me that there was nothing at all wrong except the water [level] which, having gone down too far, did not allow itself to be lifted to such a height. He added that neither with pumps nor with any other device that lift water by suction is it possible to make this rise a hairbreadth more than eighteen braccia; whether pumps are [of] large [bore] or small, that is the measure of this absolutely limited height.⁶

Well, up to now I have been so dull-witted that although I understood that a rope, a wooden staff, or an iron rod can be lengthened until its own weight breaks it when attached from above, it never occurred to me that the same thing will happen, and much more easily, with a rope or rod of water. And that which is drawn up in a pump is nothing else than a cylinder of water which, having its attachment above and being lengthened more and more, finally arrives at that boundary beyond which it breaks, just as if it were a rope.

Salv. That is exactly how the matter goes, and since the same height of eighteen braccia is the predetermined limit of height to which any quantity of water can be sustained, whether the [cylinder of the] pump is wide, or narrow, or thin as a straw, then if we weigh the water contained in eighteen braccia of tube, whether broad or narrow, we shall have the value of the resistance of the void for cylinders of any solid material as large as the hollows of those tubes. Having said this, let us show how one may easily find, for all metals, stones, wood, glass, etc., the lengths up to which cylinders, threads, or rods of any thickness may be brought, and beyond which they cannot sustain themselves but will break of their own weight.

Take, for example, a copper wire of any thickness and length, fix one of its ends on high, and to the other end add greater and greater weight until it finally breaks. Let the maximum weight that it can sustain be, for example, fifty pounds. It is obvious that fifty pounds of copper, over and above the weight of this wire, say one-eighth of an ounce, drawn into a wire of the same thickness, would be the maximum length of wire that could maintain itself. Next, measure the length of the wire that broke, and let this be one braccio; since this weighed one-eighth of an ounce and sustained itself plus fifty pounds, which is 4,800 times one-eighth of

6. Galileo did not accept the suggestion made to him in 1630 by G. B. Baliani (1582-1666) that failure of siphons and suction pumps above thirty feet should be ascribed to atmospheric pressure; cf. Opere, XIV, 158-60.

an ounce, we shall say that all copper wires, of whatever thickness, can sustain themselves up to a length of 4,801 braccia, and no more. A copper rod that is able to sustain itself up to a length of 4,801 braccia encounters a resistance dependent on the void that, in comparison with its other resistances, is as much as the weight of a rod of water eighteen braccia long and as thick as the copper; and if we find, for example, that copper is nine times as heavy as water, then the resistance to breakage of any copper rod, so far as the void is concerned, will be as the weight of two braccia of the same rod. By similar reasoning and procedures we can find the maximum lengths of wires or rods of all solid materials that can sustain themselves, as well as the part played by the void in their resistance.

Sagr. It remains now for you to tell us what it is that the balance of this resistance consists in; that is, what that gluey or viscous thing is that holds the parts of solids attached, in addition to the resistance which derives from the void. I cannot imagine any cement that cannot be burned and consumed in a very hot furnace over a period of two, three, or four months, let alone in ten, or a hundred. Yet silver, gold, or liquefied glass may remain in a furnace that long, and when taken out again and cooled, the parts of these become reunited and attached together as before. Moreover, the difficulty that I feel about the attachment between the parts of the glass, I shall feel about that of the parts of the cement; that is, what it can be that holds them so firmly joined.

66

Salv. A little while ago I told you that your daemon was guiding you; now I find myself in the same straits. Seeing clearly that a repugnance to the void is undoubtedly what prevents the separation of two slabs except by great force, and that still more force is required to separate the two parts of the marble or bronze column, I cannot see why this [repugnance to the void] must not likewise exist and be the cause of coherence between smaller parts, right on down to the minimum ultimate [particles] of the same material. And since for any effect there is one unique and true and most potent cause, if I can find no other glue, why should I not try to see whether this cause, the void, already found, may suffice?

Simp. If you have already demonstrated that in the separation of two large pieces of a solid, the resistance of the large void is very small in comparison with that which

holds together the minimum particles, then why do you not wish to admit it as certain that the latter (resistance) has a cause quite different from that of the former?

Salv. To this, Sagredo replies that every individual soldier was paid with pennies and farthings collected by general levies, although a million in gold was not enough to pay the whole army. Who knows that there are not other tiny voids operating on the most minute particles, so that the same coinage as that with which the parts are joined is used throughout? I shall tell you what has sometimes passed through my mind on this; I do this not as the true solution, but rather as a kind of fantasy full of undigested things that I subject to your higher reflections. Take what you will from it, and judge the rest as suits you best.

Sometimes, in considering how heat [fuoco, fire] goes snaking among the minimum particles of this or that metal. so firmly joined together, and finally separates and disunites them; and how then, the heat departing, they return to reunite with the same tenacity as before, without the quantity of gold being diminished at all, and that of other metals very little, even though these remain disunited for a long time, I have thought that this may come about because of very subtle fire-particles. Penetrating through the tiny pores of the metal, between which (on account of their tightness) the minimum [particles] of air and other fluids could not pass. these [fire-particles] might, by filling the minimum voids distributed between these minimum particles [of metal],8 free them from that force with which those voids attract one [particle] against another, forbidding their separation. And being thus able to move freely, their mass [massa] would become fluid, and remain so until the fire-particles between them depart. But when these go, leaving the pristine voids, the usual attraction returns, and consequently the attachment of the parts.

And to Simplicio's objection it seems to me that one may reply that although such voids are very tiny, and as a result

^{7.} This completes Sagredo's metaphorical remark on p. 61; cf. note 4, above.

^{8.} The coherence of material atoms is here ascribed to the presence of interstitial void points (or perhaps very minute spaces) rather than to any property inherent in material atoms as such. In this way nature's horror of the void (an Aristotelian principle) is preserved, but only for points (or vanishingly small intervals). See further, pp. 93 ff., and notes 10, 32, and 37, below.

68

each one is easily overpowered, still the innumerable multitude of them multiplies the resistances innumerably, so to speak. The character and extent of the force resulting from an immense number of very weak momenta conjoined may be most evidently argued from our seeing a weight of millions of pounds, sustained by very thick ropes, ultimately yield and allow itself to be lifted by the assault of innumerable atoms of water, which, driven by the south wind or extended in a thin fog, go moving through the air to be driven between the fibers of the ropes; the immense force of the hanging weight being unable to prevent their entrance, they penetrate through narrow pores into the ropes, swelling and hence shortening them, by which means the enormous bulk is raised. 9

Sagr. There is no doubt that as long as a resistance is not infinite, it can be overcome by the sheer multitude of minimal forces. Thus a number of ants might bring to land a ship loaded with grain, for our eyes daily show us that an ant can readily transport a grain, and it is clear that in the ship there are not infinitely many grains, but some limited number. We can take a number several times as great, and put that number of ants to work; and they will bring to land not only the grain, but the ship along with it. It is true that the number would have to be large, but in my opinion so is that of the voids that hold together the minimum particles of a metal.

Salv. But if an infinitude were required, you would perhaps hold this to be impossible?

Sagr. No, not if the metal were infinite in bulk, [but] otherwise...¹⁰

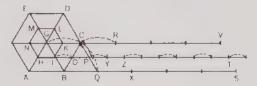
Salv. Otherwise, what? Well, since paradoxes are at hand, let us see how it might be demonstrated that in a finite continuous extension it is not impossible for infinitely many voids to be found. At the same time we shall see, if nothing else, at

9. A popular story at the time was that during the raising of the Vatican obelisk in 1586, stretching of the ropes at a crucial moment was countered by pouring water on them.

10. No dots are present in the 1638 edition to indicate that Sagredo has paused here, at a loss to go on. Viviani added in his copy the words "... if they were infinitely many, they could have no size; but a while ago they were given size." What had actually been said (p. 66) was that fire-particles could fill them, but not specifically that such particles had dimensions; cf. note 8, above. What Sagredo had in mind when he paused was more probably "... there could be no room for infinitely many voids," as seen from the ensuing discussion.

least a solution of the most admirable problem put by Aristotle among those that he himself called admirable; I mean among his *Mechanical Questions*. And its solution may perhaps be no less enlightening and conclusive than that which he himself alleges, and yet different from that which the learned Monsignor di Guevara very acutely considers.¹¹

But first it is necessary to explain a proposition not touched on by others, upon which the solution of this question depends; and if I am not mistaken, this [proposition] will later entail other new and admirable things. To understand this, let us draw the diagram with attention. We are to think of an equilateral and equiangular polygon of any number of sides described around the center G. For the present, let this be a hexagon ABCDEF, similar to and concentric with which we shall draw a smaller hexagon marked HIKLMN, and extend one side of the larger, AB, indefinitely in the direction S. The corresponding side of the smaller, HI, is extended in the same direction by line HT parallel to AS, and through the center we draw GV parallel to both these.

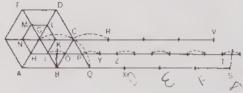


This done, we suppose the larger polygon to rotate along the line AS, carrying with it the smaller polygon. It is clear that the point B, one end of side AB, remains fixed. When revolution begins, the corner A rises and the point C drops, describing the arc CQ, so that side BC fits the equal line BQ. In this revolution, the corner I of the smaller polygon is lifted above line IT, because IB is oblique to AS; and point I does not return to the parallel IT until point C gets to Q, when point I will have dropped to O after describing arc IO, outside the line IIT, the side IK having then passed to OP. During all this time, the center G will have been moving along outside the line GV, to which it does not return until it has described the entire arc GC.

This first step having been taken, the larger polygon is

^{11.} Giovanni di Guevara (1561-1641), Bishop of Teano, had discussed this problem with Galileo but took a different approach in his *In Aristotelis Mechanicas comentarii* (Rome, 1627).

now situated with its side BC on line BO; side IK of the smaller one is on line OP, having jumped over the part IO without touching it; and the center G has come to C, tracing its whole path outside the parallel GV. The entire figure is again at a place similar to its first position. Commencing the second turn and coming to the second place, side DC of the larger polygon will fit on the part OX; KL of the smaller, having first skipped the arc PY, falls on YZ; and the center, still moving outside GV, falls on it only at R after the big jump CR. And eventually, when one entire revolution has been made, the larger polygon will have touched, along AS, six lines equal [in all] to its perimeter, with nothing interposed [between them]; the smaller polygon will likewise have impressed six lines equal to its circumference but interrupted [discontinuate] by the interposition of five arcs, under which there are stretches which are parts of HT not touched by this polygon; and the center G has never met the parallel GVexcept at six points. From this, it is understood that the space passed over by the smaller polygon is almost equal to that passed by the larger one; that is, line HT [nearly equals] \overline{AS} . being smaller only by the chord of one of these arcs, if we understand line HT to include the spaces of the five [skipped] arcs. 12

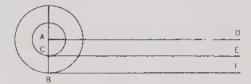


Now, what I have here set forth and explained by the example of these hexagons, I wish to be understood as happening with all other polygons, of as many sides as you please, provided that they are similar, concentric, and joined so that the turning of the larger governs that of the smaller, no matter how much smaller it may be. Understand, I say, that the lines passed over by these are approximately equal, when we count as space passed over by the smaller those intervals under the little arcs, which are not touched by any

12. Whether there are exactly five skipped spaces, or something more than that, is crucial to the paradox. This difficulty does not really vanish when Galileo passes to the circle "at one fell swoop" (pp. 92-93), any more than n ever becomes n+1 or some intermediate quantity; see also notes 13 and 14, below.

part of the perimeter of this smaller polygon. Therefore a larger polygon having a thousand sides passes over and measures a straight line equal to its perimeter, while at the same time the smaller one passes an approximately equal line, but one interruptedly composed of a thousand little particles equal to its thousand sides with a thousand void spaces interposed—for we may call these "void" in relation to the thousand linelets touched by the sides of the polygon. And what has been said thus far presents no difficulty or question.

But now tell me: if around some center, say this point A, we describe two concentric, joined circles, and from the points C and B on their radii we draw the tangents CE and BF, with the parallel AD to these [passing] through the center A;



and if we suppose the greater circle to be turned on the line BF, equal to its circumference as are likewise lines CE and AD; then, when the greater circle has completed one revolution, what will the smaller circle have done, and the center? The center will certainly have run over and touched the whole line AD; and the circumference of the smaller (circle) will with its contact have measured the whole of CE, behaving like the polygons considered above. The only difference is that there, the line HT was not touched in all its parts by the perimeter of the smaller polygon, for it left untouched, by the interposition of the voids skipped over, as many parts as those touched by the sides.13 But here, in the circles, the circumference of the smaller circle is never separated from the line CE in such a way that any part of CE is not touched: nor is that in this circumference which touches ever less than that which is touched in the straight line [CE]. How then, without skipping, can the smaller circle run through a line so much longer than its circumference?

Sagr. I was wondering whether one might say that just as the center of the circle, all alone, being but a single point

^{13.} Here Galileo says that for the hexagon there would be not five, but six skipped spaces; cf. note 12, above.

drawn along on AD, touches the whole of that line, so the points of the smaller circumference, driven by the larger circumference, might be dragged through some particles of the line CE.

Salv. This cannot be, for two reasons. First, because there 71 would be no more reason that some of the contacts analogous to C, rather than others, should be dragged along some parts of the line CE. If this were the case, and such contacts being infinitely many by reason of their being points, the draggings along CE would be infinitely many; and being quantified [auanti], these would form an infinite line; but CE is finite. The second reason is that since the larger circle in its revolution continually changes its [point of] contact, the smaller circle cannot avoid likewise [continually] changing its contact, as it is only through the point B that a line can be drawn to the center A and still pass through the point C. So whenever the larger circle changes contact, the smaller does also; nor does any point of the smaller [circle] touch more than one point of the straight line CE.

Besides, even in the revolution of the polygons, no point of the perimeter of the smaller is fitted to more than one point of the line that is measured by that same perimeter. This may easily be understood by considering the line IK as parallel to BC, so that until BC falls on BQ. IK remains lifted above IP, nor does it fall [flat] before that very instant in which BC is united with BQ. But at that instant IK as a whole unites with OP, and later on it is just as suddenly lifted above it.

Sagr. This business is truly very intricate, and no solution at all occurs to me; so tell us what occurs to you.

Salv. I return to the consideration of the polygons discussed earlier, the effect of which is intelligible and already understood. I say that in polygons of one hundred thousand sides, the line passed over and measured by the perimeter of the larger—that is, by the hundred thousand sides extended [straight and] continuously—is equal to that measured by

the hundred thousand sides of the smaller, but with the interposition [among these] of one hundred thousand void spaces. And just so, I shall say, in the circles (which are polygons of infinitely many sides), the line passed over by the infinitely many sides of the large circle, arranged continuously [in a straight line], is equal in length to the line passed over by the infinitely many sides of the smaller, but in the latter case with the interposition of as many voids between them. And just as the "sides" [of circles] are not quantified, but are infinitely many, so the interposed voids are not quantified, but are infinitely many; that is, for the former [line touched by the larger circle there are] infinitely many points, all filled [tutti pieni], and for the latter [line touched by the smaller circle], infinitely many points, part of them filled points and part voids.

Here I want you to note how, if a line is resolved and divided into parts that are quantified and consequently numbered [numerate], we cannot then arrange these into a greater extension than that which they occupied when they were continuous and joined, without the interposition of as many void [finite] spaces. But imagining the line resolved into unquantifiable parts—that is, into its infinitely many indivisibles—we can conceive it immensely expanded without the interposition of any quantified void spaces, though not without infinitely many indivisible voids.

What is thus said of simple lines is to be understood also of surfaces and of solid bodies, considering those as composed of infinitely many unquantifiable atoms; for when we wish to divide them into quantifiable parts, doubtless we cannot arrange those in a larger space than that originally occupied by the solid unless quantified voids are interposed void, I mean, at least of the material of the solid. But if we take the highest and ultimate resolution [of surfaces and bodies] into the prime components, unquantifiable and infinitely many, then we can conceive such components as being expanded into immense space without the interposition of any quantified void spaces, but only of infinitely many unquantifiable voids. In this way there would be no contradiction in expanding, for instance, a little globe of gold into a very great space without introducing quantifiable void spaces—provided,

^{14.} Strictly speaking, it is necessary to add "... of which 99,999 are each equal to a side of the smaller polygon, while one is the excess over that of a side of the larger polygon."

however, that gold is assumed to be composed of infinitely

many indivisibles. 15

Simp. It seems to me that you are traveling along the road of those voids scattered around by a certain ancient philosopher. 16

Salv. At least you do not add, "who denied Divine Providence," as in a similar instance a certain antagonist of

our Academician very inappropriately did add. 17

Simp. Indeed I perceived, not without disgust, the hatred in that malicious opponent; yet I shall not touch on that, not only by reason of the bounds of good taste, but because I know how far such ideas are from the temperate and orderly mind of such a man as you, who are not only religious and pious, but Catholic and devout.

Getting back to the point, I feel many difficulties that are born of the reasoning just heard; doubts from which I really don't know how to free myself. For one, I advance this: if the circumferences of the two circles are equal to the two straight lines *CE* and *BF*, the latter taken as continuous and the former with the interposition of infinitely many void points, how can *AD*, described by a center that is one point only, be called equal to this point, of which [entities] it contains infinitely many? Also, this composing the line of points, the divisible of indivisibles, the quantified of unquantifiables—these reefs seem to me to be hard to pass. And not absent from my difficulties is the necessity of assuming the void, so conclusively refuted by Aristotle.

Salv. There are these [difficulties] indeed, and others; but let us remember that we are among infinites and indivisibles, the former incomprehensible to our finite understanding by reason of their largeness, and the latter by their smallness. Yet we see that human reason does not want to abstain from giddying itself about them. Taking some liberties on that account, I am going to produce a fantastic idea of

16. The reference is probably to Epicurus (341-270 B.C.) as expounded by Lucretius (98-55 B.C.), since the scattered voids are interstitial, as well

as for reasons implied in note 17, below.

^{15.} Cf. note 10, above; the reference here seems to be to point-atoms of gold, since *minima naturalia*, indivisible physically but divisible mathematically, could not be infinitely many in a finite bulk.

^{17.} Orazio Grassi (1583-1654), in his Ratio ponderum librae et simbellae (Paris, 1626), which was an attack on Galileo's Il Saggiatore of 1623. Cf. Opere, VI, 475-76, where it is the Epicureans that are named though Democritus (460-357 B.C.), is usually considered as the chief atomist of antiquity. Cf. note 16, above.

mine which, if it concludes nothing necessarily, will at least by its novelty occasion some wonder. Or perhaps it will seem to you inopportune to digress at length from the road that we started on, and hence will be distasteful.

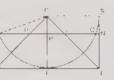
Sagr. Please let us enjoy the benefit and privilege that comes from speaking with the living and among friends, about things of our own choice and not by necessity, which is very different from dealing with dead books that excite a thousand doubts and resolve none of them. So make us partners in whatever reflections suggest themselves to you in the course of our discussions. We do not lack time to continue and resolve the other matters we have undertaken, thanks to our present freedom from necessary occupations. In particular, the doubts raised by Simplicio are by no means to be skipped over.

Salv. Be it so, since that is the way you wish it. Let us begin from the first—how a single point can ever be understood to be equal to a line. The most that can be done at present is for me to try to put at rest, or at any rate to moderate, this improbability with an equal or greater one, as a marvel is sometimes put to rest by a miracle. I shall do this by showing you two equal surfaces, and two bodies, also equal, with the said surfaces as their bases. These will [all] go continually and equally diminishing during the same time, their remaining parts always being equal, until finally the surfaces and the solids terminate their preceding perpetual equality by one solid and one surface becoming a very long line, while the other solid and the other surface become a single point; that is, the latter two become a single point, and the former two, infinitely many points.

Sagr. This seems to me a truly remarkable proposal; let me hear its explanation and demonstration.

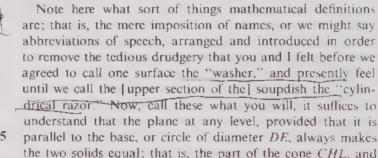
Salv. We must draw a diagram for it, since the proof is purely geometrical. ¹⁸ Take the semicircle AFB whose center is C, and around it the rectangular parallelogram ADEB; from the center to points D and E, draw the straight lines CD and CE. Next imagine the whole figure rotated around

18. The ensuing paradox had been hinted at in the *Dialogue*, p. 247 (*Opere*, VII, 271-72). Galileo had previously sent it to Buonaventura Cavalieri (1598?-1647) to caution him regarding the perils of the "method of indivisibles" in geometry. The paradox has a double purpose here: to illustrate the nature of mathematical definitions, and to show the pitfalls of analogy in transferring the word "equal" from entities of n dimensions to their supposed counterparts of n-1 dimensions. Cf. notes 19 and 22, below.



the fixed radius CF, perpendicular to the straight lines AB and DE. It is manifest that a cylinder will be described by the rectangle ADEB, a hemisphere by the semicircle AFB, and a cone by the triangle CDE. We now suppose the hemisphere removed, leaving [intact] the cone and those remains of the cylinder which in shape resemble a soupdish, for which reason we shall call it by that name.

First, we shall prove this soupdish to be equal [in volume] to the cone. Then, drawing a plane parallel to the circle at the base of the soupdish, of diameter DE and with center F, we shall prove that this plane, passing for example through the line GN, and cutting the soupdish at points G, I, O and N, and the cone at points H and L, leaves the part of the cone CHL always equal to the part of the soupdish whose cross section is represented by the "triangles" GAI and BON. Moreover, we shall prove that any base of the cone, say the circle whose diameter is HL, is equal to that circular surface which is the base for that part of the soupdish; this is, as it were, a washer [nastro, ribbon] of breadth GI.



of those solids; that is, the washer and the circle HL.

From this follows the marvel previously mentioned:

the upper part of the soupdish [i.e., the cylindrical razor]. Likewise it makes equal the two surfaces that are the bases

namely, that if we understand the cutting plane to be gradually raised toward the line AB, the parts of the solids it cuts are always equal, as likewise are the surfaces that form their bases. Lifting it more and more, the two always-equal solids, as well as their always-equal bases, finally vanish—the one pair in the circumference of a circle, and the other pair in a single point, such being the upper rim of the soupdish and the summit of the cone. Now, during the diminution of the two solids, their equality was maintained right up to the end; hence it seems consistent to say that the highest and last

boundaries of the reductions are still equal, rather than that one is infinitely greater than the other, and so it appears that the circumference of an immense circle may be called equal to a single point!

What happens in the solids likewise happens in the surfaces that are their bases. These also maintain equality throughout the diminution in which they share; and at the end, in the instant of their ultimate diminution, the washer reaches its limit in the circumference of a circle, and the base of the cone in a single point. Now, why should these not be called equal, if they are the last remnants and vestiges left by equal magnitudes?¹⁹

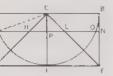
Note next that if these vessels were as large as the immense celestial hemispheres, and the ultimate edges and the points of the contained cones always preserved their equality, those edges would terminate in circumferences equal to great circles of the celestial orbs, and the cones [would terminate] in single points. Hence, along the line in which such speculations lead us, the circumferences of all circles, however unequal [in size], may be called equal to one another, and each of them [may be called] equal to a single point!

Sagr. The speculation appears to me so delicate and wonderful that I should not oppose it even if I could. To me it would seem a sort of sacrilege to mar so fine a structure, trampling on it with some pedantic attack. Still, for our full satisfaction, let us have that proof, which you call geometrical, of the constant maintenance of equality between those solids, and between their bases. I think this must be very clever, since the philosophical meditation stemming from this conclusion is so subtle.

Salv. The demonstration is also brief and easy. In the diagram drawn, angle IPC being a right angle, the square of the radius IC is equal to the two squares of the sides IP and PC. But the radius IC is equal to AC, and this to GP; and CP is equal to PH. Therefore the square of the line GP is equal to the two squares on IP and PH, and four times the former equals four times the sum of the latter; that is, the square

19. Use of the word "equal" in this way violates Berkeley's axiom that conclusions reached from the behavior of given entities and dependent on their existence cannot be rigorously applied to other entities deprived of them when they vanish. Sagredo's reply bears out the view of Abraham Kästner (1719-1800) and Bernard Bolzano (1781-1848) that Galileo inserted this paradox not as a conclusion to be accepted, but solely to stimulate careful thought.

D H L



of the diameter GN is equal to the two squares IO and HL. And since circles are to each other as the squares of their diameters, the circle of diameter GN will be equal to the two circles of diameters IO and HL; hence removing the common circle whose diameter is IO, the remaining circle GN will be equal to the circle whose diameter is HL.

So much for the first part [areas]. As to the other part [volumes], let us skip that proof for the present; if we wish to see it, we shall find it in the twelfth proposition of the second book of *De centro gravitatis solidorum* by Signor Luca Valerio, the new Archimedes of our age, who makes use of it for another proposition of his. ²⁰ [We omit the proof] also because in our case it is enough to have seen how the two surfaces described are always equal, and that in diminishing always equally, they tend to end, the one in a single point, and the other in the circumference of a circle of any size whatever; for our marvel turns on this consequence alone.

Sagr. The proof is as ingenious as the reflection based on it is remarkable. Now let us hear something about the second difficulty advanced by Simplicio, if you have anything new to say about it, which I believe may not be the case, since the controversy has been so widely agitated.

Salv. I shall give you my own special thought on it, first repeating what I said a while ago; that is, that the infinite is inherently incomprehensible to us, as indivisibles are likewise; so just think what they will be when taken together!

If we want to compose a line of indivisible points, we shall have to make these infinitely many, and so it is necessary [here] to understand simultaneously the infinite and the indivisible. Many indeed are the things I have on many occasions turned over in my mind on this matter. Some of them, perhaps the most important, I may not recall offhand; but in the progress of the argument I may happen to awaken objections and difficulties in you, and especially in Simplicio, in meeting which I shall remember things that without such stimulus would remain asleep in my imagination. So, with our customary freedom, let it be agreed that we bring in our human caprices, as we may well call them in contrast with those theological [sopranaturale] doctrines that are the only

^{20.} Luca Valerio (1552-1618) met Galileo at Pisa about 1590 and later corresponded with him at Padua. The book cited was first published at Rome in 1603/04; Bk. II, Prop. XII, includes a denonstration from which Galileo derived the foregoing paradox.

true and sure judges of our controversies and the uncrring guides through our obscure and dubious, or rather labyrinthine, opinions.²¹

One of the first objections usually produced against those who compound the continuum out of indivisibles is that one indivisible joined to another indivisible does not produce a divisible thing, since if it did, it would follow that even the indivisible was divisible; because if two indivisibles, say two points, made a quantity when joined, which would be a divisible line, then this would be even better composed of three, or five, or seven, or some other odd number [of indivisibles]. But these lines would then be capable of bisection, making the middle indivisible capable of being cut. In this, and other objections of the kind, satisfaction is given to its partisans by telling them that not only two indivisibles, but ten, or a hundred, or a thousand do not compose a divisible and quantifiable magnitude; yet infinitely many may do so.²²

Simp. From this immediately arises a doubt that seems to me unresolvable. It is that we certainly do find lines of which one may say that one is greater than another; whence, if both contained infinitely many points, there would have to be admitted to be found in the same category a thing greater than an infinite, since the infinitude of points of the greater line will exceed the infinitude of points of the lesser. Now, the occurrence of an infinite greater than the infinite seems to me a concept not to be understood in any sense.

Salv. These are some of those difficulties that derive from

^{21.} The ensuing argument required very tactful treatment, since the proposition that a line might be composed of indivisibles, strongly opposed by Aristotle, had been condemned as heretical in 1415 by the Council of Constance. John Wyclif was exhumed and his body burned for this and other Epicurean doctrines. Cf. note 17, above, and see Aristotle, *Physica*, Bk. VI; *De caelo*, 299a.10 ff., as well as the pseudo-Aristotelian treatise *On Indivisible Lines*.

^{22.} The meaning here is not that the adversaries are literally satisfied, but that this is the proper reply to them. Galileo's position is quite unrelated to the older discussions cited in note 21, above, or to that of Thomas Bradwardine (1290?-1349) in his *De continuo*, all of which debates concerned "indivisibles" that differed only in size from whatever they were supposed to compose. Galileo speaks here of elements having one less dimension than the aggregates in which they are supposed to exist; it was of such "indivisibles" that Cavalieri (note 18, above) made use in his geometry. In evaluating the role of Cavalieri's work in the development of the calculus, his "indivisibles" have frequently been confused by historians with infinitesimal magnitudes having the same dimensionality as the continuum to be analyzed, an approach studiously avoided by Cavalieri himself.

reasoning about infinites with our finite understanding, giving to them those attributes that we give to finite and bounded things. This, I think, is inconsistent, for I consider that the attributes of greater, lesser, and equal do not suit infinities, of which it cannot be said that one is greater, or less than, or equal to, another.²³ In proof of this a certain argument once occurred to me, which for clearer explanation I shall propound by interrogating Simplicio, who raised the difficulty. I assume that you know quite well which are square numbers, and which are not squares.

Simp. I know well enough that a square number is that which comes from the multiplication of a number into itself; thus four and nine and so on are square numbers, the first arising from two, and the second from three, each multiplied by itself.

Salv. Very good. And you must also know that just as these products are called squares, those which thus produce them (that is, those which are multiplied) are called sides, or roots. And other [numbers] that do not arise from numbers multiplied by themselves are not squares at all. Whence if I say that all numbers, including squares and non-squares, are more [numerous] than the squares alone, I shall be saying a perfectly true proposition; is that not so?

Simp. One cannot say otherwise.

Salv. Next, I ask how many are the square numbers; and it may be truly answered that they are just as many as are their own roots, since every square has its root, and every root its square; nor is there any square that has more than just one root, or any root that has more than just one square.²⁴

Simp. Precisely so.

Salv. But if I were to ask how many roots there are, it could not be denied that those are as numerous as all the numbers, because there is no number that is not the root of some square. That being the case, it must be said that square numbers are as numerous as all numbers, because they are as many as their roots, and all numbers are roots. Yet at the

24. Negative roots were excluded under the Euclidean definition of number:

see Glossary of mathematical terms.

^{23.} Having previously warned against the dangers in applying the word "equal" to infinites in the same sense as to finite magnitudes (notes 18 and 19, above), Galileo next turns to the positive integers to introduce the idea of one-to-one correspondence. His conclusions are valid and consistent, though by a much later extension of the concept of number we are now permitted to speak of different orders of infinite aggregates.

outset we said that all the numbers were many more than all the squares, the majority being non-squares. Indeed, the multitude of squares diminishes in ever-greater ratio as one moves on to greater numbers, for up to one hundred there are ten squares, which is to say that one-tenth are squares; in ten thousand, only one one-hundredth part are squares; in one million, only one one-thousandth. Yet in the infinite number, if one can conceive that, it must be said that there are as many squares as all numbers together.

Sagr. Well then, what must be decided about this matter? Salv. I don't see how any other decision can be reached than to say that all the numbers are infinitely many; all squares infinitely many; all their roots infinitely many; that the multitude of squares is not less than that of all numbers. nor is the latter greater than the former. And in final conclusion, the attributes of equal, greater, and less have no place in infinite, but only in bounded quantities. So when Simplicio proposes to me several unequal lines, and asks me how it can be that there are not more points in the greater than in the lesser, I reply to him that there are neither more, nor less, nor the same number [altrettanti, just as many], but in each there are infinitely many. Or truly, might I not reply to him that the points in one are as many as the square numbers; in another and greater line, as many as all numbers; and in some tiny little [line], only as many as the cube numbers-in that way giving him satisfaction by putting more of them in one than in another, and yet infinitely many in each?25 So much for the first difficulty.

Sagr. Hold on a minute, and allow me to add to what has been said a thought that has just struck me. If matters stand as has been said up to this point, it seems to me that not only may one infinite not be said to be greater than another infinite, but it may not even be said that an infinite is greater than a finite. For if the infinite number is greater than one million, say, it would follow that in passing from one million to other continually larger numbers, one would be traveling toward the infinite [number], which is not so; rather, the opposite is so, and the larger the numbers to which we pass, the farther we get from the infinite number. For with numbers,

79

Potestialy

^{25.} The word "more" should be read as if placed in quotation marks. Galileo had already shown that the word had no meaning in this context, but offered this ingenious rationalization to anyone who might still think differently.

80

the larger they are taken, the scarcer become the square numbers contained within these, whereas in the infinite number, the squares cannot be less than all the numbers, as was just now concluded. Hence to go to ever and ever larger numbers is to move away from the infinite number.

Salv. And so, from your ingenious reasoning, it is concluded that the attributes of greater, less, or equal are out of place not only between infinites, but even between infinites and finites.²⁶

Now let us pass to another consideration, which is that the line, and every continuum, being divisible into everdivisibles, I do not see how to escape their composition from infinitely many indivisibles; for division and subdivision that can be carried on forever assumes that the parts are infinitely many. Otherwise the subdivision would come to an end. And the existence of infinitely many parts has as a consequence their being unquantifiable, since infinitely many quantified [parts] make up an infinite extension. And thus we have the continuum composed of infinitely many indivisibles.

Simp. But if we can continue forever the division into quantified parts, what need have we, in this respect, to introduce the unquantifiable?

Salv. The very ability to continue forever division into quantifiable parts implies the necessity of composition from infinitely many unquantifiables. For, getting down to the real trouble, I ask you to tell me boldly whether in your opinion the quantified parts of the continuum are finite, or infinitely many?

Simp. I reply to you that they are both infinitely many and finite; infinitely many potentially [in potenze]; and finite actually [in atto]; that is, potentially infinitely many before division, but actually finite [in number] after they are divided. For parts are not understood to be actually in their whole until after [they are] divided, or at least marked. Otherwise they are said to be potentially there.²⁷

26. A cardinal principle of Aristotle's was that there can be no ratio between finite and infinite; cf. note 1, above, and *De caelo* 274a.10; 274b.12. The principle is probably put into Sagredo's mouth because the mature Galilco neither entirely rejected nor fully accepted it.

^{27.} Aristotle's distinction of potentiality and actuality was fundamental to his physics, since it entered into his very definition of motion; see *Physica* 201a.10. With respect to potentiality and the infinite, see *Physica* 206a.15 206b.25. Here Galileo proceeds to show that the distinction is meaningless mathematically unless it affects quantity or magnitude.

Salv. So that a line twenty spans long, for instance, is not said to contain twenty lines of one span each, actually, until after its division into twenty equal parts. Before this, it is said to contain these only potentially. Well, have this as you please, and tell me whether, the actual division of such parts having been made, that original whole has increased, diminished, or remains still of the same magnitude?

Simp. It neither increases nor diminishes.

Salv. So I think, too. Therefore the quantified parts in the continuum, whether potentially or actually there, do not make its quantity greater or less. But it is clear that quantified parts actually contained in their whole, if they are infinitely many, make it of infinite magnitude; whence infinitely many quantified parts cannot be contained even potentially except in an infinite magnitude. Thus in the finite, infinitely many quantified parts cannot be contained either actually or potentially.

Sagr. Then how can it be true that the continuum may be unceasingly divided into parts always capable of new division?

Salv. That distinction between act and potency seems to make feasible in one way what would be impossible in another, but I expect to balance the accounts better by different bookkeeping. To the question which asks whether the quantified parts in the bounded continuum are finite or infinitely many, I shall reply exactly the opposite of what Simplicio has replied; that is, [I shall say] "neither finite nor infinite."

Simp. I could never have said that, not believing that any middle ground [termine mezzano, mean term] is to be found between the finite and the infinite, as if the dichotomy or distinction that makes a thing finite or else infinite were somehow wanting and defective.

Salv. It seems to me to be so. Speaking of discrete quantity, it appears to me that between the finite and the infinite there is a third, or middle, term; it is that of answering to every [ogni] designated number. Thus in the present case, if asked whether the quantified parts in the continuum are finite or infinitely many, the most suitable reply is to say "neither finite nor infinitely many, but so many as to correspond to every specified number." To do that, it is necessary that these be not included within a limited number, because then they would not answer to a greater [number]; yet it is not necessary that they be infinitely many, since no specified number is infinite. And thus at the choice of the questioner

we may cut a given line into a hundred quantified parts, into a thousand, and into a hundred thousand, according to whatever number he likes, but not into infinitely many [quantified parts]. So I concede to the distinguished philossophers that the continuum contains as many quantified parts as they please; and I grant that it contains them actually or potentially at the pleasure and to the satisfaction of those gentlemen. But I then tell them further that in whichever way there are contained in a ten-fathom line ten lines of one fathom each, and forty of one braccio each, and eighty of one-half braccio, and so on, then in that same way it contains infinitely many points. You may call this "actually" or "potentially" as you choose, Simplicio, for on this particular I submit myself to your choice and judgment.

Simp. I cannot but praise your reasoning, yet I greatly fear that this parity between containing points and [containing] quantified parts does not quite work, and that it will not be so easy for you to divide a given line into infinitely many points as it is for those philosophers [to divide it] into ten fathoms or forty braceia. In fact I hold it to be quite impossible to put your division into practice, whence it will remain one of those potentialities [potenze] that are never reduced to act.

Salv. That a thing can be done only with labor and care, or over a long period of time, does not make it impossible. I think that you likewise cannot easily escape from labor and care in a division that is to be made of a line into a thousand parts, and still less if you have to divide it into 937, or some other large prime number [of parts]. But as to that division which you perhaps deem impossible, if I can make this as easy for you as it would be for someone else to cut the line into forty [equal parts], will you be content to admit this into our conversation more tranquilly?

Simp. I enjoy your way of sometimes dealing with things so pleasantly. To your question I reply that it seems to me more than sufficient if the case of resolution into points shall be no more laborious than its division into a thousand parts.

Salv. Here I want to say something that will perhaps astonish you concerning the possibility of resolving a line into its infinitely many [points] by following the procedure that others use in dividing into forty, sixty, or a hundred parts; that is, by dividing it into two, and then four, and so

on. Pursuing that method, anyone who believes he can find its infinitely many points is badly mistaken, for with such a procedure he will never achieve the division of the line into all its quantified parts, even if he goes on forever; and as to its indivisibles, he would be so far from arriving at the desired end by that path that instead, he would be traveling away from it. If anyone thinks that by continuing division and by increasing the multitude of parts he is approaching infinity, I believe that he is always receding farther from that.

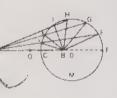
My reason is this. In our discussion a little while ago, we concluded that in the infinite number, there must be as many squares or cubes as all the numbers, because both [squares and cubes] are as numerous as their roots, and all numbers are roots. Next we saw that the larger the numbers taken, the scarcer became the squares to be found among them, and still rarer, the cubes. Hence it is manifest that to the extent that we go to greater numbers, by that much and more do we depart from the infinite number. From this it follows that turning back (since our direction took us always farther from our desired goal), if any number may be called infinite, it is unity. And truly, in unity are those conditions and necessary requisites of the infinite number. I refer to those [conditions] of containing in itself as many squares as cubes, and as many as all the numbers [contained].

Simp. I don't quite see how this business should be understood.

Salv. The business has in it no room for doubt, because unity is a square, and a cube, and a fourth power, and all the other powers. There is no essential property belonging to squares, cubes, and so on that does not belong to [the number] one. For instance, a property of two square numbers is that of having between them a number [that is their] mean proportional. Take as one extreme any square number, and as the other, unity; there will always be found a numerical mean proportional; thus let the two square numbers be 9 and 4; between 9 and 1 the mean proportional is 3, and between 4 and 1 it is 2; between the two squares 9 and 4 we find 6, the middle [term in geometric proportion]. A property of cubes is that between them there are necessarily two mean proportionals; given 8 and 27, between them lie the [geometric] means 12 and 18; between 1 and 8 are 2 and 4; and between 1 and 27 are 3 and 9. Thus we conclude that there is no infinite number other than unity.

These are among the marvels that surpass the bounds of our imagination, and that must warn us how gravely one errs in trying to reason about infinites by using the same attributes that we apply to finites; for the natures of these have no necessary relation [convenienza] between them. Apropos of this, I do not wish to pass by in silence a remarkable event that just now occurs to me, illuminating the infinite difference and even the repugnance and contrariety of nature encountered by a bounded quantity in passing over to the infinite. Let us take this straight line AB, of any length whatever, and in it take some point C that divides it into unequal parts. I say that pairs of lines leaving from the points A and B, and preserving between themselves the same ratio as that of the parts AC and BC, will intersect in points that all fall on the circumference of the same circle. For example, AL and BL, coming from points A and B and having the same ratio as parts AC and BC, meet in a point L; with the same ratio, another pair AK and BK meet in K; others [are] AI and BI, AH and HB, AG and GB, AF and FB, AE and EB. I say that the meeting-points L, K, I, H, G, F, and E all fall on the circumference of the same circle. Thus if we imagine the point C moving continuously, under the rule that the lines produced from it to the fixed limits A and B shall maintain always the same ratio as that of the original parts AC and CB. then that point C will describe the circumference of a circle. as I shall next prove. And the circle described in this way will be ever greater, infinitely, according as the point C is taken closer to the midpoint O [of AB], while the circle will be smaller [which is] described by a point closer to the end B. Thus, following the above rule, circles will be described by motion of the infinitely many points that can be taken in the line OB, and the circles are of every size- less than the pupil of a flea's eye, or greater than the equator of the celestial sphere [primo mobile].

Now, if a circle is described by any point lying between the limits O and B, and immense circles by moving points close to O, then by moving the point O itself and continuing to do so in observance of the same law (that is, so that lines produced from O to the ends A and B shall keep the ratio of the original lines AO and OB), what line will point O trace? It will trace the circumference of a circle, but that of a circle greater than any other great circle, and therefore of an infinite circle. But [in fact] it traces a straight line per-



pendicular to BA, rising from point O and extending in infinitum without ever returning to join its last end with its first, as all the others do return. For that [which was] traced by the limited motion of point C, after marking the upper semicircle CHE, went on to trace the lower, EMC, rejoining its extreme ends at point C. But (because points taken in the other part of OA also describe circles, the points near O the greatest ones) point O, being moved like all the others of line AB, in tracing its circle so that it will be made greatest of all, and consequently infinite, can never return to its original extreme; and in brief, it describes an infinite straight line as circumference of its infinite circle. 28

Consider, then, what a difference there is [in moving] from a finite to an infinite circle. The latter changes its being so completely as to lose its existence and its possibility of being [a circle]. For we understand well that there cannot be an infinite circle, from which it follows as a consequence that still less can a sphere be infinite; nor can any other solid or surface having a shape be infinite. What shall we say of this metamorphosis in passing from finite to infinite? And why must we feel greater repugnance when, seeking the infinite in numbers, we come to conclude that it is in [the number] one? We break a solid into many parts, and go on to reduce it to very fine powder; if it were resolved into its infinitely many atoms, no longer divisible, why should we not say that it had returned to a single continuum, fluid perhaps, like water or mercury, or the original metal liquefied? Do we not see stones liquefied into glass, and glass under great heat made more liquid than water?

Sagr. Must we therefore believe that fluids are what they are because they are resolved into indivisibles, infinitely many, [as] their prime components?

Salv. I cannot find any better expedient for solving some of the sensible appearances, among which is this. When I take a hard body of stone or metal, and with hammer or file I proceed to divide it as finely as possible into impalpable powder, clearly its minimum [particles], though imperceptible individually to sight and touch, are still quantified, have shape, and are countable. That is why they support themselves cumulatively in a heap, a dent in this, up to a certain point, remaining a dent, without the surrounding parts rushing

in to fill it. Agitated and stirred, these particles stop as soon as the external mover abandons them. All these effects happen also in all aggregates of larger corpuscles of every shape, even spherical, as we see in mounds of flour, grain, lead shot, and other materials. But if we seek these phenomena in water, none are to be found. When raised, water immediately smooths flat unless sustained by a vessel or other external restraint; dented, it immediately runs to fill the cavity; agitated, it goes on fluctuating for a long time, and its waves extend through great distances.

From this, I think it is reasonable to argue that the minimum fnarticles] into which water seems to be resolved, since it has less consistency than the finest powder (or rather, has no consistency at all), are quite different from quantified and divisible minimum (particles), and I cannot find any other difference here besides that of their being indivisible. It also seems to me that their perfect transparency strengthens this conjecture. If we take the most transparent crystal that exists and begin to pound and break it, it loses its transparency when reduced to powder, and the more so the more finely it is broken. But water, which is broken to the highest degree, is yet diaphanous to the highest degree. Gold and silver, pulverized by aqua fortis more finely than by any file. still remain in powder and do not become fluid; nor do they liquefy until the indivisibles of fire or of the sun's rays dissolve them (as I think) into their first and highest components. infinitely many, and indivisible.

Sagr. What you have said of [the sun's] light, I have often observed with wonder. I have seen lead instantly liquefied by a concave mirror three spans in diameter, and am of the opinion that if the mirror were very large, smooth, and of parabolic shape, it would liquefy any metal in short time. For we see that a spherically concave mirror, neither very large nor well polished, liquefies lead with great power and burns every combustible material effects that give credibility to the wonders of the mirrors of Archimedes.²⁹

Salv. As to Archimedes and the effects of his mirrors, all the miracles that are read in other authors are rendered credible to me by reading the books of Archimedes himself,

^{29.} The story that Archimedes burned enemy ships by means of powerful mirrors is not found before the twelfth century. It probably grew out of accounts of the burning of enemy ships in the defence of Syracuse which failed to mention the catapulting of incendiary material as the means.

long ago studied by me with infinite astonishment. And if any doubt lingered, the book lately published about the burning glass [Specchio ustorio] by Father Buonaventura Cavalieri, which I read with admiration, is enough to put a stop to all difficulties for me.³⁰

Sagr. I also saw that treatise and read it with pleasure and wonder: I was already acquainted with the author, and this confirmed the idea that I had formed of him—that he would turn out to be one of the chief mathematicians of our age. But returning to the remarkable effect of the sun's rays in liquefying metals, should we believe that so vehement an operation takes place without motion, or that it does so with the most rapid motion?

Salv. We see other fires and dissolutions to be made with motion, and very swift motion; behold the operations of lightning, and of gunpowder in mines and bombs. We see how much the use of bellows speeds the flames of coals mixed with gross and impure vapors, increasing their power to liquefy metals. So I cannot believe that the action of light, however pure, can be without motion, and indeed the swiftest.

Sagr. But what and how great should we take the speed of light to be? Is it instantaneous perhaps, and momentary? Or does it require time, like other movements? Could we assure ourselves by experiment which it may be?

Simp. Daily experience shows the expansion of light to be instantaneous. When we see artillery fired far away, the brightness of the flames reaches our eyes without lapse of time, but the sound comes to our ears only after a noticeable interval of time.

Sagr. What? From this well-known experience, Simplicio, no more can be deduced than that the sound is conducted to our hearing in a time less brief than that in which the light is conducted to us. It does not assure me whether the light is instantaneous, or time-consuming but very rapid. Your observation is no more conclusive than it would be to say: "Immediately on the sun's reaching the horizon, its splendor reaches our eyes." For who will assure me that the rays did

^{30.} The book mentioned was published by Cavalieri at Bologna in 1632; it included a derivation of the parabolic trajectory of projectiles, which Galileo had discovered late in 1608 but had not yet published; cf. note 5 to Fourth Day. He was indignant on first hearing of this publication, but when he saw the book with its acknowledgment to him and learned that Cavalieri believed him to have published it earlier, he was appeased. Cavalieri's teacher had been Galileo's pupil, Benedetto Castelli (1578-1643).

not reach the horizon before [reaching] our vision?

Salv. The inconclusiveness of these and like observations caused me once to think of some way in which we could determine without error whether illumination (that is, the expansion of light) is really instantaneous. 31 The rapid motion of sound assures us that that of light must be very swift indeed, and the experiment that occurred to me was this. I would have two men each take one light, inside a dark lantern or other covering, which each could conceal and reveal by interposing his hand, directing this toward the vision of the other. Facing each other at a distance of a few braccia, they could practice revealing and concealing the light from each other's view, so that when either man saw a light from the other, he would at once uncover his own. After some mutual exchanges, this signaling would become so adjusted that without any sensible variation, either would immediately reply to the other's signal, so that when one man uncovered his light he would instantly see the other man's light.

This practice having been perfected at a short distance, the same two companions could place themselves with similar lights at a distance of two or three miles and resume the experiment at night, observing carefully whether the replies to their showings and hidings followed in the same manner as near at hand. If so, they could surely conclude that the expansion of light is instantaneous, for if light required any time at a distance of three miles, which amounts to six miles for the going of one light and the coming of the other, the interval ought to be quite noticeable. And if it were desired to make such observations at yet greater distances, of eight or ten miles, we could make use of the telescope, focusing one for each observer at the places where the lights were to be put into use at night. Lights easy to cover and uncover are not very large, and hence are hardly visible to the naked eye at such distance, but by the aid of telescopes previously fixed and focused they could be comfortably seen.

Sagr. The experiment seems to me both sure and ingenious. But tell us what you concluded from its trial.

Salv. Actually, I have not tried it except at a small distance, less than one mile, from which [trial] I was unable to make sure whether the facing light appeared instantaneously. But if not

^{31.} In Il Saggiatore (1623), Galileo had spoken of light as propagated instantaneously by the ultimate subdivision of matter into its true indivisibles; cf. Assayer, p. 313 (Opere, VI, 352).

instantaneous, light is very swift and, I may say, momentary; at present I should liken it to that motion made by the brightness of lightning seen between clouds eight or ten miles away. In this, we distinguish the beginning and fountainhead of light at a particular place among the clouds, followed immediately by its very wide expansion through surrounding clouds. This seems to me to be an argument that the stroke of lightning takes some little time, because if the illumination were made all together and not by parts, it appears that we should not be able to distinguish its place of origin and its center from its extreme streamers and dilatations.

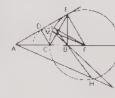
But in what seas are we inadvertently engulfing ourselves, bit by bit? Among voids, infinites, indivisibles, and instantaneous movements, shall we ever be able to reach harbor even after a thousand discussions?

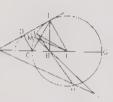
Sagr. These things are truly quite ill-adapted to our purpose. The infinite, sought among numbers, seems to end at unity; from indivisibles is born the ever-divisible; the void seems to exist only by being indivisibly mixed into the plenum; in a word, the nature of each of these things alters from our common understanding of it, until the circumference of a circle is replaced by a straight line. If I recall correctly, Salviati, that is the proposition that you were to make clear to us by geometrical demonstration. So it will be good if, without further digression, you will produce it.

Salv. I am at your service; and for complete understanding, I shall demonstrate the following problem:

Given a straight line divided into unequal parts in any ratio, to describe a circle such that to any point of its circumference, two straight lines being drawn from the ends of the given line, [these lines] will retain the same ratio as that of the said parts of the given line, so that all [pairs] leaving from the same extremities will be homologous.

Let the given line be AB, divided in any way into unequal parts at the point C; it is required to describe the circle such that at any point on its circumference, two lines drawn from A and B will meet, and will have between them the same ratio as that of the parts AC and BC, making homologous those which leave from the same endpoints $\{A \text{ and } B\}$. Draw a circle with center C and radius equal to the smaller part CB, to which line AD will be tangent, this being indefinitely prolonged in the direction of E from point A, the point of





tangency being D. Join C and D; [CD] will be perpendicular to AE, and BA will be perpendicular to BE, which produced will meet AE, since angle A is acute. From this intersection E, drop a line perpendicular to AE, which produced will meet AB, indefinitely prolonged, at F.

I say first that the two lines FE and FC are equal, since if EC is drawn, we have in the two triangles DEC and BEC two sides of one, DE and EC, equal to two sides of the other, BE and EC. And DE and EB being tangent to the [dotted] circle DB, the bases DC and CB are equal, whence angles DEC and BEC are equal. Since angles BCE and CEB are complementary. as are angles CEF and CED, angles FCE and FEC are equal; hence also sides FE and FC. Now taking point F as center, with radius FE describe a circle CEG passing through point C. I say that this is the circle sought, at any point of the circumference of which, every pair of lines intersecting and passing through the extremities A and B will have the same ratio as that of the two parts AC and BC, which are joined at the point C. This is obvious of the two lines AE and BEthat meet at point E, for the angle E of triangle AEB being bisected by CE, whatever ratio AC has to CB will be that of AE to BE. We prove the same of AG and BG, meeting at point G. By the similarity of triangles AFE and EFB, as AF is to FE, so EF is to FB, that is, as AF is to FC, so CF is to FB; and by division, as AC is to CF (that is, to FG), so CB is to BF, and the whole AB is to the whole BG as the part CB is to the part BF. And by composition, as AG is to GB, so CF is to FB. that is, as EF to FB, that is, AE to EB, and AC to CB, which was to be proved.

Now take any point H in the circumference, at which the two lines AH and BH meet. I say that as AC is to CB, so AH is to HB. Extend HB to the circumference at I, and join I and F; since (as seen before) CB is to BF as AB is to BG, the rectangle AB BF is equal to the rectangle CB-BG, that is, IB-BH. Hence as AB is to BH, so IB is to BF, and the angles at B are equal; therefore AH is to HB as IF (that is, EF) is to FB, and AE to EB.

Besides this, I say that it is quite impossible for lines in this ratio and passing through ends A and B to meet at any point outside or inside the circle CEG. For if possible, let two lines AL and BL meet at L, outside [the circle]. Extend LB to the circumference at M, and draw MF. Then if AL is to BL as AC is to BC (that is, as MF to FB), we have two triangles

ALB and MFB which have their sides proportional around the angles ALB and MFB, while the angles at the apex B are equal, and the two remaining angles FMB and LAB are less than a right angle, because the right angle at point M has for its base the whole diameter CG and not just the part BF, while the angle at point A is acute, since line AL, homologous to AC, is greater than BL, homologous to BC. Therefore triangles ABL and MBF are similar, and as AB is to BL, MB is to BF, whence rectangle AB BF will be equal to rectangle MB-BL. But rectangle AB BF has been shown equal to CB BG; therefore rectangle MB-BL is equal to rectangle CB-BG, which is impossible; hence the intersection [L] cannot fall outside the circle. In the same way it may be demonstrated that it cannot fall inside, wherefore all intersections fall on the circumference itself.

But it is time now to give satisfaction to Simplicio by showing him that it is not impossible to resolve a line into its infinitely many points, and not only that, but that this presents no greater difficulty than to distinguish its quantified parts. First, one assumption; I do not think, Simplicio, that you will deny this to me. I assume that you do not require me to separate the points from one another and show them to you distinctly one by one on this paper. In return, I shall be content if without your detaching four or six parts of a line one from another, you show me these divisions marked, or even just bent at angles so as to form a square or a hexagon. I am persuaded that you, too, will call such [parts] sufficiently distinguished and actualized.

Simp. Of course.

Salv. Now, if bending of a line at angles, forming now a square, now an octagon, now a polygon of forty or one hundred or one thousand angles, is sufficent change [mutazione] to reduce to act those four, eight, forty, one hundred or one thousand parts that were previously in the line "potentially," as you put it, then when I form of this line a polygon of infinitely many sides—that is, when I bend it into the circumference of a circle—may I not, with the same license, say that I have reduced to act its infinitely many parts, since you conceded that while it was straight, these were said to be contained in it potentially? That such a resolution [of a line] is made into its infinitely many points cannot be denied, any more than that [a resolution was made] into its four parts in forming a square, or into its thousand [parts] in

forming a milligon, inasmuch as none of the conditions are lacking here that are found in the polygon of one thousand or one hundred thousand sides. This latter, applied to a straight line and placed thereon, touches it with one of its sides, that is, with one one-hundred-thousandth part of it. The circle, which is a polygon of infinitely many sides, touches the straight line with one of its sides, which is a single point, different from all its neighbors, and therefore divided and distinguished from them no less than is one side of the polygon from its adjacent [sides]. And as the polygon, rotated on a plane, stamps out with the successive contacts of its sides a straight line equal to its perimeter, so does the circle, when rolled on a plane, describe with its infinitely many successive contacts a straight line equal to its circumference.

I don't know, Simplicio, whether the learned Peripatetics, to whom I grant as quite true the concept that the continuum is divisible into ever-divisibles in such a way that in continuing such division and subdivision one would never reach an end. will be willing to concede to me that none of their divisions is the last—as indeed none is, since there always remains another-and yet that there indeed exists a last and highest, and it is that which resolves the line into infinitely many indivisibles. I admit that one will never arrive at this by successively dividing [the line] into a greater and greater multitude of parts. But by employing the method I propose, that of distinguishing and resolving the whole infinitude at one fell swoop an artifice that should not be denied to me-1 believe that they should be satisfied, and should allow this composition of the continuum out of absolutely indivisible atoms. Especially since this is a road that is perhaps more direct than any other in extricating ourselves from many intricate labyrinths. One such, in addition to that already mentioned of the [problem of the] coherence of the parts of solids, is the understanding of rarefaction and condensation. without our stumbling into the inconsistency of being forced by the former [rarefaction] to admit void spaces³², and by the latter [condensation, to admit] the [inter]penetration of

93

Taxbuser political

^{32.} Empty spaces of finite dimensions would create physical problems, since in Galileo's view natural effects would continually destroy them (nature's horror of a void.) Empty points in the mathematical sense raised no physical problem; hence Galileo employed them to attract physically adjacent particles and to keep them joined up to the limit of resistance to fracture. Cf. notes 8 and 10 above.

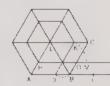
bodies, both these involving contradictions that seem to me to be cleverly avoided by assuming the said composition of indivisibles.

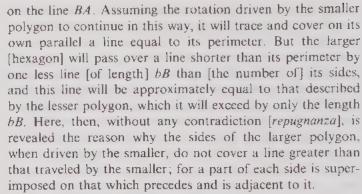
Simp. I don't know what the Peripatetics would say, inasmuch as the considerations you have set forth would strike them, I believe, for the most part as novelties, and as such they would need to be examined. It may be that the Peripatetics would find replies and solutions capable of untying those knots that I, from the shortness of time and the frailty of my intellect, cannot at present resolve. So leaving aside for now that [Peripatetic] faction, I should indeed like to hear how the introduction of these indivisibles facilitates the comprehension of condensation and rarefaction, while at the same time it circumvents [both] the void and the [inter]penetration of bodies.

Sagr. I too will hear this with pleasure, as it is still obscure to my mind. Provided, that is, that I shall not be defrauded of hearing, in accordance with what you said to Simplicio a short time ago, the reasonings of Aristotle in refuting the void, and then the solutions thereof at which you arrive, as is only fitting if you assume that which he denies.

Salv. Both shall be done. As to the first, it is necessary that just as we shall make use, in regard to rarefaction, of the line described by the smaller circle when that is driven by the revolution of the larger, which line is longer than its own circumference; so, for an understanding of condensation, we must show how the larger [circle, driven] by the revolution of the lesser, describes a straight line shorter than its own circumference. For a clear explanation of this, let us consider what happens with the polygons.

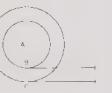
In a diagram similar to the previous one, let there be two hexagons, ABC and HIK, around the common center L, and the parallel lines HOM and ABc on which they must be revolved. Let the corner I of the smaller polygon be fixed, and turn this polygon until the side IK falls on the parallel [MH]. In this motion, point K will describe arc KM, and side KI will unite with part IM. Let us see what side CB of the larger polygon will do. Since the revolution is made about the point I, the line IB with end B will go back, describing the arc Bb below the parallel cA, so that when side KI is joined with line MI, side BC will unite with line bc, going forward only as much as the part Bc, and leaving behind the part subtended by the arc Bb, which comes to be superimposed

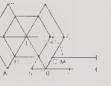




Now consider the two circles around center A, placed on their parallels so that the smaller touches one of these at point B, and the larger [touches] the other at point C. The smaller [circle] commencing to roll, its point B will not remain motionless for any time while the [imaginary] line BC goes backward carrying point C, as happened in the polygons, where point I remained fixed until side KI fell on line IM. There, line IB did carry B (one end of side CB) backward to b so that side BC fell on bc, superimposing part Bb on line BA, and advancing only by the part Bc equal to IM, or to one side of the smaller polygon. On account of these superpositions, equal to the excesses of the larger sides over the smaller, the residual advances made, equal to the sides of the lesser polygon, come to compose in one entire revolution the straight line equal to that marked and measured by the smaller polygon.

If we were to apply similar reasoning to the case of circles, we should have to say that where the sides of any polygon are contained within some number, the sides of any circle are infinitely many; the former are quantified and divisible, the latter unquantifiable and indivisible; either end of each side of the revolving polygon stays fixed for a time (that is, that fraction of the time of an entire revolution, which the side is of the entire perimeter), whereas in circles the delays of the ends of their infinitely many sides are momentary, because an instant in a finite time is a point in a line that contains infinitely many [points.] The backward turns made by sides of the larger polygon [each] advancing as far as the side of the lesser [polygon] are not those of a whole side, but only of its excess over a side of the smaller; in circles, the point (or "side") C, during the instantaneous rest of end B,





moves back as much as its excess over the "side" B, and advances by as much as [point] B.³³ To sum up, the infinitely many indivisible sides of the greater circle, with their infinitely many indivisible retrogressions, made in the infinitely many instantaneous rests of the infinitely many ends of the infinitely many sides of the lesser circle, together with their infinitely many advances, equal to the infinitely many sides of the lesser circle, compose and describe [disegnano, mark] a line, equal to that described by the lesser circle, which contains in itself infinitely many unquantifiable superpositions, making a compacting and condensation without any [inter]penetration of quantified parts.³⁴

This is not to be understood as happening in the line divided into quantified parts, as in the perimeter of any polygon, which extended into a straight line cannot be compressed into [any] shorter length except by superposition and interpenetration of its sides. The compacting of infinitely many unquantifiable parts without interpenetration of quantified parts, and the previously explained expansion of infinitely many indivisibles with the interposition of indivisible voids. I believe to be the most that can be said to explain the condensation and rarefaction of bodies without the necessity of introducing interpenetration of bodies and Jappealing tol quantified void spaces. If anything in it pleases you, make capital of that; if not, ignore this as idle, and my reasoning along with it, and go search for some other explanation that will bring you more peace of mind. I repeat only this: we are among infinites and indivisibles.

Sagr. I freely confess that the idea is subtle, and to my ears novel and remarkable. Whether in fact nature proceeds in any such way, I cannot decide. The truth is that until I hear something that better satisfies me, I shall stick to this rather than remain completely dumb.

But Simplicio may have what I have not yet found -some

^{33.} According to Berkeley's axiom (note 19, above), Galileo could not move from very small sides to point-sides for circles without losing the right to speak of any excess analogous to that existing between the sides of polygons of no matter how many sides. Being unable to argue consistently with his own views that points in one circle are somehow greater than those in another, he was left with no proper basis for the analogy here.

^{34.} The purpose of this clearly deliberate complication in an ostensible summing up was to discourage all attempts to simplify paradoxes which in Galileo's opinion were genuine and needed to be thought about and thought through again and again.

way of explaining the explanation supported by his philosophers in this most abstruse matter. What I have read [in them] up to the present concerning condensation is, for me, so dense, and with regard to rarefaction what I have read is so subtle, that my feeble vision neither takes hold of the latter, nor penetrates the former.

Simp. I am filled with confusion, and find hard obstacles in both opinions. Particularly in this new one; for according to this rule, an ounce of gold might be rarefied and expanded into a bulk greater than the whole earth, and all the earth might be condensed and reduced into a bulk smaller than a walnut. These things I do not believe, nor do I think that you yourself believe them. The considerations and demonstrations made by you up to this point, being mathematical things abstracted and separated from sensible matter, I believe would not work according to your rules if applied to physical and natural materials.

Salv. I doubt that you want me to make you see the invisible. nor am I able to do that; but so far as that which can be understood by our senses is concerned, and since you mention gold, do we not see immense expansions made of its parts? I don't know whether you have thought of the way in which artisans proceed in drawing gold for gilding, which is really gold only on the surface, while the matter inside is silver. The way they do this is to take a cylinder or rod of silver about ten inches long and three or four fingers thick; this they cover with beaten gold leaf, which as you know is so thin that it goes floating through the air. They put on eight or ten such leaves, no more; and they commence drawing it, thus gilded, with great strength, passing it through the holes of a wire die over and over again, drawing it successively through smaller holes. After a great many passages they reduce it to the fineness of a lady's hair or finer; yet it remains gilded on the surface. I leave it to you to consider the thinness and expansion to which the substance of gold is thus subjected.

Simp. I do not see that from this operation there comes in consequence a thinning of the material of gold by performing on it those marvels that you would have. First, the original gilding was done with ten gold leaves, which are of perceptible thickness; and second, though the silver grows in length with the drawing and thinning, at the same time it diminishes just as much in thickness, so that one dimension compensates the other, and the surface is not increased in such a way that to

clothe the silver with gold must reduce it to greater subtlety than that of the original leaves.

Salv. You are very much mistaken, Simplicio, because the increase of surface is as the square root of the lengthening, as I can prove geometrically.

Sagr. For my sake as well as Simplicio's, I beg you to give us the demonstration, if you think we can follow it.

Salv. Let me see whether I can recall it offhand. It is manifest that the original thick cylinder of silver and the very long wire drawn from it are equal in volume, being of the same silver. So if I show the ratio that holds between the surfaces of the equal cylinders, we shall have what we want. Hence I say that:

The surfaces of equal cylinders, excluding [those of] their bases, are in the ratio of the square roots of their lengths.

Let there be two equal cylinders with heights AB and CD, and let line E be a mean proportional between them; then I say that the surface of cylinder AB, excluding its bases, has to the surface of cylinder CD, likewise without its bases, the same ratio that line AB has to line E, which is the square root of the ratio of AB to CD. Cut the cylinder AB at F, letting height AF equal CD. Now, since the bases of equal cylinders are inversely proportional to their heights, the circle at the base of cylinder CD will be to the circle at the base of cylinder AB as the height BA is to the height DC. And since circles are to one another as the squares of their diameters, these [two squares] have the same ratio as BA to CD. But as BA is to CD, so the square on BA is to the square on E, so that the four squares are proportional. Hence their sides are proportional, and as line AB is to E, so the diameter of circle C is to the diameter of circle A. And as the diameters, so are the circumferences; and as the circumferences, so also are the surfaces of cylinders equally high. Therefore as line AB is to E, so is the surface of cylinder CD to the surface of cylinder AF. Since height AF is to AB as surface AF is to surface AB, and as height AB is to line E, surface CD is to AF, then, by perturbed [proportion], surface CD will be to surface AB as height AF is to E; and by conversion, as the surface of cylinder AB is to the surface of cylinder CD, so is the line Eto AF (or to CD), or as AB is to E, which is the square root of the ratio of AB to CD; and this is what was to be proved.

Now, if we apply what has thus been demonstrated to our original purpose, and assume that the silver cylinder which was gilded when it was no more than a foot [mezzo braccio]

long and three or four fingers thick, then when drawn to the fineness of a hair it is lengthened to forty thousand feet or even more, and we shall find that its surface has grown two hundred times over what it was originally. Hence those gold leaves that were assumed to be ten in number, being extended over a surface two hundred times as great, show us that the gold that covers the surface of so many feet of wire can be no thicker than one-twentieth [the thickness] of one ordinary beaten gold leaf. Now consider whether this thinness is possible to conceive without an enormous expansion of parts, and judge whether this seems to you an experience that tends in the direction of composition of infinitely many indivisibles into physical materials—though for this, there are not lacking other [experiences] stronger and more conclusive.

Sagr. The proof appears to me so elegant that even if it had no power to persuade me of that original purpose for which it was adduced (though indeed for me it has), the brief time devoted to hearing it was well spent in any case.

Salv. Seeing how much you enjoy these geometrical demonstrations, the bearers to us of secure gains, I shall give you the companion to this one, which settles a very curious question. From the above, we know what happens with two equal cylinders differing in height or length. It is good to hear also what happens with cylinders equal in surface but of unequal heights, meaning again the surrounding surfaces without those of the upper and lower bases. I say that:

Right cylinders of which the surfaces, excluding their bases, are equal, have [volumes in] the ratio of their heights taken inversely.

Let the surfaces of the two cylinders AE and CF be equal, but let the height of CD be greater than that of AB; I say that cylinder AE is to cylinder CF in the same ratio as is height CD to AB. Since the surface CF is equal to AE, the volume [cilindro] CF is less than AE; for if these were equal, then by reason of the foregoing proposition, surface CF would be greater than surface AE, and even more so if cylinder CF were greater than AE. Take cylinder ID equal to AE; then, by the foregoing, the surface of cylinder ID is to the surface of AE as the height AE is to the [geometric] mean between AE and AE. But it is given that surface AE is equal to AE; and surface AE having to AE the same ratio as the height AE to AE it follows that AE is the mean proportional between AE and AE. Furthermore, the cylinder AE being equal to

cylinder AE, both have the same ratio to cylinder CF. But ID is to CF as height IF is to CD; hence cylinder AE is to cylinder CF in the same ratio as line IF to CD; that is, as CD is to AB, which was the theorem.

From this we understand the reason for an event that is not heard without astonishment by most people; that is, that if the same piece of cloth, longer one way than the other, be made into a sack for holding grain, as is often done by placing a board at the bottom, it will hold more when we use for the height of the sack the smaller dimension of the cloth and wrap the longer around the board, than if made the other way. For example, if the cloth is six braccia one way and twelve the other, it will hold more when the length of twelve is wrapped around a board at the bottom and the sack is six braccia high, than if the enclosed circumference is six braccia and the height is twelve.

Now to this general information that there is greater capacity the former way than the latter, there is added from what has just been proved the specific and particular knowledge [scienza] of how much more is held. The sack will hold more to the extent that it is lower, and less to the extent that it is higher. In specific measures, if the cloth is twice as long as it is wide, then sewn lengthwise it will hold half as much as the other way. Similarly, using a straw mat to make a basket, say [a mat] twenty-five braccia long and seven in width, then when rolled lengthwise it will hold only seven of those measures of which it will hold twenty-five when rolled the other way.

Sagr. And so, to our particular pleasure, we go on acquiring curious and useful knowledge. But in this last proposition, I doubt whether among people who lack knowledge of geometry you would find four in a hundred who would not be mistaken at first, [thinking] that bodies contained inside equal surfaces are equal in all respects. They make the same error when speaking of surfaces; for in determining the sizes of different cities, they often imagine that everything is known when the lengths [quantita] of the city boundaries are given, not knowing that one boundary may be equal to another, while the area contained by one may be much greater than that in the other. This happens not only with irregular surfaces, but also among regular ones, where those which have more sides are always more spacious [for the same perimeter] than those having fewer sides. Ultimately the circle, as a

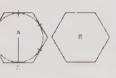
polygon of infinitely many sides, is the most capacious of all polygons of equal circumference. I recall having seen the proof of this with particular satisfaction when I was studying the *Sphere* of Sacrobosco and an added learned commentary.³⁵

Salv. Very true: I also saw this passage, and had occasion to discover therefrom a unique and brief proof that the circle may be concluded to be the greatest of all regular isoperimetric figures, while among the others, those with more sides are greater than those with fewer.

Sagr. I take such delight in proven propositions and selected demonstrations that depart from the trivial that I beg you to share this with me.

Salv. I hasten to prove to you briefly the following theorem: The circle is the mean proportional between any two similar regular polygons of which one is circumscribed about it and the other is isoperimetric to it. Also, the circle being less than all circumscribed [figures], it is nevertheless the greatest of all isoperimetric [figures]. And among the circumscribed [polygons], those that have more angles are smaller than those that have fewer; on the other hand, among isoperimetric [polygons], those having more angles are the greater.

Take two similar polygons, A and B; let A be circumscribed about circle A, and let B be isoperimetric to this circle; I say that the circle is the mean proportional between them. Draw radius AC. The circle [A] is equal [in area] to that right triangle of which one side is the radius AC and the other is equal to the circumference; likewise, the polygon A is equal to the right triangle that has one side equal to AC and the other to the perimeter of the polygon; hence it is evident that the circumscribed polygon has to the circle the same ratio that its perimeter has to the circumference of this circle, or to the perimeter of polygon B, which was assumed equal to that circumference. But polygon A is to B as the square of the ratio of its perimeter to the perimeter of B, these being similar figures; hence the circle A is the mean proportional between the polygons A and B. Since polygon A is greater than



^{35.} The work mentioned, written in the thirteenth century, survives in many manuscript copies, and was repeatedly published; Galileo himself lectured on it at Padua as the standard elementary text on astronomy. The learned commentary mentioned here was written by Christopher Clavius (1537–1612), Jesuit mathematician at Rome and an early correspondent of Galileo's. See Clavius, In sphaeram Ioannis De Sacro Bosco commentarius (Rome, 1581), p. 81.

circle A, it is manifest that this circle A is greater [in area] than its isoperimetric polygon, B, and hence it is the greatest of all regular polygons to which it is isoperimetric.

As to the other part, we must prove that of polygons circumscribed around the same circle, that with fewer sides is greater than that with more sides; while on the other hand, of all isoperimetric polygons, that with more sides is greater than that with fewer sides. These [propositions] we prove thus.

To the circle of radius OA and center O, draw the tangent AD; let AD be the half-side of the circumscribed pentagon, and AC the half-side of the hectagon. Draw lines OGC and OFD, and taking O as center and OC as radius, describe the arc ECI. Since triangle DOC is greater than sector EOC, and sector EOI is greater than triangle EI than sector EI to triangle EI than sector EI to sector EI that is, than sector EI to sector EI to sector EI that is, than sector EI to sector EI and the sector EI and the triangle EI than triangle EI that is sector EI and the sector EI and the triangles EI than triangle EI than the sector EI and the triangles EI than triangles EI than the sectors EI and the triangles EI than the sectors EI than the circumscribed pentagon will have a greater ratio to the circle than will the hectagon, and hence the pentagon will be greater than the hectagon.

Now take a hectagon and a pentagon that are both isoperimetric to the same circle; I say that the hectagon is greater than the pentagon. For the same circle is a mean proportional between the circumscribed pentagon and the isoperimetric pentagon, and is likewise the mean proportional between the circumscribed and the isoperimetric hectagon. It has been proved that the circumscribed pentagon is greater than the circumscribed hectagon; hence this pentagon will have a greater ratio to the circle than [will] the hectagon. That is, the circle will have a greater ratio to its isoperimetric pentagon than to its isoperimetric hectagon; therefore the pentagon is less than the isoperimetric hectagon, which was to be proved.

Sagr. A very refined proof, and most acute,³⁶ and one which at first glance seems to contain a sort of contradiction, since the reason for which the polygon of more sides is greater than its isoperimetric of fewer sides comes from the circumscribed of more sides being less than the circumscribed of

^{36.} The remainder of this sentence was added in the margins of Galileo's copy of the printed book.

fewer sides. But where did we go astray, engulfing ourselves in geometry? We were about to consider the difficulties put forth by Simplicio, which truly need close attention—especially that of condensation, which seems very hard to me.

Salv. If condensation and rarefaction are opposing changes [motil, then wherever great rarefaction is found, condensation no less enormous cannot be denied. We see daily immense rarefaction; and what is still more remarkable, this is almost instantaneous. I refer to the boundless rarefaction of a small amount of gunpowder, when it is resolved into a vast bulk of fire. And what of the almost unlimited expansion of [its] light? If that fire and that light were to be reunited-which is not impossible, seeing that they previously took up so little space-what a condensation that would be! Reasoning thus, you will find thousands of like rarefactions, which are more readily observed than are condensations, since materials that are dense to begin with are more tractable and more [readily] subjected to our senses. We can handle wood, and see it resolved into fire and light; but we do not thus see fire and light condensed to constitute wood. We see fruits, flowers, and a thousand other solid materials resolved (as a general rule) into odors; but we do not observe odorous atoms coming together in the constitution of scented solids.

But where we lack sensory observations, their place may be supplied by reasoning, which is able to make us no less capable of understanding the change [moto] of solids by rarefaction and resolution than [the change] of tenuous and rare substances by condensation. We shall investigate the possibility of condensation and rarefaction by theorizing how they can happen in bodies capable of being rarefied and condensed without fourl introducing the void and an interpenetration of bodies. This leaves open the possibility that materials may exist in nature that exclude those things. and hence do not involve events that you call contradictory and impossible. Finally, Simplicio, out of respect for you and the rest of your friends the most learned philosophers. I have worked out a theory of condensation and rarefaction in which these can be understood to take place without assuming interpenetration of bodies and lat the same timel without introducing void spaces, since those are effects that you despise and abhor—though if you would but concede them, I [for my part] should not oppose them so stubbornly. 37

^{37.} Here Galileo seems to incline toward the assumption of minute natural voids rather than point-voids; cf. notes 10, 15, and 32, above.

Hence you may either grant those contradictions, or welcome my theories, or find others that are more suitable.

Sagr. In the denial of interpenetration I am completely on the side of the Peripatetic philosophers. With regard to the void, I should like to hear judiciously weighed the demonstration with which Aristotle refutes it, and that with which you, [Salviati], oppose him. Do me the favor, Simplicio, of providing Aristotle's proof exactly; and you, Salviati, shall reply to it.

Simp. As I recall it, Aristotle does battle against some ancients who introduced the void as necessary for motion, saying that no motion could exist without it. Aristotle, opposing this [view], proves that on the contrary, the occurrence of motion, which we see, destroys the supposition of the void; and these are his steps. 38 He makes two assumptions; one concerning moveables differing in heaviness but moving in the same medium, and the other concerning a given moveable moved in different mediums. As to the first, he assumes that moveables differing in heaviness are moved in the same medium with unequal speeds, which maintain to one another the same ratio as their weights [gravità]. Thus, for example, a moveable ten times as heavy as another, is moved ten times as fast. In the other supposition he takes it that the speeds of the same moveable through different mediums are in inverse ratio to the crassitudes or densities of the mediums. Assuming, for example, that the crassitude of water is ten times that of air, he would have it that the speed in air is ten times the speed in water.

From this second supposition he derives his proof [against the void] in this form: Since the tenuity of the void exceeds by an infinite interval the corpulence, though most rare [sottilissima], of any filled medium [mezzo pieno], every moveable that is moved through some space in some time through a filled medium must be moved through the void in a single instant; but for motion to be made instantaneously is impossible; therefore, thanks to motion, the void is impossible.

Salv. This argument is seen to be ad hominem; that is, it goes against those who would have the void as necessary for motion. Hence if I accept the argument as conclusive and grant that motion does not take place in the void, the supposition of the void taken absolutely, and not just in relation to motion, is not thereby destroyed.

But to say what those ancients [attacked by Aristotle] would perhaps reply, so that we may better judge the conclusiveness of Aristotle's argument, I think it possible to go against his assumptions and deny both of them. As to the first one, I seriously doubt that Aristotle ever tested [sperimentasse] whether it is true that two stones, one ten times as heavy as the other, both released at the same instant to fall from a height, say, of one hundred braccia, differed so much in their speeds that upon the arrival of the larger stone upon the ground, the other would be found to have descended no more than [né anco] ten braccia.

Simp. But it is seen from his words that he appears to have tested this, for he says "We see the heavier..." Now this "We see" suggests that he had made the experiment [fatta l'esperienza].

Sagr. But I, Simplicio, who have made the test, assure you that a cannonball that weighs one hundred pounds (or two hundred, or even more) does not anticipate by even one span the arrival on the ground of a robinet ball weighing only half [as much], 39 both coming from a height of two hundred braccia.

Salv. But without other experiences, by a short and conclusive demonstration, we can prove clearly that it is not true that a heavier moveable is moved more swiftly than another, less heavy, these being of the same material, and in a word, those of which Aristotle speaks. Tell me, Simplicio, whether you assume that for every heavy falling body there is a speed determined by nature such that this cannot be increased or diminished except by using force or opposing some impediment to it.

Simp. There can be no doubt that a given moveable in a given medium has an established speed determined by nature, which cannot be increased except by conferring on it some new impetus, nor diminished save by some impediment that retards it.⁴⁰

Salv. Then if we had two moveables whose natural speeds

^{39.} The text reads Moschetto, usually meaning musket, but moschetto do gioco meant robinet, a kind of small cannon. The intent here was to indicate a cannon ball half the weight of another of 100, 200, or more pounds. Hence robinet must have been intended, not musket.

^{40.} This position is more extreme than the usual Peripatetic interpretation at the time. The essentials of Galileo's argument had been given in his early treatise On Motion, pp. 29 -30 (Opere, I, 265-66). G.B. Benedetti (1530-90) had previously argued that two united bodies would not change speed if separated during free fall; see Mechanics in Italy, p. 206.

were unequal, it is evident that were we to connect the slower to the faster, the latter would be partly retarded by the slower, and this would be partly speeded up by the faster. Do you not agree with me in this opinion?

Simp. It seems to me that this would undoubtedly follow. Salv. But if this is so, and if it is also true that a large stone is moved with eight degrees of speed, for example, and a smaller one with four [degrees], then joining both together, their composite will be moved with a speed less than eight degrees. But the two stones joined together make a larger stone than that first one which was moved with eight degrees of speed; therefore this greater stone is moved less swiftly than the lesser one. But this is contrary to your assumption. So you see how, from the supposition that the heavier body is moved more swiftly than the less heavy, I conclude that the heavier moves less swiftly.

Simp. I find myself in a tangle, because it still appears to me that the smaller stone added to the larger adds weight to it; and by adding weight, I don't see why it should not add speed to it, or at least not diminish this [speed] in it.

Salv. Here you commit another error, Simplicio, because it is not true that the smaller stone adds [accresca] weight to the larger.

Simp. Well, that indeed is beyond my comprehension. Salv. It will not be beyond it a bit, when I have made you see the equivocation in which you are floundering. Note that one must distinguish heavy bodies put in motion from the same bodies in a state of rest. A large stone placed in a balance acquires weight with the placement on it of another stone, and not only that, but even the addition of a coil of hemp will make it weigh more by the six or seven ounces that the hemp weighs. But if you let the stone fall freely from a height with the hemp tied to it, do you believe that in this motion the hemp would weigh on the stone, and thus necessarily speed up its motion? Or do you believe it would retard this by partly sustaining the stone?

We feel weight on our shoulders when we try to oppose

^{41.} A marginal addition in Galileo's copy of the book changes the rest of this sentence to read "... therefore this composite (though it is greater than that first [stone] alone) will be moved more slowly than the first alone, which is lesser." He probably had noticed that it is not logically justified to call two stones tied together "a greater stone" under the Aristotelian rule as set forth by Simplicio; for this is not one stone, but still two, each endowed with its own rule of motion governed by weight.

the motion that the burdening weight would make; but if we descended with the same speed with which such a heavy body would naturally fall, how would you have it press and weigh on us? Do you not see that this would be like trying to lance someone who was running ahead with as much speed as that of his pursuer, or more? Infer, then, that in free and natural fall the smaller stone does not weigh upon the larger, and hence does not increase the weight as it does at rest

Simp. But what if the larger [stone] were placed on the smaller?

Salv. It would increase the weight if its motion were faster. But it was already concluded that if the smaller were slower, it would partly retard the speed of the larger so that their composite, though larger than before, would be moved less swiftly, which is against your assumption. From this we conclude that both great and small bodies, of the same specific gravity, are moved with like speeds.⁴²

Simp. Truly, your reasoning goes along very smoothly; yet I find it hard to believe that a birdshot must move as swiftly as a cannonball.

Salv. You should say "a grain of sand as [fast as] a mill-stone." But I don't want you, Simplicio, to do what many others do, and divert the argument from its principal purpose, attacking something I said that departs by a hair from the truth, and then trying to hide under this hair another's fault that is as big as a ship's hawser. Aristotle says, "A hundred-pound iron ball falling from the height of a hundred braccia hits the ground before one of just one pound has descended a single braccio." I say that they arrive at the same time. You find, on making the experiment, 43 that the larger anticipates the smaller by two inches; that is, when the larger one strikes the ground, the other is two inches behind it. And now you want to hide, behind those two inches, the ninety-nine braccia of Aristotle, and speaking only of my tiny error, remain silent about his enormous one.

Aristotle declares that moveables of different weight are moved (to the extent this depends on heaviness) through

^{42.} Mention of specific gravity appears superfluous here, but it is not; the discussion thus far required comparison of bodies of the same material. It was only after discussing resistance of the medium that an unqualified statement could be made; see note 50, below.

^{43.} The words "on making the experiment" had been inserted in Galileo's own hand in the Pieroni MS, but were not printed in the 1638 edition.

the same medium with speeds proportional to their weights. He gives as an example moveables in which the pure and absolute effect of weight can be discerned, leaving aside those other considerations of shapes and of certain very tiny forces [momenta], which introduce great changes [alterazione] from the medium, and which alter the simple effect of heaviness alone. Thus one sees gold, which is most heavy, more so than any other material, reduced to a very thin leaf that goes floating through the air, as do rocks crushed into fine dust. If you wish to maintain your general proposition, you must show that the ratio of speeds is observed in all heavy bodies, and that a rock of twenty pounds is moved ten times as fast as a two-pound rock. I say this is false, and that in falling from a height of fifty or a hundred braccia, they will strike the ground at the same moment.

Simp. Perhaps from very great heights, of thousands of braccia, that would follow which is not seen at these lesser heights.

Salv. If that is what Aristotle meant, you saddle him with a further error that would be a lie. For no such vertical heights are found on earth, so it is clear that Aristotle could not have made that trial; yet you want to persuade us that he did so because he says that the effect "is seen."

Simp. Well, the fact is that Aristotle did not make use of this rule [to refute the void], but of the other one, which, I believe, does not labor under these difficulties.

Salv. The other [rule] is no less false than this one, and I marvel that you yourself do not see through its fallacy and infer that if it were true that in mediums of different subtlety and rarity and yielding differently, such as water and air

^{44.} A different version of this speech appears in the Pieroni MS, as follows: "Salv. If Aristotle had meant this, you would be burdening him with two more errors, whereas I remove two of the three because he did not actually commit them. One of the two [that you would add] would amount to a lie; for no such vertical heights are found on earth, so it is clear that Aristotle could not have made that trial. Yet (you say) he wants to persuade us that because he says the effect 'is seen,' he did make the experiment. The other error would be that if he introduced these considerations of ratios of speeds which hold for filled mediums, then in order to come to show the contradictions that would follow from their maintenance in void spaces [mezzi vacui, void mediums], and since such [ratios] are found only in mediums of immeasurable depths of thousands of braccia, he could not have concluded any more than that enormous void spaces cannot be found in nature-or at any rate [that they] are not found where heavy bodies do ordinarily move; a conclusion which, so far as I know, would be conceded to him by those ancients as well as by all modern philosophers."

for example, the same moveable were moved more swiftly in air than in water, in the ratio of the rarity of air to that of water, it would follow that every moveable falling in air must also descend in water. But that is false, since many bodies fall through air that do not descend in water, but rise upward.

Simp. I fail to see how that must follow; and besides, I say that Aristotle speaks of those heavy moveables that descend in both mediums; not of those that fall in air and rise in water.

Salv. You produce defences for the Philosopher that he absolutely would not adduce, in order not to aggravate his original mistake. Tell me whether the materiality [corpulenza] of water, or whatever it may be that retards motion, has some ratio to the materiality of air, that retards it less; and if it does, assign that ratio at your pleasure.

Simp. It does have, and let us assume that the ratio is ten to one, so that therefore the speed of a heavy body that descends in both elements is ten times as slow in water as in air.

Salv. Next, take one of those heavy bodies that go downward in air, but do not in water; say, a wooden ball. I ask you to assign to this whatever speed you please for its descent through air.

Simp. Let us assume that it moves with twenty degrees of speed.

Salv. Very well. It is manifest that this speed has to some lesser speed that ratio which the materiality of water has to that of air; this speed is only two degrees. Thus, to go down the line in agreement with Aristotle's assumption, one must conclude that the wooden ball which, in its descent through air that is ten times as yielding as water, is moved at twenty degrees of speed, will descend through water with two [degrees of speed], and not come floating up from the bottom as in fact it does. Unless, of course, you mean that for wood, to rise in water is the same thing as to fall with two degrees of speed, which I do not believe. But since the wooden ball does not sink to the bottom, I think you will grant that some ball of other material can be found, different from wood, that will descend through water with two degrees of speed.

Simp. No doubt something can be found, but of material markedly heavier than wood.

Salv. That is what I sought. But this second ball, which

descends in water with two degrees of speed, will descend in air with what speed? You must reply, if you wish to use Aristotle's rule, that it will move at twenty degrees. But twenty degrees of speed is assigned by you yourself to the wooden ball, so that both it and the other (much heavier) ball will be moved at the same speed through air. Now, how does the Philosopher square this conclusion with that other of his, that moveables differing in heaviness are moved in the same medium with speeds differing in accordance with their weights [gravità]?

Without any deep thought, you cannot have failed to observe some frequent and palpable events, or to have noticed two bodies of which one will be moved in water a hundred times faster than the other, while in air, the faster of these does not outrun the other by even one part in a hundred. For instance, a marble egg will fall through water a hundred times as fast as a hen's egg, but through air it will not get four inches ahead in a distance of twenty braccia. One heavy body that takes three hours to get to the bottom in ten braccia of water will pass the same [ten] in air in a pulse beat or two.45 From this experience it would follow that the density of water exceeds that of air by more than a thousand doubles. Yet on the other hand some other body. which might be a lead ball, will pass the same ten braccia through water in a time perhaps little more than double the time in which it will pass an equal space through air. From this second experience one would have to conclude that the density of water is little more than twice that of air!

Here, Simplicio, I know very well that you understand there is no room for any quibble [distinzione] or reply whatever. Let us conclude, then, that such an argument [as Aristotle's] proves nothing against the void, and if it did, it would destroy only [void] spaces of perceptible size. I neither suppose that the ancients assumed those to occur in nature, nor do I assume this myself, though indeed they may be created by force; this is deduced from various experiences that it would take too long to adduce now.

Sagr. Seeing that Simplicio remains silent, I'll take the field to say something. You have clearly demonstrated that it is not at all true that unequally heavy bodies, moved in

^{45.} The remainder of this paragraph was added in the margin of Galileo's copy of the printed book, which concluded simply: "and one such (as for example, a ball of lead) will pass them in a time easily less than double."

the same medium, have speeds proportional to their weights [gravità], but rather have equal [speeds]. You assumed bodies of the same material (or rather, of the same specific gravity), and not (or so I think) of different density, because I do not believe you mean us to conclude that a cork ball moves with the same speed as one of lead. Moreover, you have demonstrated quite clearly that it is not true that the same moveable, in mediums of differing resistances, maintains the same ratio in its speeds (or slownesses) as that of the resistances. It would now be a most satisfying thing to me to hear what ratios are observed in either case.

Salv. The questions are good, and I have often thought about them. I shall tell you my reasoning, and what I have ultimately deduced therefrom. It is certainly not true that the same moveable, in mediums of differing resistance, observes in its speed the ratio of the vicldings of these mediums; still less, that moveables of different heaviness. in the same medium, maintain in their speeds the ratio of the weights, meaning also [when they have] different specific gravities. After assuring myself of this, I began to combine these two phenomena together, noting what happened with moveables of different heaviness placed in mediums of different resistances, and I found that the inequality of speeds is always greater in the more resistant mediums, as compared with those more yielding. This difference is such that of two moveables descending in air and differing little in speed of motion, one of them will be moved in water ten times as fast as the other; or even such that one of them may swiftly descend in air, and not only fail to descend in water. but will remain quite still there, or even move upward. Thus sometimes one can find some kind of wood, or a knot or root, that remains at rest in water but will fall swiftly in air.

Sagr. I have tried many times, with great patience, to adjust a ball of wax so that it will not sink [or rise] by itself, adding grains of sand to it and seeking that degree of similarity with the weight [of an equal volume] of water that would hold it still in the midst of water. But with all my diligence I never did succeed in accomplishing this, so I do not know whether any solid material can be found that is so physically [naturalmente] similar to water in heaviness as, placed therein, to stay at any given place.

Salv. In this, as in a thousand other operations, there are many animals more skillful than we are. Fish are good

evidence of this in the matter you mention, they being so expert in this exercise that they can at will equilibrate themselves not only with ordinary water, but with waters that are notably different, whether by nature or through the advent of turbidity or saltiness, which makes a very great difference. They equilibrate so exactly, I say, that without the least movement they rest quietly at any place. This they do, I believe, by using the instrument given to them by nature for the purpose; that is, a little bladder that they have in their bodies which communicates with the mouth by a very fine tube. By means of this they can at will let out part of the air contained in this bladder; or, rising to the surface by swimming, they can draw in more [air], in this way rendering themselves heavier or less heavy than the water, and equilibrating themselves at will.

Sagr. By using a different artifice, I once fooled some friends to whom I had boasted of getting that ball of wax into exact equilibrium with water. Having put salt water into the lower part of a vessel, and fresh water above this, I showed them the ball at rest in the middle; pushed down or lifted up, it would not remain, but returned to the middle.

Salv. Nor is this experiment devoid of use; doctors in particular deal with the different qualities of water, and especially with comparisons of its lightness or heaviness, among other things. This they do with such a ball [as yours], prepared so that it cannot decide, so to speak, between sinking and rising in a given water. However small the difference in weight between two waters, if such a ball will descend in one, it will rise in the other. The experiment is so precise that the addition of just two grains of salt in six pounds of water will make a ball rise to the top that before would sink.

I want also to say something else, in confirmation of the delicacy of this experiment, and at the same time as a clear proof that water has no resistance to divison. Not only does mixture with some substance heavier than water make a noticeable difference in its heaviness, but merely heating or cooling slightly will produce the same effect. This operation is so subtle that the introduction of a few drops of water that is hotter or colder than the original six pounds will make the [said] ball fall or rise, descending when hot water is added, and rising with the infusion of cold water. So you see how mistaken are those philosophers who would

114

have water to possess some viscosity or cohesion of parts that makes it resistant to division and penetration.

Sagr. On this subject, I have seen very conclusive reasonings in a treatise by our Academician. 46 Yet a strong doubt remained with me, which I do not know how to remove. If no tenacity and coherence exists between the parts of water, then how can great drops, well raised up, sustain themselves without spreading and flattening, as we see especially on cabbage leaves? 47

Salv. It is true that a man who has the right answer as his own can resolve all objections that are raised against it, but I do not arrogate to myself the power to do that. Still, inability on my part should not detract from the clarity of truth. In the first place, I confess that I don't know how that business of sustaining large and elevated globules of water is accomplished; yet I am certain that it does not derive from any internal tenacity existing among their parts, so the cause of this effect must be situated outside. That it is not internal, I can confirm by another experiment than those previously given.

If there were an internal cause by which the parts of that raised water were sustained when surrounded by air, then the water should be even better sustained when surrounded by a medium in which it has less propensity to sink than it has in air. Such a medium would be any fluid heavier than air, for example, wine. Therefore, some wine being poured around that globule of water, the wine should rise little by little without disturbing the parts of the water, stuck together by their [supposed] internal viscosity. But that is not what happens. Rather, no sooner does the liquor [poured] around approach the globule than, without waiting for this to rise around it, the water comes apart and flattens, staying under the wine [visibly] if that is red.

Therefore the cause of the effect is external, and perhaps it belongs to the surrounding air. Truly, great dissension is observed between air and water, which I have observed in another experiment, and this is that if I fill with water a

^{46.} Sec note 5, above.

^{47.} Galileo noted and discussed several phenomena of surface tension, but, perceiving that they did not depend on any internal properties of water, he ascribed them, as below, to a natural conflict between water and air; cf. Bodies in Water, pp. 33-39 (Opere, IV, 95-103); Assayer, p. 283 (Opere, VI, 323).

glass ball that has a small hole, about the size of a straw, and I turn it thus filled mouth downward, then, though water is quite heavy and prone to descend in air, and air is likewise disposed to rise through water, being light, they will not agree the one to fall by coming out through the hole, and the other to rise by entering it, but both remain obstinate and contrary. But if I present to that hole a glass of red wine, which is almost imperceptibly less heavy than water, we promptly see it slowly ascending in rosy streaks through the water, while water with equal slowness descends through the wine, without their mixing, until finally the ball will be filled entirely with wine, and the water will drop quite to the bottom of the glass below.⁴⁸

Now, what should be said here? What is deduced from this but a conflict [disconvenienza] between water and air, obscure to me, but perhaps...

Simp. I can hardly keep from laughing when I see Salviati's great antipathy for antipathy, since he will not even use the word; yet it is very suitable for solving the problem.⁴⁹

Salv. Well, out of courtesy to Simplicio, let that be the solution of our puzzle; and stopping the digression, let us return to our purpose. We have seen that the difference of speed in moveables of different heaviness is found to be much greater in more resistant mediums. What now? In mercury as the medium, not only does gold go to the bottom more swiftly than lead, but gold alone sinks, and all other metals and stones are moved upward and float in mercury. Yet balls of gold, lead, copper, porphyry, and other heavy materials differ almost insensibly in their inequality of motion through air. Surely a gold ball at the end of a fall through a hundred braccia will not have outrun one of copper by four inches. This seen, I say, I came to the opinion that if one were to remove entirely the resistance of the medium, all materials would descend with equal speed. 50

^{48.} Despite the solubility of wine in water, very little mixing actually takes place when the experiment is performed as described by Galileo, using an aperture such that water will not flow out against atmospheric pressure.

^{49.} Here Simplicio refers to a specific passage in the *Dialogue*, p. 410 (*Opere*, VII, 436).

^{50.} Cf. note 42, above. The restriction as to specific gravity is now removed. Yet motion in a vacuum is discussed below only in terms of a "probable guess" because actual experiments could not be made by Galileo for want of the air-pump developed soon afterwards.

Simp. That's a fine thing to say, Salviati. I shall never believe that even in the void—if indeed motion could take place there—a lock of wool would be moved as fast as a piece of lead.

Salv. Gently, Simplicio; your difficulty is neither so recondite nor so unforeseeable that you should imagine it not to have occurred to me, and that consequently I have not found the answer to it. Hence for my clarification and your own understanding, hear my reasoning. We are trying to investigate what would happen to moveables very diverse in weight, in a medium quite devoid of resistance, so that the whole difference of speed existing between these moveables would have to be referred to inequality of weight alone. Hence just one space entirely void of air-and of every other body, however thin and yielding-would be suitable for showing us sensibly that which we seek. Since we lack such a space, let us finsteadl observe what happens in the thinnest and least resistant mediums, comparing this with what happens in others less thin and more resistant. If we find in fact that moveables of different weight differ less and less in speed as they are situated in more and more yielding mediums; and that finally, despite extreme difference in weight, their diversity of speed in the most tenuous medium of all (though not void) is found to be very small and almost unobservable, then it seems to me that we may believe, by a highly probable guess. that in the void all speeds would be entirely equal.

Let us, then, consider what happens in air. In order to have some form of very light material with a well-defined surface, we shall take an inflated bladder. The air inside this, in air itself as the medium, will weigh little or nothing, for not much can be compressed into it. Hence the [effective] heaviness is merely that of the membrane itself, which will be not one one-thousandth the weight of a quantity of lead the size of the inflated bladder. Now, Simplicio, when both are released from a height of four or six braccia, by how much space do you think the lead will get ahead of the bladder in its fall? Though you would have made it a thousand times as swift, you may be sure that it will not be ahead by a triple or even a double [speed].

Simp. It may be that at the beginning of motion, that is, in the first four or six braccia, things will happen as you say. But in the course of a longer continuation, I believe that the lead would leave the bladder behind not just six parts in twelve of distance, but eight or even ten such parts.

Salv. I, too, believe the same, and I do not doubt that over very great distances the lead might go a hundred miles before the bladder went one mile. But, my good Simplicio, what you are offering me as an effect contradicting my proposition only confirms it the more. I repeat that my intention is to explain that the cause of diverse speeds in moveables of different heaviness is not that different heaviness at all. but depends on external events, particularly on the resistance of the medium, in such a way that by taking that away, all moveables would move at the same degrees of speed.⁵¹ I deduce this chiefly from what you yourself now admit, and what is certainly true; that is, that the speeds of [two] moveables very different in weight become more and more different as the spaces they traverse become greater and greater. This effect would not follow if the speeds depended on the different weights; for those being always the same, the ratio between the spaces traversed would remain always the same. But this is the ratio we see to be always increasing as motion continues. A very heavy moveable in a fall of one braccio will not get ahead of the lightest one by the tenth part of that distance; but in a fall of twelve braccia it will beat this by one-third; in a fall of one hundred, by ninety percent; and so on.

Simp. This is all very well; but following in your tracks: If the difference of weight in moveables of different heaviness cannot cause the change [with distance] in the ratio of the speeds, because the heaviness does not change, then neither can the medium cause any alteration in the ratio of speeds, since it too is always assumed to stay the same.

Salv. You cleverly bring against what I say an objection that it is imperative to resolve. I say, then, that a heavy body has from nature an intrinsic principle of moving toward the common center of heavy objects (that is, of our terrestrial globe) with a continually accelerated movement, and always equally accelerated, so that in equal times there are added equal new momenta and degrees of speed. This must be assumed to be verified whenever all accidental and external impediments are removed. Among these, there is one that we cannot remove, and that is the impediment of the filled medium that must be opened and moved laterally by the

118

^{51.} The plural, "degrees", prepares for the coming discussion of accelerated motion. For simplicity of treatment, Galileo had dealt with free fall up to this point in terms of the common and Aristotelian conception of fixed natural speeds.

falling moveable. The medium, though it be fluid, yielding, and quiet, opposes that transverse motion now with less, and now with greater resistance, according as it must be slowly or swiftly opened to give passage to the moveable, which, as I said, goes by nature continually accelerating, and consequently comes to encounter continually more resistance in the medium. 52 This means [some] retardation and diminution in the acquisition of new degrees of speed, so that ultimately the speed gets to such a point, and the resistance of the medium to such a magnitude, that the two balance each other, prevent further acceleration, and bring the moveable to an equable and uniform motion, in which it always Ithereafterl continues to maintain itself. Thus there is an increase of resistance in the medium, not because this changes its essence, but because of change in the speed with which the medium must be opened and moved laterally to yield passage to the falling body that is successively accelerated.

Now since it is seen that there is very great resistance of the air to the small momentum of the bladder, and little to the great weight of the lead, I hold it to be certain that if the air could be entirely removed, greatly accommodating the bladder but aiding the lead very little, their speeds would be equalized. If we then assume the principle that in a medium no resistance exists at all to speed of motion, whether because it is a void or for any other reason, so that the speeds of all moveables would be equal, we can very consistently assign the ratios of speeds of like and of unlike moveables, in the same and in different filled (and therefore resistant) mediums. This we shall do by considering the extent to which the heaviness of the medium detracts from the heaviness of the moveable. which heaviness is the instrument by which the moveable makes its way, driving aside the parts of the medium. No such action occurs in the void [nel mezzo vacuo], and therefore no difference (in speed) is derived from different heaviness. And since it is evident that the medium detracts from the heaviness of the body contained in it to the extent of the weight of an equal quantity of its own material, diminishing in that ratio the speeds of the moveables which in a non-resistant medium

^{52.} Here the resistance of the medium over and above its buoyancy effect is first introduced. This is functionally related to the square of the velocity, and not to the simple speed as assumed by Galileo; see note 11 to Fourth Day, below. Years earlier, Galileo had argued the concept of constant terminal speed on a wholly incorrect notion of acceleration; cf. On Motion, pp. 104-5 (Opere 1, 332-33).

would remain equal (as assumed), we shall have our goal.

Assume, then, that lead is ten thousand times as heavy as air, but ebony only one thousand times. From the speeds of these two materials, which would be equal taken absolutely (that is, with all resistance removed), air takes from lead one degree [of speed] in ten thousand, and from ebony one degree in one thousand, or ten in ten thousand. Hence if lead and ebony fall through air from any height, and would have fallen in the same time in the absence of retardation by the air, then the air will take away from the speed of lead one degree in ten thousand, while from ebony it will take away ten degrees. This is to say that dividing the height from which they fall into ten thousand parts, the lead will strike the ground when the ebony remains behind by ten, or rather nine, of the ten thousand parts. This means that a lead ball falling from a tower two hundred braccia high will be found to anticipate an ebony ball by less than four inches.

The ebony weighs one thousand times as much as air, but an inflated bladder weighs only four times as much; so from the instrinsic and natural speed of ebony, air detracts one degree in a thousand; but from that of the bladder, considered absolutely, let it take one degree in four; then the ebony ball falling from the tower will strike the ground when the bladder has passed by only three-quarters of the tower. Lead is twelve times as heavy as water, but ivory only twice; therefore water takes from lead one-twelfth, but from ivory one-half of their equal speeds. Hence when the lead shall have descended eleven braccia in water, the ivory will have dropped only six. And reasoning with this rule, I believe, we shall find that experience fits the computation much better than it fits Aristotle's rule.

Similarly we shall find the ratio between speeds of the same moveable in different fluid mediums, not by comparing the different resistances of the mediums, but by considering the excesses of heaviness of the moveable over the weights of [an equal bulk of] the mediums. Tin is a thousand times as heavy as air, and ten times as heavy as water; therefore, dividing the absolute speed of tin into a thousand degrees, in air, which detracts one one-thousandth, it will move with nine hundred ninety-nine [degrees], but in water with only nine hundred, since water takes away from it one-tenth of its heaviness, and air, one one-thousandth. Assuming a solid that is slightly heavier than water, which might be, for example, a ball of

oak that weighs one thousand drachms, while an equal 121 amount of water weighs nine hundred fifty, and that much air weighs but two [drachms], it is evident that putting its absolute speed at one thousand degrees, this will remain nine hundred ninety-eight in air, while in water [it will be] only fifty, inasmuch as water takes away nine hundred fifty of the thousand degrees of weight and leaves only fifty. Hence this solid would be moved almost twenty times as fast in air as in water, just as the excess of its weight over that of water is one-twentieth its own [weight].

Here we should consider that since only those materials that are of greater specific weight than water can move down in itand these are consequently hundreds of times heavier than air-then when we seek the ratio of their speeds in air and water, we can assume without notable error that the air takes nothing much away from the absolute heaviness or the absolute speed of such materials. The excess of their weights over the weight of water being easily found, we shall say that the ratio of their speed through air to that through water is the same as the ratio of their total weight to its excess over the weight of water. For example, an ivory ball weighs twenty ounces, and an equal amount of water weighs seventeen; therefore the speed of ivory in air is to its speed in water approximately as twenty is to three.53

Sagr. I have learned much in this inherently curious matter. about which I have often troubled my mind without gain. Nothing is now lacking to put these speculations into practice, except a method of knowing the weight of air with respect to that of water, and thereby to other heavy materials.

Simp. What if it is found that air, instead of gravity, has levity? What must then be said of this reasoning we have been hearing, which otherwise is so ingenious?

Salv. It would have to be said that it is aerial, light, and empty. But how can you question that air is heavy, when you have Aristotle's clear text, affirming that all the elements except fire have heaviness, even air itself? He adds that a sign of this is that an inflated leather bottle weighs more than an empty one.54

54. De caelo 311a,10-11. The words "except fire" are taken from the

Pieroni MS and were not printed in 1638.

^{53.} Acceleration is again ignored and steady speed assumed at all distances, probably because of the great difference in the buoyancy of water as compared with air; cf. note 51, above.

81

Simp. That a leather bottle, or a football, weighs more when inflated, results, I believe, from heaviness not in the air, but in the many thick vapors that are mixed with air here in our base regions. It is thanks to this, I should say, that heaviness increases in the leather bottle.

Salv. I do not like your saying this, and still less should you make Aristotle say it. For he, speaking of the elements and wishing to persuade me that the element of air is heavy, tries to have me see this by experience; if his proof were to say: "Take a leather bottle and fill it with gross vapors, and observe that its weight increases," I should tell him that it would weigh still more if filled with bran, adding that such experiences prove that bran and gross vapors are heavy, while as to the element of air, I remain in the same doubt as before. Aristotle's [own] experiment, though, is valid; and his proposition is true. But I can't say the same of another argument (taken, however, merely as an indication) by some philosopher whose name I forget, though I know I have read this. The argument is that air is heavy rather than light, because it more readily carries heavy bodies downward than light ones upward.

Sagr. That's great, I swear. So by this argument, air will be much heavier than water, inasmuch as all heavy bodies are more readily carried downward through air than through water, and all light ones more readily [upward?] in water than in air. Indeed, 56 infinitely many materials rise through water that fall through air.

But let [increased] heaviness in the [inflated] bottle exist, Simplicio, whether because of gross vapors or pure air; this in no way bars our purpose of seeking what happens to bodies moved in this vaporous region of ours. Getting back to something else that troubles me more, I should like, for complete instruction in the present matter, not just to rest assured that air is heavy (for I am convinced), but if possible, to know its weight. So if you have anything that will satisfy me on this too, Salviati, I beg you to favor me with it.

^{55.} Girolamo Borri (1512-92), De motu gravium et levium (Florence, 1576), p. 231. Borri was one of Galileo's teachers at Pisa, mentioned favourably in his early dialogue on motion; see Mechanics in Italy, p. 331 (Opere, I, 367). An experiment reported by Borri led Galileo to believe for a time that dense bodies move somewhat more slowly at the beginning of free fall than do less dense ones.

^{56.} Here the Pieroni MS includes an essentially redundant clause omitted in the printed edition: "infinitely many heavy bodies descend in air that ascend in water, and".

Salv. Positive weight exists in air, and not lightness as some have believed; that is perhaps not be found in any material whatever. This is quite conclusively argued by the experience of the inflated football given by Aristotle. For if the quality of absolute and positive lightness existed in air, then when air was multiplied and compressed, the lightness would be increased, and with it the propensity to go upward; but experience shows us the opposite. As to your other question, concerning the method of investigating the weight of air, I have carried that out in the following manner.

I took a large glass flask with a narrow neck to which I applied a leather collar, tied very tightly to the neck of the flask; into this was inserted and firmly tied a football-valve [animella da pallone] through which, by means of a syringe, I forced into the flask a great quantity of air; this permits itself to be very greatly condensed, so one can drive in two or three additional volumes [altri fiaschi] beyond what is naturally contained. Then, on a very delicate balance, I weighed most precisely that flask with the air compressed inside it, adjusting the balance with fine sand. The valve was then opened, giving exit to the air forcibly held in the flask, which was then put back on the balance and was found to be appreciably lighter. I took away sand from the counterweight, setting it aside, until the balance came to rest, with the flask and the remaining sand in equilibrium. There can be no doubt that the weight of the sand set aside was that of the air forced into the flask, and afterward released.

Up to this point, the experiment assures me only that the air forcibly held in the vessel weighs as much as the sand saved. I still do not know how much air weighs definitely and unequivocally, with respect to water or other heavy materials, and I cannot know this unless I measure the quantity of air compressed. For this investigation one needs a rule, and I have found two ways in which we can proceed.

One of these is to take another flask, narrow-necked like the first, to the neck of which is tightly tied another collar that will receive the valve of the first, around which it is to be fastened with a tight knot. This second flask must have a [small] hole in the bottom, allowing an iron rod to be inserted, with which we can at will open the valve and give exit to the excess air in the first flask, after it has been weighed; and this second vessel is to be filled with water.

The whole apparatus thus prepared, the valve is opened by means of the rod; the air, coming out impetuously and entering the vessel of water, drives water out through the hole in the bottom. It is obvious that the quantity of water thus expelled is equal to the volume of air coming out of the original vessel; this water is to be saved. Weigh again the [first] flask, now lightened by the [escape of the] compressed air; it is assumed that this flask with the compressed air was already weighed before. The excess sand being removed in the way previously described, it is manifest that this gives the exact weight of as much air in volume as the volume of the water expelled and saved. By weighing that [water], we shall see how many times its weight contains the weight of the sand put aside; and without error we can say that water is that many times heavier than air. This will not be ten times, as Aristotle seems to believe, but about four hundred times, as shown by this experiment. 57

The other method is quicker and may be carried out with a single flask, namely, the first one, prepared as before. Into this we shall [this time] not put more air beyond what is naturally there, but we shall drive water in without letting any air escape; it must yield to the incoming water and be compressed. Having driven in as much water as possible and without much force, three-quarters of the capacity of the flask can be put in---we place it on the balance and weigh it very carefully. That done, hold the flask mouth upward and open the valve to free the air, of which exactly as much will escape as the amount of water contained in the flask. The air having escaped, replace the flask on the balance. It will be found to be lighter by the departure of air, and subtracting from the counterweight the excess [as before]. from this weight we have the weight of as much air as there is water in the flask.

Simp. The artifices you have invented cannot be called anything except subtle and ingenious; but while they seem to have given entire satisfaction to my mind, they confuse me in another direction. It is undoubtedly true that the elements in their own regions are neither heavy nor light; hence I can't understand of that portion of air that appeared to weigh, say, four drachms of sand, how or where this can

^{57.} Galileo's value is about one-half the correct figure. He first described the experiment in a letter to G.B. Baliani in 1614, where he gave the ratio 460:1 (Opere, XII, 354).

really be said to have that weight in air, where the sand that balanced it indeed does retain its weight. So it seems to me that the experiment should be performed not in the airy element, but in some medium in which air itself can exert its burden [talento] of weight, if it truly has any.

Salv. Simplicio's objection is certainly sharp, so it must either be insoluble, or its solution must be equally subtle. It is quite clear that the air which, when compressed, is shown to weigh as much as the sand, being then released into its own element, no longer weighs [anything] there, while the sand still does. Hence in order to make the experiment [properly], we must choose a place and a medium where air, no less than sand, can gravitate. As we said before, from the weight of every material immersed in it. the medium detracts the weight of a volume of the medium equal to the volume immersed in it. Thus air takes from air all its weight, and in order to be performed precisely. the operation must be carried out in the void, where every heavy body exercises its moment without any diminution. Well then, Simplicio; if we were to weigh a quantity of air in the void, would you then rest satisfied and assured of the fact?

Simp. Yes indeed; but this is to ask or wish for the impossible.

Salv. And therefore you should be very much obliged to me when, out of affection for you, I effect the impossible. But I do not want to sell you what I have already given you. In the experiment already adopted, we did weigh air in the void and not in air or any other filled medium. For from the volume immersed in the fluid medium, Simplicio, that medium subtracts weight [only] because it resists being opened, driven aside, and finally lifted up. 58 A sign of this is given to us by its promptness in running immediately back to refill the space that the immersed bulk occupied in it, as soon as it leaves that space. For if it felt nothing of that immersion, it would not oppose it. Now, tell me: When you had, in air, the flask filled with the air naturally contained in it, what division, what driving aside, or in a word, what change did the surrounding external air receive from the

^{58.} There is an implication that if the displaced air were not eventually lifted, its displacement would not resist the moving body at all. Elsewhere, Galileo recognized repeatedly that fluids resist motion of any appreciable speed, quite apart from the buoyancy effect.

additional air that was then forced into the vessel? Did this perhaps enlarge the vessel, so that the ambient [air] had to withdraw a bit to yield it room? Surely not. Hence we may say that the new air is not immersed in the ambient; it occupies no space therein, and is as if it were placed in the void. 59 Indeed, it really is so placed, transfused into the voids that were not filled completely by the original, uncondensed, air.

126

I really can't see the difference between any two situations of ambit and ambient in which, on the one hand, the ambient does not push against the ambit, and on the other hand the ambit does not push against the ambient. Such are the situations of matter in the void, and of air newly compressed in the flask. The weight, then, that is found in the condensed air is that [weight] which it would have, spread freely in the void. It is indeed true that the weight of the sand that counterpoised it, if weighed in the void rather than in open air, would have been a little more precise: and hence we should say that the air weighed is really somewhat heavier than the sand that balanced it; namely, by as much as an equal bulk of air [to that of the sand] would weigh in the void.

[126]

Sagr. 60 A very acute speculation, which contains the solution of a problem that seemed to partake of the miraculous. In substance, restricted to a few words, this shows us a way of finding the weight of any body weighed in a void, though we weigh it only in the filled medium of air. The explanation is this. Air detracts, from the absolute weight of every heavy body located in it, as much weight as the weight of a volume of air equal to the volume of the original body. Hence whoever could couple with the given body as much air as its own volume, without enlarging the body, would on weighing it have its absolute weight, that which it would have in the void, since without increasing its volume, there was added that very weight which is subtracted from it by air as the medium. Thus when in the flask already filled by the air naturally contained in it, a quantity of water is introduced without allowing any of the contained air to escape, it is manifest that the air naturally contained is restrained and condensed into a smaller volume, to give place to the water introduced. And it is evident that the volume of air so restricted is equal to the volume of the water introduced. Hence when one weighs in air the flask so prepared, it is evident that the weight of

[127]

^{59.} This very penetrating remark is promptly related by Galileo to the theory of condensation he had previously propounded on pp. 96 ff.; see below.

^{60.} Sagredo's speech was dictated by Galileo and inserted in his copy of the printed book.

the water is accompanied by [that of] an equal amount of air. Of the [total] weight, part is that of the water together with an equal amount of air, and this is the same weight that the water alone would have in the void. [To find this,] the whole vessel is weighed, and its whole weight is noted down. Then the compressed air is given exit, and everything remaining is reweighed; because of the release of air, this weight will be diminished. Taking the difference of the two weights, we shall have the weight of the compressed air that had been equal in volume to the water. Then taking the weight of the water alone, and adding to this the weight (which we noted separately) of the compressed air, we shall have the weight of the same water alone in the void. Next, to find the weight of the water [in air], empty the water from the vessel, weigh the vessel alone, and subtract this weight from that of the vessel plus water, as weighed before. It is evident that the remainder is the weight of the water alone, in air.

127 Simp. It did seem to me that there was still something to be desired in the experiments adduced, but now I am entirely satisfied.

Salv. What I have set forth thus far is new; especially that no difference of weight, however great, plays any part at all in diversifying the speeds of moveables, so that as far as speed depends on weight, all moveables are moved with equal celerity. At first glance, this seems so remote from probability that, if I did not have some way of elucidating it and making it clear as daylight, it would have been better to remain silent than to assert it. So now that it has escaped my lips, I must not neglect any experiment or reason that can corroborate it.

Sagr. Not only this proposition, but many others of yours are so far from the opinions and teachings commonly accepted, that to broadcast them publicly will excite against them a great number of contradictors; for the innate condition of men is to look askance on others working in their field whose studies reveal truth or falsity which they themselves fail to perceive. By calling such men [as you] "innovators of doctrines," a title most unpleasant to the ears of the multitude, they strain to cut those knots they cannot untie, and to demolish with underground mines those edifices which have been built by patient artificers, working with ordinary instruments. But to us, who are far from any such motives, the experiments and reasons adduced up to this point are quite satisfactory.

Salv. The experiment made with two moveables, as different as possible in weight, made to fall from a height in order to observe whether they are of equal speed, labors under certain difficulties. If the height is very great, the medium that must be opened and driven aside by the impetus of the falling body will be of greater prejudice to the small momentum of a very light moveable than to the force of a very heavy one, and over a long distance the light one will remain behind. But in a small height it may be doubtful whether there is really no difference [in speeds], or whether there is a difference but it is unobservable. So I fell to thinking how one might many times repeat descents from small heights, and accumulate many of those minimal differences of time that might intervene between the arrival of the heavy body at the terminus and that of the light one, so that added together in this way they would make up a time not only observable, but easily observable.

In order to make use of motions as slow as possible, in which resistance by the medium does less to alter the effect dependent upon simple heaviness, I also thought of making the moveables descend along an inclined plane not much raised above the horizontal. On this, no less than along the vertical, one may observe what is done by heavy bodies differing in weight. Going further, I wanted to be free of any hindrance that might arise from contact of these moveables with the said tilted plane. Ultimately, I took two balls, one of lead and one of cork, the former being at least a hundred times as heavy as the latter, and I attached them to equal thin strings four or five braccia long, tied high above. Removed from the vertical, these were set going at the same moment, and falling along the circumferences of the circles described by the equal strings that were the radii, they passed the vertical and returned by the same path. Repeating their goings and comings a good hundred times by themselves, they sensibly showed that the heavy one kept time with the light one so well that not in a hundred oscillations, nor in a thousand, does it get ahead in time even by a moment. but the two travel with equal pace. The operation of the medium is also perceived; offering some impediment to the motion, it diminishes the oscillations of the cork much more than those of the lead. But it does not make them more frequent, or less so; indeed, when the arcs passed by the

cork were not more than five or six degrees, and those of the lead were fifty or sixty, they were passed over in the same times.⁶¹

Simp. If that is so, why then will the speed of the lead not be [called] greater than that of the cork, seeing that it travels sixty degrees in the time that the cork hardly passes six?

Salv. And what would you say, Simplicio, if both took the

same time in their travels when the cork, removed thirty degrees from the vertical, had to pass an arc of sixty, and the lead, drawn but two degrees from the same point, ran through an arc of four? Would not the cork then be as much the faster? Yet experience shows this to happen. But note that if the lead pendulum is drawn, say, fifty degrees from the vertical and released, it passes beyond the vertical and runs almost another fifty, describing an arc of nearly one hundred degrees. Returning of itself, it describes another slightly smaller arc; and continuing its oscillations, after a great number of these it is finally reduced to rest. Each of those vibrations is made in equal times, as well that of ninety degrees as that of fifty, or twenty, or ten, or of four. Consequently the speed of the moveable is always languishing, since in equal times it passes successively ares ever smaller and smaller. A similar effect, indeed the same, is produced by the cork that hangs from another thread of equal length, except that this comes to rest in a smaller number of oscillations, as less suited by reason of its lightness to overcome the impediment of the air. Nevertheless, all its vibrations, large and small, are made in times equal among themselves, and also equal to the times of the vibrations of the lead. Whence it is true that if, while the lead passes over an arc of fifty degrees, the cork passes over only ten, then the cork is slower than the lead; but it also happens in reverse that the cork passes along the arc of fifty while the lead passes that of ten. or six; and thus, at different times, the lead will now be faster, and again the cork. But if the same moveables also pass equal arcs in the same equal times, surely one may say that their speeds are equal.

^{61.} In an earlier discussion, Galileo had avoided the assertion of exact isochronism for all arcs; cf. *Dialogue*, pp. 230, 450 (*Opere*, VII, 256, 475). The error introduced here seems to have been a deduction from the false assumption that air resistance is proportional to speed, rather than to its square; cf. note 52, above. In the Fourth Day, a different experiment is adduced to support this supposed isochronism (p. 277, below).

Simp. This reasoning seems to me conclusive, and also it seems it isn't; my mind feels a kind of confusion that arises from the moving of both moveables now quickly, now slowly, and again extremely slowly, so that I can't get it straight in my head whether it is true that their speeds are always equal.

Sagr. I'd like to say a word, Salviati. Tell me, Simplicio, whether you grant that it may be said with absolute truth that the speed of the cork and that of the lead are equal every time that they both start at the same moment from rest and, moving along the same slopes, always pass equal spaces in equal times.

Simp. In this there is no room for doubt; it cannot be contradicted.

Sagr. Now it happens with either pendulum that it passes now sixty degrees, now fifty, now thirty, now ten, now eight, now four, now two, and so on. And when both pass the arc of sixty degrees, they pass this in the same time; in the arc of fifty, both bodies spend the same time; so in the arc of thirty, of ten, and the rest. Thus it is concluded that the speed of the lead in the arc of sixty degrees is equal to the speed of the cork in the same arc of sixty; and that the speeds in the are of fifty are still equal to each other, and so on in the rest. But nobody says that the speed employed in the arc of sixty [degrees] is equal to that consumed in the arc of fifty, nor this speed to that in the arc of thirty, and so on. The speeds are always less in the smaller arcs, which we deduce by seeing with our own eyes that the same body spends as much time in passing the large arc of sixty degrees as in passing the smaller of fifty or the very small arc of ten; and in sum, that all arcs are passed in equal times. It is therefore true that the lead and the cork do go retarding their motion according to the diminution of the arcs, but their agreement in maintaining equality of speed in every arc that is passed by both of them remains unaltered.

I wanted to say this to learn whether I have correctly understood Salviati's idea, rather than because I believe that Simplicio deserved a clearer explanation than that of Salviati, who here, as in all things, is most lucid. Usually he unravels questions that seem not only obscure, but repugnant to nature and the truth, [and does this] by reasons, observations, or experiences that are well known and familiar to everyone. I have heard from various people that this has given occasion to a certain highly esteemed professor to deprecate his dis-

coveries [novità], holding them to be base, as depending on foundations too low and common—as if it were not the most admirable and estimable condition of the demonstrative sciences that they arise and flow from well-known principles, understood and conceded by all.

But let us go on feasting on these light foods, assuming that Simplicio is now willing to assume and grant that the internal heaviness of different moveables has no part at all in diversifying their speeds, so that all, so far as weight is concerned, move with the same speeds. Salviati, tell us how you explain the sensible and obvious inequalities of motion. and reply to Simplicio's objection, which I also confirm, that we see a cannonball fall more swiftly than a lead shot, whereas according to you, the difference of speed will be small. I counter this with some moveables of the same material, of which the larger will fall in less than a pulsebeat, in one medium, through a space that others smaller will not pass in an hour, or four, or twenty. These are stones, and fine sand, to say nothing of that dust that muddies water, a medium in which this does not fall through two braccia in many hours. through which [distance] rocks, and not very big ones at that, fall in a pulsebeat.

Salv. The part played by the medium in more greatly retarding moveables according as they are less in specific gravity has already been explained; this occurs by the subtraction of weight. How a given medium can reduce speed very differently in bodies that differ only in size, and are of the same material and shape, requires for its explanation subtler reasoning than that which suffices to understand how a flat shape in a moveable, or motion of the medium against one, retards its speed.

For the present problem, I reduce the reason to the roughness and porosity found commonly, and for the most part necessarily, at the surface of solid bodies. In motion, those irregularities strike the air or other surrounding medium, an evident sign of which is that we hear bodies hum when they fly rapidly through the air, even when rounded as thoroughly as possible; and they not only hum, but they are heard to whistle and hiss if some notable cavity or protuberance exists in them. It is also seen that every round solid turned on a lathe makes a little breeze. Again, we hear a humming, very high in pitch, made by a top when it spins rapidly on the ground. The pitch of this tone deepens as the spinning languishes bit by bit; this also necessarily argues hindrances by

the air of the surface roughnesses, however tiny. It cannot be doubted that in the descent of moveables these [irregularities] rub against the surrounding fluid and bring about retardation of speed, greater as the surface is larger, as is the case with smaller solids in comparison with large ones.

Simp. Wait, please, for here I begin to get confused. Although I understand and grant that friction of the medium with the surface of the moveable slows the motion, and that the slowing is greater (other things being equal) where the surface is larger, I do not understand on what grounds you call the surface of smaller solids greater. Besides, if as you say, a larger surface should bring about greater retardation, then larger solids should be slower, which is not the case. This objection is, however, easily removed by saying that although the larger has the greater surface, it also has greater heaviness; and against this, the impediment of greater surface does not surpass the impediment of a smaller surface as against the smaller heaviness, so that the speed of the larger solid does not become smaller. 62 Hence I see no reason why the equality of speeds should be altered, for to the extent that the motive heaviness is diminished, the retarding property of the surface is diminished equally.

Salv. I shall resolve jointly all that you oppose to me. You, Simplicio, assume two equal moveables of the same material and shape, which unquestionably do move equally fast, and then say that if one of these be diminished as much in heaviness as in surface, (but retaining the similarity of shape), the speed will not be reduced in this smaller one.

Simp. It really seems to me that that must follow in your teaching, which has it that greater or less heaviness does not act to accelerate or retard motion.

Salv. This I confirm, and I also grant you your dictum, from which it appears to me that in consequence, when heaviness is diminished more than is surface, some retardation of motion is introduced into any body so reduced; and the more, in proportion as the diminution of weight is greater than the reduction of surface.

Simp. I have no objection to this.

Salv. Know, then, Simplicio, that one cannot diminish the

^{62.} What Simplicio here offers is precisely the kind of plausible verbal explanation that had long held back the development of accurately descriptive mathematical physics, influencing also Galileo's early treatise *On Motion*, pp. 106 ff. (*Opere*, I 333 ff.).

surface of a solid exactly as the weight, and still keep the shape similar. For manifestly, in diminishing a heavy solid, the weight is lessened as is the volume; and since in preserving similarity of shape the volume is always diminished more than the surface, the weight will also be reduced more than is the surface. But geometry teaches us that in similar solids, the ratio between volumes is much greater than the ratio of surfaces. For your better understanding of this I shall explain a particular instance.

Imagine for example a die of which the side is two inches long, so that one face will be four square inches, and all six Ifaces), that is, its whole surface, [will be] twenty-four square inches. Next, imagine that the die is sliced with three cuts into eight smaller dice. The side of each of them will be one inch, and each face one square inch, and its whole surface six square inches, whereas the surface of the uncut die contained twenty-four. Now you see that the surface of the little die is one-quarter the surface of the larger one, this being the ratio of six to twenty-four. But the volume of the same [cut] die is only one-eighth. Thus the volume, and hence the weight, falls off much more quickly than the surface. If you subdivide the little die into eight others, the whole surface of one of these will be one and one-half square inches, which is onesixteenth of the surface of the original die, while its volume is only one sixty-fourth. See how in just these two divisions. the volumes have diminished four times as much as have the surfaces; and if we continue the subdivision until the original solid is reduced to fine powder, we shall find the weight of the minute atoms to be diminished hundreds and hundreds of times as much as their surfaces.

What I have exemplified for you by cubes happens in all similar solids, the volumes of which are as the three-halves power of their surfaces. You see, therefore, in how much greater ratio the impediment of the surface contact of the moveable with the medium grows in small moveables than in larger ones. And if we add that the roughness of the tiny surfaces in fine powders is perhaps not any less than that of the surfaces of highly polished larger solids, we see how necessary it is that the medium be fluid, and entirely devoid of resistance to its being separated, if it is to give way to the passage of so feeble a force. And note also, Simplicio, that I was by no means mistaken when I said a moment ago that the surface of smaller solids is larger in comparison with that

of larger solids.

Simp. I am quite satisfied; and you may both believe me that if I were to begin my studies over again, I should try to follow the advice of Plato and commence from mathematics, which proceeds so carefully, and does not admit as certain anything except what it has conclusively proved.

Sagr. I liked this discussion very well, but before we proceed I want to understand a term that is new to me. You just said that similar solids are to one another as "the three-halves power" of their surfaces. I saw and took in the proposition, with its demonstration in which it is proved that the surfaces of similar solids are in the doubled ratio [i.e., as the squares] of their sides, and the further proof that the volumes are in the tripled ratio [i.e., as the cubes] of the sides. But I cannot recall my ever having heard the ratio of solids to their surfaces named before.

Salv. Well, you are replying for yourself, and answering your own question. For is not that which is the triple of something, of which another thing is double, said to be three-halves of that double? Now, if the surfaces are in doubled ratio of the lines of which the volumes are in tripled ratio, can we not say that the solids are as the three-halves power of the surfaces?⁶³

Sagr. I understand; and though some other details concerning the material treated remain for me to ask about, still, if we go on that way from one digression to another, we shall be very late in getting to the questions principally intended, which relate to the various phenomena of resistance by solids to their being broken. So if it suits both of you, we may pick up the original thread from which we started.

Salv. Well said. But the things examined have been so varied that they have robbed us of much time, so that there is little left today to spend on that principal subject, which is full of geometrical demonstrations that must be attentively considered. I think it is better to put this off until tomorrow's meeting, when I can bring along with me some sheets on which I have noted down in order the theorems and problems in which different essentials of that subject are set forth and proved. I should perhaps not call these to mind in the proper order by memory alone.

63. Fractional exponents were not in general use, but this particular relationship of 3:2 was easy enough for Galileo's readers to grasp by reason of the special Euclidean terminology for ratios of squares and cubes; see Glossary for "doubled ratio" and "tripled ratio," which are "powers" in modern language.

Sagr. I willingly accept that counsel, the more so as in finishing today's session I shall have time to hear the explanation of some questions that remain with me on the matters we have just dealt with. One of these is whether we must take the impediment of the medium [alone] as adequate to stop the acceleration of very heavy material in great bulk and spherical shape. I say "spherical" in order to take that which is contained within the smallest surface and is therefore least subject to retardation.

Another [question] concerns the oscillations of pendulums, and it falls into two parts. One is whether all oscillations, large, medium, and small, are truly and precisely made in equal times. The other concerns the ratio of times for bodies hung from unequal threads; the times of their vibrations, I mean.

Salv. The questions are good, and as happens with all truths, I am afraid that in dealing with either of them, other true and curious consequences will be drawn in. I do not know if we shall have time to discuss them all today.

Sagr. If they have the flavor of those already covered, I should be happy to employ on them as many days, let alone as many hours as remain until dark. And I believe that Simplicio will not be wearied by such discussions.

Simp. Certainly not; especially if they deal with physical questions on which no opinions or arguments of other philosophers are to be read in books.

Salv. Then I shall take up the first, and affirm without doubt that there is no sphere so large, nor any material so heavy, that the resistance of the medium, however thin, fails to restrain its acceleration and bring it to uniformity of motion in its continuation. We have a very clear argument of this from experience itself. If any falling moveable were able, by continuing its motion [through a medium], to acquire any degree of speed whatever, then no speed that could be conferred on it by a mover external [to that medium]⁶⁴ could be so great that the moveable would reject it and be despoiled of it thanks to the impediment of that medium; thus if a

^{64.} The limitations added in square brackets seem essential to the sense of the ensuing discussion, in which Galileo did not intend to deny that speed would increase without bound in the void. At the critical moment of entry into water, the speed that has been naturally acquired during fall through air may be (and in Galileo's example is) too great to have been acquired during any fall through water. Yet some speed of entry might be small enough to be continued, or even increased, during the subsequent fall through water.

cannonball that had fallen, say, four braccia through air and acquired ten degrees of speed with which it then entered into water, and the impediment of the water were not able to cancel that impetus in the ball, the impetus would increase, or would at least continue to the bottom, which is not seen to happen. Indeed, the water, though not more than a few braccia deep, impedes and weakens the impetus so that it will make a very light impact on the bed of the river or lake. It is therefore manifest that the speed which the water was able to take from the ball in a short passage would never be permitted [by water] to be acquired even at a depth of a thousand braccia. And why would it permit this to be gained in a thousand, only to be taken away later in a few braccia?

But what next? It is seen that the enormous impetus of the ball shot from the same cannon is so much abated by the interposition of a few braccia of water that with no damage to a ship, it hardly even reaches it to strike it. And air [itself], though very yielding, nevertheless does repress the speed of a falling moveable, however weighty, as we may understand with similar experiments. For if we should fire an arquebus downward from the top of a high tower,65 the shot would make a smaller dent in the ground than if we had made the shot from a point only four or six braccia above, a clear sign that the impetus with which the ball fired from the top of the tower comes out of the barrel is diminished in descending through air. Therefore no descent, from any height whatever, would be sufficient to make the ball acquire that impetus of which it is deprived by the resistance of the air, no matter how that impetus was conferred on it. Likewise, I believe, the damage done to a wall by a ball shot from a cannon twenty braccia distant would not be done by a ball coming vertically from any immense height. I believe that there is a limit to the acceleration of any natural moveable which leaves from rest, and that the impediment of the medium finally brings this to uniform motion in which the body is thereafter always maintained.

Sagr. These experiments appear to me very much to the purpose, and nothing remains here except that some adversary might entrench himself behind a denial that this can be verified for very great and heavy bulks, [declaring] that a cannonball coming from the orbit of the moon, or just from the highest region of the air, would strike more strongly than

one shot from a cannon.

Salv. No doubt many things could be said in opposition, not all of which can be countered by experiments. In this refutation, however, it appears that something could be brought into consideration; namely, that it is highly probable that the heavy body falling from any height acquires that impetus, on arriving at the ground, which would suffice to drive it up to that height. This is clearly seen in a heavy pendulum which, drawn fifty or sixty degrees from the vertical, gains that speed and force [virtù] which precisely suffices to push it to an equal height, except for that little that is taken away by the impediment of the air. Hence to get the cannonball to such a height as would suffice for its acquisition [by fall] of the impetus that is given to it by the powder [fuoco] on its emerging from the cannon, it should be enough to shoot it vertically upward with the same cannon and then see, in its falling back, whether it made a blow equal to that of the impact made nearby in emerging [from the cannon]. I believe that it will not be as strong a blow by a long way: hence I think the speed the ball has near the mouth of the cannon to be such that the impediment of the air will never permit this [speed] to occur in natural motion starting from rest at any height whatever.

Next I come to those other questions, pertaining to pendulums, a subject that may seem very dry, especially to philosophers who are forever occupied in the most profound speculations about physics. I do not mean to deprecate these men, inspired by the example of Aristotle himself, in whom I admire above all that it may be said he did not neglect any matter worthy of consideration, or fail to touch on it. Moved by your questions, I shall now tell you something of my thoughts pertaining to music—a most noble subject, on which many great men, including Aristotle himself, have written. He considers many curious problems relating to music; hence if from easy and sensible experiences I too shall draw reasons for marvelous things in the matter of sounds, I may hope that my discussions will be welcome to you.

Sagr. Not just welcome, but highly desired by me at least, as one who is delighted by all musical instruments. Having philosophized much about the consonances, I have always remained puzzled and perplexed by them, inasmuch as one pleases and delights me far more than another, while some

not only fail to delight, but actually offend me. Then there is the old problem of the two strings tuned in unison, of which one moves and audibly resounds to the sound of the other. I am unresolved about this, as I am also unclear about the forms of the consonances, and other particulars.⁶⁷

Salv. We shall see whether these pendulums of ours can bring some satisfaction to all these difficulties. As to the prior question, whether the same pendulum makes all its oscillations—the largest, the average, and the smallest—in truly and exactly equal times, I submit myself to that which I once heard from our Academician. He demonstrated that the moveable which falls along chords subtended by every arc [of a given circle] necessarily passes over them all in equal times, as well that [chord] subtended by one hundred eighty degrees, which is the whole diameter, as those subtended by one hundred, by sixty, by ten, two, one-half, and by a few minutes [of arc]. It is understood that all [these arcs] end at the lowest point [of the circle], touching the horizontal plane.

Now, as to descents along arcs of these chords rising from the horizontal, experience likewise shows us that all those not exceeding ninety degrees, or a quarter-circle, are passed in equal times, shorter, however, than the times of passage along the chords. This effect contains something of the miraculous, since at first glance it seems that the opposite should happen. [The paths] having in common their points of beginning and ending of motion, and the straight line being the shortest that lies between the same ends, it seems reasonable that the motion made along the straight line would have to be completed in the shortest time. This is not the case; the shortest time, and hence the swiftest motion, is that which is made along the arc of which the straight line is the chord.

As to the ratio of times of oscillation of bodies hanging from strings of different lengths, those times are as the square roots of the string lengths; or we should say that the lengths are as the doubled ratios, or squares, of the times. Thus if,

^{67.} The "forms" meant were the numerical ratios traditionally associated with musical consonances. The octave, fifth, and fourth were associated with the ratios 2:1, 3:2, and 4:3. Imperfect consonances, not all of which were accepted by all theorists, included the major and minor third and sixth as 5:4, 6:5, 5:3, and 8:5. Galileo's father, Vincenzio Galilei (1520–90), was responsible for many of the experiments and results brought against numerical "forms" by Galileo, especially those he placed in the mouth of Sagredo. Vincenzio had ridiculed mathematical speculations about pure forms, contending that the trained ear is the only proper criterion of musical consonance.

141

for example, you want the time of oscillation of one pendulum to be double the time of another, the length of its string must be four times that of the other; or if in the time of one vibration of the first, another is to make three, then the string of the first will be nine times as long as that of the other. It follows from this that the lengths of the strings have to one another the [inverse] ratio of the squares of the numbers of vibrations made in a given time. 68

Sagr. Then, if I understood correctly, I can easily know the length of a string hanging from any great height, even though the upper end of the attachment is out of my sight, and I see only the lower end. For if I attach a heavy weight to the string down here, and set it in oscillation back and forth; and if a companion counts a number of its vibrations, while at the same time I likewise count the vibrations made by another moveable hung to a thread exactly one braccio in length, I can find the length of the string from the numbers of vibrations of these two pendulums during the same period of time. For example, let us assume that in the time my friend has counted twenty vibrations of the long string. I have counted two hundred forty of my thread, which is one braccio long. Then after squaring the numbers 20 and 240, giving 400 and 57,600, I shall say that the long string contains 57,600 of those units [misure] of which my thread contains 400; and since my thread is a single braccio, I divide 57,600 by 400 and get 144, so 144 braccia is the length of the string.

Salv. Nor will you be in error by a span, especially if you take a very large number of vibrations.

Sagr. You often give me occasion to admire the richness of nature and her great liberality, when from such common things, or I might even say such base ones, you draw new and curious knowledge that is often far beyond my imagining. A thousand times I have given attention to oscillations, in particular those of lamps in some churches hanging from very long cords, inadvertently set in motion by someone, but the most that I ever got from such observations was the improbability of the opinion of many, who would have it that motions of this kind are maintained and continued by the medium, that is, the air. It would seem to me that the air must have exquisite judgment and little else to do, consuming hours and hours in pushing back and forth a hanging weight

^{68.} See note 74, below; Galileo's omission here of the word "inverse" was noted by Viviani.

with such regularity. And now I learn that a given moveable, hung from a cord one hundred braccia long, and drawn from its lowest point now ninety degrees and again but one degree, or half a degree, would consume as much time in passing this smallest are as that maximum are. I certainly do not believe that I would ever have discovered this, which still seems to me to have in it something of the impossible. Now I wait to hear how these same simple minutiae provide me with reasons that can set my mind at least partly at rest concerning musical problems.

Salv. First of all, it is necessary to note that each pendulum has its own time of vibration, so limited and fixed in advance that it is impossible to move it in any other period than its own unique and natural one. Take in hand any string you like, to which a weight is attached, and try the best you can to increase or diminish the frequency of its vibrations; this will be a mere waste of effort. On the other hand, we confer motion on any pendulum, though heavy and at rest, by merely blowing on it. This motion may be made quite large if we repeat our puffs; yet it will take place only in accord with the time appropriate to its oscillations. If at the first puff we shall have removed it half an inch from the vertical, by adding the second when, returned toward us, it would commence its second vibration, we confer a new motion on it; and thus successively with more puffs given at the right time (not when the pendulum is going toward us, for thus we should impede the motion and not assist it), and continuing with many impulses, we shall confer on it impetus such that much greater force than a breath would be needed to stop it.

Sagr. As a boy, I observed that with impulses given at the right time, one man alone could ring a very large bell, and in trying to stop it later, several men would take hold of the rope and all of them would be lifted up into the air; nor could many men together [immediately] arrest the impetus that one man alone had conferred on it by regular, pulls.

Salv. Your example explains my meaning no less acutely than my prefatory remarks fit in with the answer to that remarkable problem of the zither- or harpsichord-string that moves and even resounds, and not only with one in unison and concord, but also with its octave and fifth. The cord struck begins and continues its vibrations during the whole time that its sound is heard; these vibrations make the air near it vibrate and shake; the tremors and waves [increspa-

menti] extend through a wide space and strike on all the strings of the same instrument as well as on those of any others nearby. A string tuned in unison with the one struck, being disposed to make its vibrations in the same times, commences at the first impulse to be moved a little; the second, third, twentieth, and many more [impulses] being added, all in exact periodic times, it finally receives the same tremor as that originally struck, and its vibrations are seen to go widening until they are as spacious as those of the mover.

This wave action [ondergiamento] that expands through the air moves and sets in vibration not only other strings, but any other body disposed to tremble and vibrate in the same time as the vibrating string. If you attach to the base of the instrument various bits of bristle or other flexible material. it will be seen that when the harpsichord is played, this little body or that one trembles according as that string shall be struck whose vibrations are made in time with it. The others are not moved at the sound of this string, nor does the one in question tremble to the sound of a different string. If a thick viola-string is strongly bowed near a cup of thin and delicate glass, and the tone of the string is in unison with that of the goblet, the latter will shake and sensibly resound. The fuller waving of the medium close to the resonant body is easily seen by making the goblet sound when it contains water, by rubbing the ball of the finger on its edge. The contained water is seen to become wavy in a regular order. and the effect is still better seen by holding the base of the goblet on the base of some much larger vessel in which there is water almost up to the brim of the goblet. This being again made to resound by friction of the finger, this regular waving in the water will be seen to spread with great speed to a good distance around the goblet. Sounding in this way a very large vessel almost full of water. I have often seen waves formed in the water with extreme regularity; and sometimes it happens that the tone of the goblet jumps one octave higher, at which moment I have seen each of the waves divided in two: an event that very clearly proves the form of the octave to be the double fratiol.

Sagr. The same has happened for me more than once, to my delight, and to my profit also, since I had long been perplexed about the [ideal] forms of the consonances. It seemed to me that the reason ordinarily adduced for it by authors that have written on music up to the present was

insufficiently conclusive. They say that the diapason, or octave, is contained in the double [ratio]; the diapente, which we call the [perfect] fifth, by the sesquialter [three-to-two] ratio; and so on. Their reason is that when a string is stretched on the monochord, and sounded first entire and then in the half, by placing the bridge at the center, one hears the octave; when the bridge is placed at one-third the whole [length of the] string, and the whole string is sounded against two-thirds of it, the fifth is heard; hence, they say, the octave is embraced between two and one, and the fifth between three and two. This reasoning, I say, did not seem conclusive to me in assigning by law the double and the sesquialterate as the natural forms of octave and fifth, my idea being as follows.

There are three ways in which the pitch of a string can be raised. One is to shorten it; another is to stretch, or let us say pull, it more; the third is to make it thinner. If we keep the same tension and thickness of string, and want to hear the octave, we must shorten the string by half; that is, strike it and then its half. Keeping the same length and thickness, however, if we wish to make it rise an octave by pulling it harder, it will not suffice to pull twice as hard, but one needs four times [the tension]; thus if at first it was pulled by a one-pound weight, it will be necessary to attach four [pounds] to raise it one octave. Finally, if we keep the same length and tension, and want a string that will give the octave by being thinner, we must retain only one-fourth the thickness of the deeper string.

What I say of the octave—that is, that its form [when] derived from the tension or the thickness of string is in squared ratio of that which we have from its length—is to be understood of all the musical intervals. For what a length in three-halves ratio gives us, as when we sound the whole and then two-thirds, may be derived from tension or from thinness, but this requires the square of the three-halves ratio, taking that of nine to four. Thus if the lower string is stretched by four pounds of weight, not six but nine must be attached to the higher string; and as to thickness, to get the fifth, the lower string must be to the higher one in the ratio of nine to four. These being true experiments, I saw no reason why

69. This relationship had been discovered experimentally by Vincenzio Galilei, who published it in 1589. It may be the first physical law to have been discovered by systematic experiment for the purpose of overthrowing a previously accepted mathematical rule.

wise philosophers should have established the form of the octave as the double [ratio] any more than as the quadruple, or that of the fifth as three-halves rather than nine-fourths.

But inasmuch as it is quite impossible to count the vibrations of a sounding string, since it makes so many of them, I should have remained always in doubt whether it was true that the higher string of the octave makes double the number of vibrations in the same time as the lower string, had it not been that the waves persist as long as you like in the sounding and vibrating goblet. This showed me sensibly that at the very moment at which the tone is sometimes heard to jump an octave, smaller waves are seen to be generated that precisely bisect those that were there before.

Salv. A beautiful observation, making possible the distinction one by one of the waves from the vibration of the resounding body. It is these which, diffused through the air, go to make that titillation of the eardrum which in the mind becomes sound. But since such observations, and the sight of waves in water, last only as long as friction with the finger is continued, and even during that time the waves are not permanent, but are continually generated and dissolved, would it not be a fine thing if one might arrange that they remain with great exactness for a long time, months or years, to make it easier to measure and number them at leisure?

Sagr. That really would be an invention!

Salv. The invention was by accident, and my observation amounted only to making capital of this and esteeming it as a new proof of a noble theory, though a very humble achievement in itself.

145

Scraping a brass plate with an iron chisel to remove some spots from it, I heard the plate emit a rather strong and clear note once or twice in many strokes as I moved the chisel rapidly over it. Looking at the plate, I saw a long row of thin lines, parallel to one another and at exactly equal distances apart. Scraping again, many times, I noticed that it was only when a stroke made this noise that the chisel left marks on the plate, and when it went without the shrill tone, there was not the faintest trace of such lines. As I repeated the trick again and again, stroking now with greater and again with less speed, the sound was of higher or lower pitch; and I observed that the marks made during the shriller tone were closer together, and those made during the lower tone less so. Sometimes also, according as the stroke itself was made

faster at the end than the beginning, the sound was heard to rise in pitch and the lines were seen to increase in frequency, though always marked with extreme neatness and absolutely parallel.

During the sibilant strokes, moreover, I felt the iron tremble in my hand, from which a kind of tenseness ran through me; in the iron is felt, to be brief, precisely what we feel in speaking sotto voce and then raising this to a loud voice. For the breath being sent in a whisper to form sound, we feel hardly any movement in the throat and mouth in comparison with the great tremor in larynx and jaws when we speak, especially in a low and powerful tone. Sometimes I have also noted, among the strings of a harpsichord, two [vibrating in] unison with two sounds made by scraping in the way described. These two, different in pitch, were separated by a perfect fifth; and measuring the intervals between the lines for each of the two strokes, it was seen that the distance containing forty-five spaces in one, contained thirty in the other, which indeed is the form [of ratio] attributed to the diapente.

Before going further, I want to call your attention here to the fact that of the three ways in which pitch may be raised, that which you assigned to thinness of string should more properly be attributed to the weight. For the change [in pitch] due to thickness answers [to the squared ratio] when the strings are of the same material, so that one gut string must be four times as thick as another gut string to sound the octave; or one brass string four times the thickness of another brass string. But if I should want to form the octave between a brass string and one of gut, it would be done not by thickening [the lower] one four times, but by making it four times as heavy. As to thickness, the metal string would not be four times as thick at all, but four times as heavy, and in some cases this would even be thinner than the corresponding gut an octave higher in pitch. So it comes about that stringing one harpsichord with gold strings, and another with brass strings of the same length, tension, and thickness, the first tuning comes out about a fifth lower, since gold is about twice as heavy. 70 Here note that the heaviness of the moveable is more resistant to speed than is its thickness, contrary to what one might at first suppose, since it seems reasonable

^{70.} Gold being twice as dense, the effect is as the square root of two, or about 2.8 to 2, which is close to the musical interval of the fifth; that is, 3:2.

that speed should be more retarded by the resistance of the medium to being separated by a thick but light moveable than by a heavy and thin one; yet in this instance, the contrary happens.⁷¹

Going back to our original purpose, I say that the length of strings is not the direct and immediate reason behind the forms of musical intervals, nor is their tension, nor their thickness, but rather, the ratio of the numbers of vibrations and impacts of air waves that go to strike our eardrum, which likewise vibrates according to the same measure of times. This point established, we may perhaps assign a very congruous reason why it comes about that among sounds differing in pitch, some pairs are received in our sensorium with great delight, others with less, and some strike us with great irritation; we may thus arrive at the reason behind perfect consonances, and imperfect, and dissonances. The irritation from the latter is born. I believe, of the discordant pulsations of two different tones that strike on our eardrums all out of proportion; and very harsh indeed will be the dissonances whose times of vibration are incommensurables. One such [noise] will occur when two strings are sounded together, of which one is to the other as the side of a square is to its diagonal, a dissonance such as that of the tritone or minor third. Those pairs of sounds will be consonant, and heard with pleasure, which strike the eardrum with good order; this requires first that the impacts made within the same period are commensurable in number, so that the cartilage of the eardrum need not be in a perpetual torment of bending in two different ways to accept and obey ever-discordant beatings. Hence the first and most welcome consonance is the octave, in which for every impact that the lower string delivers to the cardrum, the higher gives two, and both go to strike unitedly in alternate vibrations of the high string, so that one-half of the total number of impacts agree in beating together. In unison, the blows of strings are always joined together and are therefore as [those] of a single string, and do not form a consonance [properly speaking]. The fifth also gives pleasure, inasmuch as for every two pulsations of the low string, the high string gives three, whence it follows that counting the vibrations of the high string, one-third of all

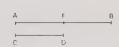
^{71.} The Pieroni MS did not contain this paragraph, which went considerably beyond the findings of Galileo's father.

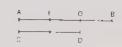
[pulses] agree in beating together, with two solitary [pulses] interposed between each pair of concords; in the [perfect] fourth, three [solitary beats] intervene. In the whole tone, or sesquioctave, only one in every nine pulsations comes to strike in agreement with that of the lower string; all the rest are discordant, and being received with irritation on the eardrum are judged dissonant by our hearing.

Simp. I should like to hear this argument explained more clearly.

Salv. Let this line AB be the amplitude [spazio e la dilatazione] of one vibration of the lower string, and let line CD be that of the higher string which gives the octave with the first. Divide AB in the center at E, and let the strings begin to move at the points A and C. It is manifest that when the higher vibration has come to the point D, the lower has got only to the center, E, which, not being an end of its motion, causes no impact, though a stroke will be made at D. The vibration D returning then to C, the other passes from E to B, wherefore the two impacts at B and C beat unitedly on the eardrum. Returning and repeating similar vibrations thereafter, it is concluded that alternately, in one but not the other of the vibrations C and D, union of impacts will occur with A and B. But the pulsations at the ends [A and B] always have as companions either C or D, and always the same one. This is obvious, because assuming that A and C beat together, while A goes to B, C goes to D and returns to C, so that C beats with B; and in the time that B returns to A, C passes through D and returns to C, so that the blows A and C are made together.

Next, let the two vibrations AB and CD be those that produce the fifth, of which the times are in the ratio of three to two; divide AB of the lower string into three equal parts at E and O. Supposing the vibrations to commence at the same moment from points A and C, it is evident that at the stroke to be made at D, the vibration AB will have got only to O, so that the eardrum receives the impact of D alone; in the return of D to C, the other vibration passes from O to B and gets back to O, making a pulsation at B; this, however, is solitary and countertimed, a fact yet to be considered. For having assumed the first pulsations to be made at the same moment at points A and C, the second, which was only that at point D, is made after as much time as the transit CD, or AO. But the next, which is made at B, is spaced from the other





solitary [pulse] only as much as the time of OB, which is half [the previous time]. Continuing now the return from O to A, while C goes to D, there come to be made two united pulsations at A and D. Then there follow other periods similar to the above; that is, with the interposition of two pulsations of the high string unaccompanied and solitary, and one of the low string, also solitary and interposed between the two solitary [pulsations] of the high string.

Thus if we imagine time divided into moments, that is, into minimum equal tiny parts, and assume that in the first two [moments] from concordant pulsations made at A and C, we go to O and D, and at D there is a stroke, then in the third and fourth moments there is a return from D to C with a stroke at C_{i}^{72} and from O there is a passage through B and a return to O, with a stroke at B, and finally in the fifth and sixth moments there is passage from O and C to A and D. with strokes at both. Then we shall have on the eardrum pulsations distributed in such order that, assuming the pulsations of the two strings at the same instant, two moments later the eardrum will receive a solitary impact; at the third moment, another solitary one; at the fourth, another solitary one; and then two moments later, that is, at the sixth moment, two [pulses] joined together; and this finishes the period, or so to speak, the anomaly, which period is thereafter many times repeated.73

Sagr. No longer can I remain silent; I must exclaim over the great pleasure I take in hearing such a complete explanation of phenomena which have so long held me in the dark and blinded. Now I understand why unison does not differ at all from one single tone; I see why the octave is the principal consonance, but so like unison that, like unison, it is taken and mixed with other consonances. It resembles unison because where all the pulsations of strings in unison always strike together, those of the lower string in the octave are always accompanied by those of the upper string, but one [pulsation] of the latter is interposed alone and at equal intervals and (so to speak) without any foolery, so that the

^{72.} The words "with a stroke at C" do not occur in the Pieroni MS

^{73.} Galileo's theory of consonances differs essentially both from its predecessors and from the modern view. It mistakenly assumes dependence on phase relationships, and fails to escape the implication that string-lengths of, say, 3001:2000 should sound harsh together; in fact, such a chord would be indistinguishable from the perfect fifth, 3:2.

resulting consonance is rather too bland, and lacks fire.

The fifth, however, is characterized by its displaced beats: that is, by the interposition of two solitary beats of the upper string and one solitary beat of the lower string between each pair of united pulsations. These three [solitary beats] are moreover separated by an interval of time equal to one-half of that between each pair of united beats and a solitary beat of the upper string. This produces a tickling and teasing of the cartilage of the eardrum so that the sweetness is tempered by a sprinkling of sharpness, giving the impression of being simultaneously sweetly kissed, and bitten.

Salv. Seeing that you like these novelties so well, I must show you how the eye, too, and not just the hearing, can be amused by seeing the same play that the ear hears.

Hang lead balls, or similar heavy bodies, from three threads of different lengths, so that in the time that the longest makes two oscillations, the shortest makes four and the other makes three. This will happen when the longest contains sixteen spans, or other units, of which the middle [length] contains nine,74 and the smallest, four. Removing all these from the vertical and then releasing them, an interesting interlacing of the threads will be seen, with varied meetings such that at every fourth oscillation of the longest, all three arrive unitedly at the same terminus; and from this they depart, repeating again the same period. The mixture of oscillations is such that when made by [tuned] strings, it renders to the hearing an octave with the intermediate fifth. And if with similar arrangements we modify the lengths of other strings so that their vibrations answer to those of other musical intervals which are consonances, other interlacings will be seen in which, at determinate times and after definite numbers of vibrations, all the strings (let them be three or four) agree in coming at the same moment to the terminus of their oscillations, and begin from there another like period. But if the vibrations of two or more strings are either incommensurables, so that they never return to concord at the end of a definite number of oscillations, or if, not being incommensurables, they return [only] after a long time and a large number of oscillations. then vision is confused by the disorderly order so irregularly interlaced, as the ear is annoyed by untempered pulses of air

¹⁵⁰

^{74.} The appropriate lengths are not 4, 9, and 16 as given in the text, but $\frac{64}{16}$, $\frac{64}{16}$, $\frac{64}{16}$, and $\frac{64}{4}$; that is, 4, $7\frac{1}{9}$, and 16; cf. note 68, above. The correction of 9 to $7\frac{1}{9}$ was later noted by Viviani.

tremors that go without order or law to strike the eardrum.

But gentlemen, where have we allowed ourselves to be carried through so many hours by various problems and unforeseen discussions? It is evening, and we have said little or nothing about the matters proposed; rather, we have gone astray in such a way that I can hardly remember the original introduction and that small start that we made by way of hypothesis and principle for future demonstrations.

Sagr. It will be best, then, to put an end for today to our discussions, giving time for our minds to compose themselves tranquilly at night, so that we may return tomorrow (if you are pleased to favor us) to the discussions desired and in the main agreed upon.

Salv. I shall not fail to be here at the same hour as today, to serve and please you.

The First Day Ends

Second Day

Sagr. Simplicio and I have been awaiting your arrival, and in the meantime we have been reviewing in memory the last consideration, to be taken as a principle and assumption for the conclusions that you intended to demonstrate to us. This concerned that resistance which all bodies have to fracture, and depends on that cement that holds their parts attached and conjoined so that they do not yield and separate without a powerful pull. There was then a search for the cause of that coherence, which is extremely strong in some solids; and the chief cause proposed was that of the void. This was then the occasion of many digressions that kept us occupied all day, without our getting near to the principal subject originally chosen. This, as I said, was the investigation of the resistances of solids to being broken.

Salv. I remember it all quite well. And taking up the original thread, then, whatever may be the resistance of solid bodies to parting under a violent pull, its presence in them is beyond any doubt. This resistance is very great against a force that pulls them in a straight line, but is observed to be much less when the force is across them. Thus we see that a steel or glass rod, for example, supports a weight of a thousand pounds lengthwise, but when fixed horizontally in a wall, it is broken by attaching only fifty [pounds] to it. We must speak of this second resistance, seeking the proportions in which it is found in prisms and cylinders of the same material, whether similar or dissimilar in shape, length, and thickness. In such speculations I take as a known principle one which is demonstrated in mechanics about the properties of the rod which we call the lever; that in using a lever, the force is to the resistance in the inverse ratio of the distances from the fulcrum to the force and to the resistance.

Simp. This was demonstrated by Aristotle in his [Questions of] Mechanics before anyone else.¹

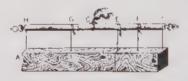
1. The pseudo-Aristotelian treatise noted that points on a rotating bar travel in the same time through distances proportional to their distances from the center of rotation, and argued that this measures the ease of motion, whence this motion is inverse to the heaviness of the respective weights; see Loeb edition, pp. 343-47; 375-77. From this stress on time and ease of motion, Galileo took his principle of virtual velocities, for which he credited the ancient treatise in his *Bodies in Water*, p. 71 (Opere, IV, 69).

Salv. I admit that we should concede priority to him, but in rigor of proof I think we must put Archimedes a long way in front of him. Upon a single proposition proved in his [Plane] Equilibrium there depends the reasoning not only for the lever, but for most other mechanical instruments.²

Sagr. Inasmuch as that principle is to be assumed as the foundation of everything that you mean to demonstrate to us, it would be much to the purpose for you to give us also its proof, if that matter is not too prolix. Thus you will be giving us entire and complete instruction.

Salv. If this must be done, it will be better that I introduce you by another approach, somewhat different from that of Archimedes, to our whole field of future speculations. Without assuming anything except that equal weights placed in a balance of equal arms are in equilibrium (a principle likewise assumed by Archimedes), I shall next prove to you that it is equally true that unequal weights rest in equilibrium on a steelyard when they are suspended at distances unequal in the inverse ratio of these weights; and not only that, but that it is also the same thing to hang equal weights at equal distances as it is to put unequal weights at distances having the inverse ratio of the weights.

Now for a clear demonstration of what I say, I draw a solid prism or cylinder AB, hung by its ends from the line HI by two threads, HA and IB. It is evident that if I suspend all this by the



string C, placed at the middle of the balance HI, the prism AB will remain in equilibrium by the principle assumed, one-half

2. Archimedes, On Plane Equilibrum, Bk. I, Props. 6, 7; see T. L. Heath, The Works of Archimedes, (Cambridge, 1897). pp. 192-94. What Galileo calls a single proposition made up two for Archimedes, who proved separately the cases of commensurable and incommensurable distances.

3. Two other Archimedean assumptions are omitted by Galileo: namely, that of equal weights at unequal distances, the more distant one will descend, and that weights in equilibrium will be disturbed by any addition or removal of weight on either side. He brings in later the further Archimedean assumption that equilibrium is preserved when proportional weights or distances are substituted. Galileo's proof, which is much easier to follow than that of Archimedes, appeared first in a treatise written for his students; see On Mechanics, pp. 153-55 (Opere, II, 161-63).

of its weight being on one side, and one-half on the other [side] of the point of suspension C. Next, suppose the prism to be divided in two unequal parts by a plane through the line at D; let DA be the greater part, and DB the smaller. And in order that when this cut is made, the parts of the prism will remain in place, in the same arrangement with respect to the line HI, let us assist with a thread ED, tied at the point E, which thread shall sustain both parts of the prism, AD and DB. There is no question that since there has been no change of place on the part of the prism with respect to the balance HI, it will remain in the previous state of equilibrium. But the part of the prism which is now suspended from its two ends by the threads AH and DE also remains in the same arrangement if hung by a single thread GL placed at its center; and likewise the other part, DB, will not change position if suspended from the middle and sustained by the thread FM.4 Hence, removing threads HA, ED, and IB, and leaving only the two [threads] GL and FM, the previous equilibrium will prevail, the suspension from point C always remaining.

Now here we turn to consider that we have two heavy bodies, AD and DB, hanging from the ends G and F of a steelyard GF, in equilibrium around the point C in such a way that the distance of suspension of the heavy body AD from point C is the line CG, while the other part, CF, is the distance from which the body DB is hung. So it remains only to demonstrate that these distances have the same ratio between them as those same weights, but taken inversely. That is, the distance GC is to CF as the prism DB is to the prism DA. This we prove as follows.

Line GE being one-half of the line EH, and EF one-half of EI, all GF is one-half of the whole HI, and is therefore equal to CI. Subtracting the common part CF, the remainder GC will be equal to the remainder FI, that is, to FE. Taking CE common to both, GE is equal to CF; hence as GE is to EF, so FC is to CG. But as GE is to EF, so is one double to the other; that is, so HE to EI, or the prism AD to the prism DB. Therefore, by equidistance of ratios and inversion, as distance GC is to distance CF, so is weight BD to weight DA; which is what I wished to prove to you.

^{4.} It is assumed that so long as no motion takes place as a result of manipulations within the system, no motion of the system as a whole will occur.

This understood, I believe you will have no difficulty in admitting that the two prisms AD and DB are in equilibrium around point C, because half the entire solid AB is to the right of the suspension C, and the other half is to its left, so that they represent two equal weights disposed and extended over two equal distances. And the two prisms AD and DB, reduced to

cubes or balls or any other shapes whatever, provided only that they keep the same suspensions, G and F, will continue to be in equilibrium around point $C.^5$ I believe no one can doubt this, for it is quite evident that shape does not change a weight so long as the same quantity of material is preserved. From this we may draw the general conclusion that two weights, whatever they may be, are in equilibrium at distances inversely corresponding to their heavinesses.

This principle is therefore established. Before we go on further, I must next point out that these forces, resistances, moments, shapes, and so on may be considered in the abstract and separated from matter; or alternatively, in the concrete and conjoined with matter. In the latter way, the phenomena that conform to the diagrams considered as immaterial receive some modifications when we add to them material, and hence heaviness. For example, let us take a lever, which shall be BA

here, placed on the fulcrum E and used to raise the heavy stone D. It is obvious, from the principle just proved, that the force applied at the end B will suffice to match the resistance of the heavy body D, if its moment has the same ratio to the moment of D that distance AC has to distance CB; or rather, this is true without taking into consideration other moments

^{5.} This involves the further assumption that the center of gravity may be taken as representing the whole body; cf. *On Mechanics*, p. 152 (*Opere*, II, 160).

than those of the simple force at B and the resistance at D, as if the lever were immaterial and without heaviness. But if we also take into account the heaviness of the lever-instrument itself, which will be sometimes of wood and sometimes of iron, it is manifest that when the weight of the lever is added to the force at B, the ratio will be altered and will have to be stated in other terms. Hence, before we proceed, it is necessary for us to agree in making a distinction between these two manners of considering things, saying that the instrument is "taken absolutely" when we mean it to be taken in the abstract, separated from the heaviness of its actual material; but joining both material and heaviness to the simple and absolute figures, we shall call the figures joined with matter "moment, or compound force."

Sagr. Here I must break my resolve to give no occasion for digression, for I cannot apply myself attentively to what is to come until a certain doubt, just born in me, is removed. It seems to me that you make comparison between the force applied at B and the total heaviness of the stone D, though I think that a part of this, and perhaps most of it, is supported on the horizontal plane, so that . . .

Salv. I quite understand. Say no more; yet please notice that I have not yet spoken of the total heaviness of the stone, but only of the moment that it has and exercises on the point A, the very end of the lever BA. This [moment] is always less than the entire weight of the [supported] stone, and it varies according to the shape of the stone, and whether it is to be lifted more, or less.

Sagr. All right, as to this; but another desire now awakens in me, which is that for a complete understanding, I be shown the way (if there is any) by which we can determine the part of the total weight that is sustained on the plane beneath, and the part that weighs on the bar at its extermity A.

Salv. Since I can give you satisfaction in a few words, I shall not fail to serve you. Therefore, drawing a little diagram, take

^{6.} Thus far, the device or instrument is the lever, but later it becomes the beam whose strength is to be analyzed. Either is said to be "taken absolutely" when its own weight is neglected; when that is taken into account, the text refers to the "moment" of the lever or beam, or to its "compound force." The moment, or compound force, belongs to the lever as such, separately from the weights and forces applied to it, and its effect depends upon the point of support in relation to that of application. It represents, so to speak, the "net leverage" of a heavy beam acting against itself; cf. Prop. VI, below.

the weight with center of gravity A, supported on the horizontal plane at the end B; at the other end, let it be sustained by the

lever CG with fulcrum N by a power [potenza] placed at G. From the center A and the end C, drop perpendiculars AO and CF to the horizontal. I say that the moment of the whole weight has to the moment of power at G, the ratio compounded from the ratio of the distance GN to the distance NC, and [the ratio of the distance] FB to BO.

Find [a line X] such that as line FB is to BO, NC is to X. Now, the whole weight A being sustained by the two powers placed at B and C, the power B is to C as the distance FO is to OB; and by composition [of each ratio], the two powers B and C together, that is, the whole moment of all the weight A, is to the power at C, as line FB is to BO; that is, as NC is to X. But the moment of the power at C is to the moment of the power at C as distance C is to C, therefore, by perturbed equidistance of ratios, the total weight C is to the moment of the power at C as C is to C. But the ratio of C to C is compounded from the ratio of C to C and that of C to C, which is [that of] C to C and that of C to C is to C and that of C to C which is what was to be demonstrated.

Now, getting back to our first purpose, it will not be difficult to understand the reason whence it comes about that:

PROPOSITION 1

A solid prism or cylinder of glass, steel, wood, or other material capable of fracture, which suspended lengthwise will sustain a very heavy weight attached to it, will sometimes be broken across (as said earlier) by a very much smaller weight, according as its length exceeds its thickness.

Let us imagine the solid prism ABCD fixed into a wall at the part AB; and at the other end is understood to be the force of the weight E (assuming always that the wall is vertical and the prism or cylinder is fixed into the wall at right angles). It is evident that if it must break, it will break at the place B, where

the niche in the wall serves as support, BC being the arm of the lever on which the force is applied. The thickness BA of the solid is the other arm of this lever, wherein resides the resistance, which consists of the attachment that must exist between the part of the solid outside the wall and the part that is inside. Now, by what has been said above, the moment of the force applied at C has, to the moment of the resistance which exists in the thickness of the prism (that is, in the attachment of the base BA with its contiguous part), the same ratio that the length CB has to one-half of BA. Hence the absolute resistance to fracture in the prism BD, (being that which it makes against being pulled [apart] lengthwise, for then the motion of the mover is equal to that of the moved) has, to resistance against breakage by means of the lever BC, the same ratio as that of the length BC to one-half of AB, in the prism; or, in the cylinder, to the radius of its base. And let this be our first proposition.7

Note that what I say is to be understood without consideration of the weight of the solid BD itself, which solid has been taken as weighing nothing. When we come to take into account

7. Propositions are numbered in the original only in the margins, and the later ones are not numbered; here they will be given numbers in brackets for convenience of reference. The first proposition (which underlies the rest) is a postulate or assumption rather than a theorem and is followed by an explanation rather than a proof. In making this assumption, Galileo deliberately neglected various properties that differentiate the actual materials named as examples. Note that adhesion or coherence is treated as if spread uniformly over the area at AB, and that points A and C are regarded as rigidly connected. Galileo's is the first known attempt to formulate a mathematical theory of strength of materials; in it, as in his treatment of motion (Third Day), he concerns himself only with ratios, whence the factors left out of account (particularly elasticity) do not invalidate his results expressed only as proportions applicable to a given type of material.

its own heaviness, adding this to the weight E, we must add to the weight E one-half the weight of the solid BD. Thus the weight of BD being, say, two pounds, and the weight E ten pounds, the weight E must be taken as if it were eleven.

Simp. And why not as if it were twelve?

Salv. The weight E, my good Simplicio, hangs from the end C and presses on the lever BC with its full moment of ten pounds; and if BD alone were hung there, it would weigh down with its full moment of two pounds. But as you see, that solid is uniformly distributed along the entire length BC, whence the parts near the extremity B press down less than do those farther away. In short, balancing the near parts with the far, the weight of the whole prism comes to operate at its center of gravity, which corresponds to the center of the lever BC. But a weight hanging from the extremity C has double the moment it would have if hung from the middle; and hence one-half the weight of the prism must be added to the weight E when we treat the moment of both as located at the end C.

Simp. I understand; and if I am not mistaken, the power of both weights BD and E, thus placed, would have the same moment as if all the weight of BD and double the weight E were hung from the center of the lever BC.

Salv. Precisely so, and this must be kept in mind. And now we can immediately understand:

PROPOSITION II

How, and in what ratio, a rod, or rather a prism of greater breadth than thickness, more greatly resists breaking when loaded across its breadth than across its thickness.

For an understanding of this, imagine a ruler AD whose breadth is AC and whose thickness, much less, is CB. It is

asked why, when we wish to break it on edge as in the first figure, it will resist the great weight T; but placed flat, as in the second figure, it will not [even] resist X, which is less than T. This is clear when we understand the fulcrum in one [the latter] case to be under the line BC, and in the other case under CA, the distances of the force being equal to the length BD in both cases. For in the first case the distance of the resistance from the fulcrum, which is one-half the line CA, is greater than in the other case, where this is one-half of BC, whence it is necessary that the force of the weight T be greater than X by the same amount that one-half the breadth CA is greater than one-half the thickness BC, CA serving in the former, and CB in the latter, as counterlever to overcome the same resistance. which is in the [same] quantity of fibers of the whole base AB. It is thus concluded that the same ruler or prism, broader than it is thick, more greatly resists being broken when on edge than when flat, according to the ratio of its breadth to its thickness.

Next, it is appropriate for us to commence this investigation:

PROPOSITION III

The ratio in which the moment of heaviness of a horizontal prism or cylinder increases, in relation to its own resistance to being broken by elongation, I find to be in squared proportion to the lengthening.

For this demonstration, consider the prism or cylinder AD fixed solidly into the wall at the end A, parallel to the horizon, and understand this to be lengthened to E by adding the part BE. It is evident that the lengthening of the lever AB out to C increases the moment of the downward [premente] force against resistance to fracture and detachment made at A. [This increase], taken absolutely, is in the ratio of CA to BA [alone]; but besides this, the weight of the solid BE added to the weight of the solid AB increases the downward moment of

heaviness according to the ratio of the prism AE to the prism AB, which ratio is the same as that of the length AC to AB. Hence, combining the two increases of length and of heaviness, it is manifest that the moment compounded from both is in the squared ratio of either one. It is therefore concluded that the moments of the forces of prisms (or cylinders) of equal thickness but unequal length are to each other in the squared ratio of their lengths; that is, are as the squares of the lengths.

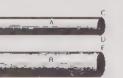
We shall now show, in the second place, the ratio according to which resistance to being broken increases in prisms and cylinders of the same length, when they are increased in thickness. Here I say that:

PROPOSITION IV

In prisms and cylinders of equal length but unequal thickness, resistance to fracture increases as the cubed ratios of the thicknesses or the diameters [respectively] of their bases.

Let the two cylinders A and B have equal lengths DG and FH, and unequal bases, these being circles of diameters CD and EF. I say that the resistance to fracture of cylinder B is to the resistance of cylinder A as the cube of the ratio of diameter FE to diameter DC. For first, consider the absolute and simple resistance that resides in the bases (that is, in the [areas of] circles EF and DC), when these are to be broken by exerting a force that stretches them lengthwise. There is no doubt that the resistance of cylinder B is [in that case] greater than that of cylinder A by as much as circle EF is greater than [circle] CD, because so many the more are the fibers, filaments, or holding elements that keep the parts of such solids together.

Now let us consider that in exerting force crossways, we employ two levers. The arms (or distances at which the forces are applied) are the lines DG and FH; the fulcrums are at points D and F; and the other arms (or distances at which the resistances are situated) are the radii of circles DC and EF, for the filaments [being] spread throughout the surfaces of these circles, it is as if all were concentrated at their centers. In such levers, I say, consider the resistance at the center of the base EF against the force at H; this is as much greater than the resistance of the base CD against the force applied at G as the radius [of] FE is greater than the radius [of] DC; and the forces at G and H act on the equal levers DG and FH. Therefore



the resistance to fracture in cylinder B exceeds the resistance of cylinder A according to both ratios—that of the circles EF and DC, and [that] of their radii (or diameters). Now the ratio of the circles is the square of that of the diameters; but the ratio of resistances, being compounded from these [two ratios], is the triplicate ratio of the same diameters; which is what was to be proved. And since cubes are in the triplicate ratio of their sides, we may similarly conclude that the resistances of cylinders of equal length are to one another as the cubes of their diameters.

From what has been demonstrated, we can also conclude:

COROLLARY

The resistances of prisms and cylinders of equal length are as the three-halves power of the [ratio of volumes of the] said cylinders. 8

This is manifest, since prisms (or cylinders) of equal altitude have to one another the same ratio as their bases, which is the square of the [ratio of] sides (or diameters) of those bases. But the resistances, as demonstrated above, are as the cubes of the same sides (or diameters); therefore the ratio of resistances is the three-halves [power] of the ratio of the solids themselves, and consequently of the weights of those solids [of like material and equal length].

Simp. Before we go on, it is necessary for me to be relieved of a certain difficulty. Thus far, I have heard nothing said in consideration of a certain other kind of resistance which appears to me to decrease in solids as they increase in length, and [to weaken them] not only transversely but also longitudinally. Thus we see a very long rope to be much less able to hold a great weight than if shorter; and I believe that a short wooden or iron rod can support much more weight than a very long one when loaded lengthwise (not [just] crosswise), and also taking into account its own weight, which is greater in the longer.

Salv. I think that you, together with many other people, are mistaken on this point, Simplicio, at least if I have correctly grasped your idea. You mean that a rope, say forty braccia in length, cannot sustain as much weight as one or two braccia of the same rope.

^{8.} The exponential terminology is used here in place of Galileo's ratio terminology; see Introduction and note 63 to First Day, above.

A Children Comment of Co.

Simp. That is what I meant, and at present it appears to me

a highly probable statement.

Salv. And I take it to be not just improbable, but false; and I believe that I can easily remove the error. So let us assume this rope AB, fastened above at one end, A, and at the other end let there be the weight C, by the force of which this rope is to break. Now assign for me, Simplicio, the exact place at which the break occurs.

Simp. Let it break at point D.

Salv. I ask you the cause of breaking at D.

Simp. The cause of this is that the rope at that point has not the strength to bear, for instance, one hundred pounds of weight, which is the weight of the part DB together with [that of] the stone C.

Salv. Then whenever the rope is strained at point D by the same 100 pounds of weight, it will break there.

Simp. So I believe.

Salv. But now tell me: if the same weight is attached not to the end of the rope, B, but close to point D, say at E; or the rope being fastened not at A, but closer to and above the same point D, say at F; then tell me whether the point D will not feel the same weight of 100 pounds.

Simp. It will indeed, provided that the length of rope EB accompanies the stone C.

Salv. If, then, the rope, pulled by the same hundred pounds of weight, will break at the point D by your own admission, and if FE is but a small part of the length AB, how can you say that the long rope is weaker than the short? Be pleased therefore to have been delivered from an error, in which you had plenty of company, even among men who are otherwise very well informed, and let us proceed.

Having demonstrated that prisms and cylinders of constant thickness increase in moment beyond their own resistances as the squares of their lengths, and likewise that those of equal length but differing in thickness increase their resistances in the ratio of the cubes of the sides (or diameters) of their bases, let us go on to investigate what happens to such solids when they differ in both length and thickness. In these, I note that:

PROPOSITION V

Prisms and cylinders differing in length and thickness have their resistances to fracture in the ratio compounded from the ratio of the cubes of the diameters of their bases

and from the inverse ratio of their lengths.9

Let ABC and DEF be two such cylinders; I say that the resistance of cylinder AC has to the resistance of cylinder DF the ratio compounded from the ratio of the cube of diameter AB to the cube of diameter DE, and the ratio of length EF to length BC.

Make EG equal to BC. Let H be the third and I the fourth proportional to lines AB and DE, and let I be to S as EF is to BC. Since the resistance of cylinder AC is to the resistance of cylinder DG as the cube of AB is to the cube of DE, it will be as the line AB is to the line I; and since the resistance of cylinder DG is to the resistance of cylinder DF as the length FE is to EG, it will be as the line I is to the line S. Therefore, by equidistance of ratios, as the resistance of cylinder AC is to the resistance of cylinder DF, so is line AB to line S. But line AB has to line S the ratio compounded from [the ratios of] AB to I and I to S; therefore the resistance of cylinder AC has to the resistance of cylinder DF the ratio compounded from [the ratio of] AB to I (that is, the cube of AB to the cube of DE) and from the ratio of line I to line S (that is, the length EF to the length BC). And that is what was to be demonstrated.

Having demonstrated this proposition, we are to consider what happens among [geometrically] similar cylinders and prisms. We shall prove that:

PROPOSITION VI

The compound moments ¹⁰ of [two geometrically] similar cylinders or prisms, resulting from their own weights and [from their own] lengths serving as levers, have to one another the ratio that is the three-halves power of the ratio of the resistances of their bases.

To demonstrate this, let us draw two similar cylinders AB and CD; I say that the moment of cylinder AB in overcoming the resistance of its base B has, to the moment of CD in

^{9.} This is probably the first expression of s strictly physical property in terms of two independent variables. Archimedes had used the compounding of ratios in a similar way, but only for mathematical relationships. Cf. Heath, *Archimedes*, p. clixxix.



^{10.} See note 6, above, regarding "compound moments."

overcoming the resistance of its [base] D, that ratio which is the three-halves power of the ratio which the resistance of the base B has to the resistance of the base D.

The moments of solids AB and CD, [in acting] to overcome the resistances of their bases B and D, are compounded from their [respective] weights and net leverages [forze delle lor leve]. ¹¹ The net leverage of AB is equal to the net leverage of CD, because length AB has the same ratio to the radius of base B that length CD has to the radius of base D, by

[geometrical] similarity of the cylinders. It follows that the total moment of cylinder AB [with respect to its resistance] is to the total moment of CD [with respect to its resistance] as the weight alone of cylinder AB is to the weight alone of cylinder CD; that is, as cylinder AB itself is to cylinder CD. But these [volumes] are in cubed ratio of the diameters of the bases B and D; and the resistances of the bases being to one another as the [areas of the] bases themselves, these resistances are in squared ratio of those same diameters. Therefore the moments of the cylinders are as the three-halves power of the [ratio of the] resistances of their bases.

Simp. This proposition strikes me as not only new but surprising, and at first glance very remote from the judgment I had conjecturally formed. For since the shapes are similar in all other respects, I should have thought it certain that their moments against their own resistances would also be in the same ratio.

Sagr. This demonstrates the proposition which, as I said at the beginning of our discussions, seemed then to reveal itself to me through shadows.

Salv. What is now happening to Simplicio happened also to me for some time. I believed the resistances of [geometrically] similar solids to be similar, 12 until a certain observation,

^{11.} In this translation, the phrase "net leverages" (note 6, above) is introduced to distinguish Galileo's own phrase, "forces of their levers," from the modern implications of that phrase. What is meant is not the ratio of mechanical advantages of the cylinders used as levers, but the ratio of the leverages of two similar solids against their own weights when each is supported at one end.

^{12.} That is, to be proportional to their volumes. Similarity of materials

itself not very definite or correct, suggested to me that among similar solids there is not to be found an equal tenor of robustness, and that the larger are less fitted to suffer violent shocks. Thus large men are injured more by falling than are small boys; and as we said at the beginning, a great beam or a column is seen to go to pieces where a stick or a small marble cylinder falling from the same height does not. It was this observation that put my mind to the investigation of that truly remarkable property which I am about to demonstrate; and indeed, among the infinite [possible] shapes of [geometrically] similar solids, not even two have the same ratio of moments with respect to their own resistances.

Simp. Now I recall something or other that was proposed by Aristotle in his *Mechanical questions*, where he tries to give a reason for the fact that the longer pieces of wood are, the weaker they are and the more they bend, even though the shorter [pieces] are quite thin, and the long ones very thick. If I recall correctly, he reduces this to the simple lever.¹³

Salv. Quite true, and since his solution seems to leave some reason for doubt, Monsignor di Guevara, who has greatly ennobled and illuminated that treatise with his learned commentaries, adds other very acute speculations to resolve all difficulties. ¹⁴ But he too remains perplexed on one point: whether, by increasing in constant ratio the lengths and thicknesses of such solid shapes, one may retain the same level of robustness in their resistance to fracture as well as bending. After long thought about this, I found what I am about to put before you, in proper order, concerning this point. And first I shall demonstrate that:

PROPOSITION VII

Among [geometrically] similar prisms or cylinders having weight [gravi], there is a single and unique case of the critical [ultimato] state between breaking and remaining whole when [the solid is] pulled down [gravato] by its own weight, such that if greater, unable to resist its own weight, it will break; and if smaller, it resists with some

is assumed throughout (note 7, above), and the word "geometrically" has been added in brackets because similar figures are meant here. With regard to Sagredo's remark, above, cf. pp. 51-52.

^{13.} Questions of mechanics, 27 (Loeb ed., p. 401).

^{14.} The book meant is identified in note 11 to First Day, above.

force whatever is done to break it.15

Let the material [grave] prism AB be brought to the greatest length of its holding together, so that lengthened a trifle [minimo], it breaks. I say that AB is unique in reduction to this neutral [ancipite] state among all [geometrically] similar [prisms], which are infinitely many, so that every one greater, pressed by its own weight, breaks, and every smaller does not, but will resist up to some additional load a new force beyond that of its own weight.

Let the prism CE be similar to, but greater than, AB; I say that it cannot hold together but will break, overcome by its own heaviness. Take in it the part CD, as long as AB; since the resistance of CD is to that of AB as the cube of the thickness of CD is to the cube of the thickness of CD is to the prism CD, the weight of CE is to the prism CD, the weight of CE is the greatest that can be sustained, spread over the length of prism CD. But the length CE is greater [than CD], whence the prism CE will break. Now let ED be smaller [than ED]; it will be likewise demonstrated, by putting ED0 as the prism ED1 to the prism ED3 to that of ED4 would be as the prism ED5 to the prism ED6 to that of ED8 would be as the prism ED6 to the prism ED8 but it is greater; therefore the moment of prism ED6 if placed at ED6 does not suffice to break the prism ED7.

Sagr. A very clear and concise demonstration, which proves the truth and the necessity of a proposition which at first glance seemed far from probable. It will therefore be necessary, in order to achieve that neutral state between holding and breaking, to alter greatly the ratio between length and thickness of the greater prism [CE] by thickening or shortening it. The investigation of that state, I think, might require equal ingenuity.

Salv. Even more, and more labor too; I know, for I spent no small time in finding it. But now I wish to share it with you.

PROPOSITION VIII

Given a cylinder or prism of the maximum length that is not broken by its own weight, and given also a greater length, to find the thickness of some cylinder or prism

16. By reason of the greater moment when the same total weight is spread out over a greater length.

^{15.} This represents one of the first physical problems to be treated in terms of maxima and minima, concepts that were well known in pure geometry but were of limited application before the invention of the calculus

which, at this given length, is the unique and maximum that resists its own weight.

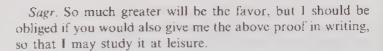
Let the cylinder BC be of the greatest [length] resisting its own weight, and let DE be a greater length than AC; it is required to find the thickness of the cylinder of length DE that will be the greatest to resist its own weight. Take I, the third proportional between lengths DE and AC; and as DE is to I, let the diameter FD be to BA, and construct the cylinder FE. I say that this is the unique and maximum, among all those similar [to FE], that can resist its own weight. Let M be the third and O the fourth proportional to lines DE and I, and make FG equal to AC. Since the diameter FD is to the diameter AB as line DE is to I, and O is the fourth proportional to DE and I, the cube of FD will be to the cube of BA as DE is to O. But as the cube of FD is to the cube of BA, so is the resistance of cylinder DG to the resistance of cylinder BC. Therefore the resistance of cylinder DG is to that of cylinder BC as line DE is to O. And since the moment of cylinder BC is equal to its resistance, if we show that the moment of cylinder FE is to the moment of cylinder BC as the resistance DF is to the resistance BA (that is, as the cube of FD is to the cube of BA, or as line DE is to O), we shall have our goal, that the moment of cylinder FE is equal to the resistance situated at FD.

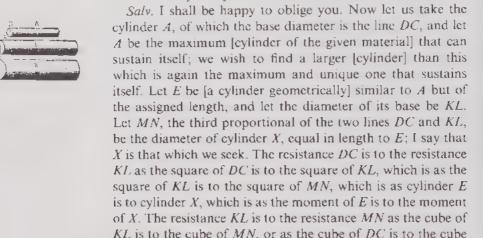
The moment of cylinder FE is to the moment of cylinder DG as the square of DE is to the square of AC; that is, as line DE is to I. But the moment of cylinder DG to the moment of cylinder BC is as the square of DF to the square of BA, which is as the square of DE to the square of I, which is as the square of I to the square of I, or as I is to I. Therefore, by equidistance of ratios, as the moment of cylinder I is to the moment of cylinder I is to the cube of I is to the cube of I is to the cube of I is to the resistance of the base I is the resistance of I is the resistance of I is the resistance I is the resi

Sagr. This is a long proof, Salviati, and very difficult to keep in mind by hearing it only once. Hence I should like you to be so kind as to repeat the demonstration.

Salv. I shall obey your request, but perhaps it would be better to give you a quicker and more concise proof. This will require a somewhat different diagram.¹⁷

^{17.} The ensuing demonstration is a simplified form of one that had been sent to Galileo at Siena in 1633 by Andrea Arrighetti (1592-1672); see (Opere, XV, 279-81). Galileo replied that he wished to include it in this book (ibid., pp. 283-84).





moment and resistance as does prism A.

I wish now to make the problem still more general, so that the proposition will be this:

of KL, or as cylinder A is to cylinder E, or as the moment of A is to the moment of E. Hence, by perturbed equidistance of ratios, as the resistance DC is to MN, so is the moment A to the moment X; whence prism X has the same relation of

[PROPOSITION IX]

Given the cylinder AC, of any moment whatever against its own resistance, and given any length DE, to find the thickness of the cylinder of length DE, such that its moment against its resistance shall have the same ratio as that of the moment of cylinder AC against its resistancel. 18

Returning to the earlier diagram and taking once more nearly the same steps, let us say: Since the moment of cylinder FE has to the moment of its part DG the same ratio that the square of ED has to the square of FG, which is that of line DE to I; and since the moment of cylinder FG is to the moment of cylinder AC as the square of ED is to the square of ED is to the square of ED is to the

^{18.} The earlier diagram required here was not repeated in the original edition.

square of I, or as the square of I is to the square of M, or as the line I is to O; then, by equidistance of ratios, the moment of cylinder FE has, to the moment of cylinder AC, the same ratio as that of line DE to O, or the cube of DE to the cube of I, or the cube of FD to the cube of AB; that is, [the ratio] of the resistance of the base FD to the resistance of the base AB; which is what was to be done.

You now see how, from the things demonstrated thus far. there clearly follows the impossibility (not only for art, but for nature herself) of increasing machines to immense size. Thus it is impossible to build enormous ships, palaces, or temples, for which oars, masts, beamwork, iron chains, and in sum all parts shall hold together; nor could nature make trees of immeasurable size, because their branches would eventually fail of their own weight; and likewise it would be impossible to fashion skeletons for men, horses, or other animals which could exist and carry out their functions proportionably when such animals were increased to immense height-unless the bones were made of much harder and more resistant material than the usual, or were deformed by disproportionate thickening, so that the shape and appearance of the animal would become monstrously gross. Perhaps this was noticed by our very alert poet when, in describing a huge giant, he said:

> His height is quite beyond comparison, So immeasurably gross is he all over.²⁰

To give one short example of what I mean, I once drew the shape of a bone, lengthened only three times, and then thickened in such proportion that it could function in its large animal relatively as the smaller bone serves the smaller

^{19.} This proposition is an appropriate conclusion to the first set of problems on strengths of uniform solid beams, since it corrects the intuitive answer offered near the beginning of the First Day by Sagredo (p. 50) and affirmed by Salviati to be a common misapprehension (p. 51).

20. Ariosto, Orlando Furioso, xvii, 30. Galileo's wording contains two minor departures from the standard modern text translated here.

animal; here are the pictures. You see how disproportionate the shape becomes in the enlarged bone. From this it is manifest that if one wished to maintain in an enormous giant those proportions of members that exist in an ordinary man, it would be necessary either to find much harder and more resistant material to form his bones, or else to allow

3

his robustness to be proportionately weaker than in men of average stature; otherwise, growing to unreasonable height, he would be seen crushed by his own weight and fallen. On the other hand it follows that when bodies are diminished, their strengths do not diminish in like ratio; rather, in very small bodies the strength grows in greater ratio, and I believe that a little dog might carry on his back two or three dogs of the same size, whereas I doubt if a horse could carry even one horse of his own size.

Simp. But the immense bulks that we encounter among fishes give me grave reason to doubt whether this is so. From what I hear, a whale is as large as ten elephants; yet whales hold together.

Salv. Your doubt, Simplicio, enables me to deduce something that I did not mention before, a condition capable of making giants and other vast animals hold together and move around as well as smaller ones. That would follow if, but not only if, strength were added to the bones and other parts whose function it is to sustain their own weight and that which rests on them. But leaving the skeleton in the same proportions, these structures would hold together just as well, or even better, if one were to diminish in the same ratio the heaviness of the material of the bones themselves, and that of the flesh or other [material] that must be supported on the bones. It is this latter artifice that nature uses in the structure of fish, making the bones and flesh not merely somewhat lighter, but without any heaviness whatever.

Simp. I perceive the direction of your reasoning, Salviati. You mean that the habitat of fishes being the element of

water, which by its bodily nature, or as some will have it, its heaviness, reduces the weight of bodies that are submerged in it; and for that reason the material of fishes, weighing nothing, can be sustained without overloading their bones. But this does not suffice. Even if most of the substance of fishes does not weigh down, there is no doubt that the material of their bones does do so. Who would deny that a whale's rib, large as a beam, weighs a great deal, and would sink to the bottom in water? Hence those bones must be unable to sustain so vast a bulk.

171

Salv. Your objection is clever. Before I reply to your question, tell me: have you observed fish remaining motion-less at their pleasure under water, neither descending to the bottom nor rising to the top, [yet] without applying any force by swimming?

Simp. This is very easily observed.

Salv. Well, the ability of fish to stay motionless in water is a convincing argument that the composition of their corporeal bulk is equal to water in specific gravity. So if some parts heavier than water are found in them, there must necessarily be an equivalent amount less heavy in order for equilibrium to hold. So if the bones are heavier [than water], it must be that the flesh, or some other material present, is lighter, and that these offset with their lightness the weight of the bones. Thus, what happens in aquatic animals is the opposite of the case with terrestrial animals; namely, that in the latter, it is the task of the skeleton to sustain its own weight and that of the flesh, while in the former, the flesh supports its own weight and that of the bones. And there the marvel ceases that there can be very vast animals in the water, but not on the earth, that is to say, in the air.

Simp. This satisfies me; and I note further that these animals which we call "terrestrial" might more reasonably be called "aerial," since they truly live in air, are surrounded by air, and it is air that they breathe.²¹

Sagr. Simplicio's reasoning pleases me, both as to the question and its solution. Furthermore, I understand quite easily that one of these enormous fishes, drawn up on land, would perhaps be unable to support itself very long; the

^{21.} Evangelista Torricelli (1608 47) used the memorable phrase, "We live at the bottom of a sea of air" in his explanation of atmospheric pressure in 1644.

attachments of its bones becoming weakened, its vast bulk would flatten out.

Salv. For the present I am inclined to believe this, nor am I far from thinking that the same might happen to yonder huge ship which, floating in the sea, does not come apart under the weight and load of its many goods and furnishings, but which would perhaps burst its seams on land, surrounded by air. But let us get on with our subject, and show that:

[PROPOSITION X]

Given a prism or cylinder and its [own] weight, and [given] the maximum weight it sustains [at one end], we can find the maximum length beyond which the prism itself, if prolonged, would break of its own weight.

Given the prism AC with its own weight, let the given weight D be the maximum that can be sustained at its end C; the maximum length must be found, beyond which the prism cannot be extended without breaking. Extend CA to HA [in the same ratio] as [that of] the weight of prism AC to the combination of the weight AC with double the weight of D. Let AG be the mean proportional between these [CA]and HA]; I say that AG is the length sought. Inasmuch as the downward [gravante] moment of weight D at C is equal to the moment of a weight double that of D but placed at the middle of AC, which is the center of moment of prism AC, the moment of the resistance at A of prism AC is equivalent to the downward tendency of double the weight D [together] with the weight of AC, attached at the middle of AC. What is sought is that the moment of the said [combined] weights (that is, of double D plus AC), so situated, shall be to the moment of AC as HA is to AC. Between these, the mean proportional is AG; therefore the moment of double D plus the moment of AC is to moment AC as the square of GA is to the square of AC. But the downward moment of prism GA is to the moment of AC as the square of GA is to the square of AC. Hence the length AG is the maximum sought, that is, the length to which prism AC would sustain itself, but beyond which it would break.

Thus far there have been considered the moments and resistances of solid prisms and cylinders of which one extremity is assumed to be fixed, and only at the other end is the force of a pressing weight applied, this [weight] being

considered alone, or in conjunction with the heaviness of the solid [prism] itself, or again, only the heaviness of that solid [being considered]. Now I wish some discussion of the same prisms and cylinders, but when they are sustained at both ends, or are supported on a single point taken between their extremities.

I say first that the cylinder pressed [gravato] by its own weight [alone] and brought to that maximum length beyond which it can no longer sustain itself, either on a single support exactly at its middle, or supported by two at its extremities, can be twice as long as when fixed in a wall or sustained at one end only. This is sufficiently manifest in itself, for if we take the half AB of the cylinder ABC as the

greatest length capable of sustaining itself when fixed at the end B, just so will it sustain itself when placed on the support G and counterbalanced by the other half, BC. And similarly, if the length of the cylinder DEF is such that only half of it can sustain itself when fixed at the end D, and only the other [half] EF when fixed at end F, it is manifest that putting the supports H and I under the ends D and F, any moment of force or weight that is added at E will make a break there.

Deeper speculation is required when, abstracting their own heaviness from such solids, it is proposed to investigate whether that force or weight which would suffice, when applied at the middle of a cylinder sustained at both extremities, to break this, could have the same effect when applied at any other place, closer to one end than the other. For example, if we want to break a staff by taking its ends in hand and pressing the knee at its center, will the force [just] sufficient to break it in that way suffice also when the knee is placed not at the center, but closer to one of the ends?

Sagr. I think that this problem was touched on by Aristotle in his Questions of Mechanics.²²

^{22.} Questions of Mechanics, 14 (Loeb ed., p. 369).

Salv. Aristotle's question was not precisely the same. All he sought was to give a reason why less effort is required to break the stick by holding the hands at its ends, away from the knee, than by holding them closer together; and he gave a general reason, reducing the cause to the greater length of the levers [applied] when one's arms are separated to grasp the ends. Our question adds something further; we inquire whether the same force serves at all places, with the knee at the center or elsewhere, but keeping the hands always at the ends [of the stick].

Sagr. At first glance it would seem that it does, since these two levers in a certain way preserve the same [total] moment, inasmuch as to the extent that one is shortened, the other is lengthened.

Salv. Just see how ready at hand mistakes can be, and with what caution and circumspection one must proceed in order not to run into them. What you say, and what seems at first to have so much probability, is in a word so false that whether the knee (which is the fulcrum of both levers) is placed at the center or not makes so great a difference that the force required to cause fracture at the center, when applied at some other place, will sometimes remain inadequate even if multiplied four, or ten, or a hundred times, or a thousand.

Let us consider this generally, and then we may come to the specific determination of the ratio in which the forces that cause fracture vary from one point to another. First we shall draw this timber AB, to be broken at the middle over the support C, and then the same [timber], but designated DE, to be broken over the support F, some distance from the middle. The distances AC and CB being equal, it is manifest first that the applied force will be divided equally between the ends B and A. Second, as the distance DF becomes less than the distance AC, the moment of the force applied at D becomes less than the moment [of the force] at A, applied at distance CA. The former diminishes in the ratio of line DF to AC; hence this [force at D] must be increased in order to equal or overcome the resistance at F. But distance DF can diminish in infinitum in relation to distance AC; hence it is necessary to increase in infinitum the force applied at D in order to match the resistance at F [as F recedes toward D].

On the other hand, as distance FE increases beyond CB.

B B

one must diminish the force at E to match the resistance at F; 23 but the distance FE cannot increase in infinitum in relation to CB as the support F is withdrawn toward end D; in fact, it cannot even double. Therefore the force required at E to match the resistance at F will always be [less than, but] more than one-half, the force at B. Thus you understand the necessity of infinitely increasing the combined moments of the forces at E and D, in order to equal or overcome the resistance located at F, as the support F approaches the extremity D.

Sagr. What shall we say, Simplicio? Must we not confess that the power of geometry is the most potent instrument of all to sharpen the mind and dispose it to reason perfectly, and to speculate? Didn't Plato have good reason to want his pupils to be first well grounded in mathematics? I understood quite well the action [facoltà] of the lever, and how by increasing or reducing its length, the moment of its force and of the resistance grew or diminished; yet for all that, I was mistaken in the solution of the present problem, and not a little, but infinitely.

Simp. Truly I begin to understand that although logic is a very excellent instrument to govern our reasoning, it does not compare with the sharpness of geometry in awakening the mind to discovery [invenzione].

Sagr. It seems to me that logic teaches how to know whether or not reasonings and demonstrations already discovered are conclusive, but I do not believe that it teaches how to find conclusive reasonings and demonstrations.

But it will be better for Salviati to show us the ratio of increase of the moments of the forces required to overcome resistance in the same timber, with regard to its different places of breaking.

Salv. The ratio which you seek has the following form:

PROPOSITION XI

If two places are taken in the length of a cylinder at which the cylinder is to be broken, then the resistances at those two places have to each other the inverse ratio [of areas] of rectangles whose sides are the distances of those two places [from the two ends.]

^{23.} In order that breaking shall occur and not a mere pulling of one hand by the other.

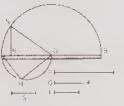
Let forces A and B be the least [forces required] for breakage at C, and likewise let E and F be the least for breakage at D: I say that forces A and B have to forces E and F the same ratio as the rectangle AD-DB has to the rectangle AC-CB. Forces A and B have to forces E and F the ratio compounded from the [ratio of the sum of] forces A and B to force B; that of B to F; and that of F to [the sum of F and E. But as forces A and B are to force B, so is the length BA to AC; and as the force B is to F, so is line DB to BC; and as the force F is to forces F and E, so is line DAto AB. Therefore forces A and B have to forces E and F the ratio compounded from the three; that is, from the said²⁴ BA to AC, DB to BC, and DA to AB. But from the two [ratios] DA to AB and AB to AC is compounded the ratio of DA to AC: hence forces A and B have to forces E and F the ratio compounded from [those of] DA to AC and DB to BC. But rectangle AD DB has to rectangle AC-CB the ratio compounded from [those of] DA to AC and DB to BC; therefore the forces A and B stand to E and F as rectangle AD DB to rectangle AC CB. This is to say that the resistance to breakage at C has to resistance to breaking at D the same ratio that rectangle AD DB has to rectangle AC CB; which was to be proved.25

In consequence of this theorem, we can solve another very curious problem, which is:

[PROPOSITION XII]

Given the maximum weight supported at the middle of a cylinder (or prism), where its resistance is least, and given a weight greater than this, to find the point in the cylinder at which the given greater weight is supported as a maximum weight.

Let the given weight, greater than the maximum supported at the middle of cylinder AB, be in the same ratio to that maximum as line E is to line F; it is required to find the point in the cylinder at which the given weight is sustained as the maximum. Let G be the mean proportional between E and F, and as E is to G, make AD to S; S will be less than AD. Let AD be the diameter of the semicircle AHD, in which



^{24.} The original text reads retta, but the context shows that detta was meant.

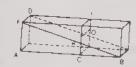
^{25.} A different, shorter proof appears in the Pieroni MS.

take AH equal to S. Draw HD, and cut off DR equal to HD; I say that R is the point sought, at which the given weight, greater than the maximum supported by the middle of cylinder D, will be supported as the maximum.

On BA construct the semicircle ANB and erect the perpendicular RN; join ND. Since the squares of NR and RD are equal to the square of ND, that is, to the square of AD, which is [equal to the squares of] AH and HD, and [the square of] HD is equal to the square of DR, then the square of NR, or the rectangle AR-RB, will be equal to the square of AH, which is the square of S. But the square of S is to the square of S is to the square of S is to the given greater weight. Hence this greater [weight] will be supported at S as the maximum that can be sustained there; which is what was sought.

Sagr. I understand perfectly. And I am considering that since prism AB is always stronger and more resistant to pressure at points farther and farther from the middle, then from very large and heavy beams a considerable part might be removed toward the ends, with notable lightening of weight. This would be of no small advantage and utility in the rafters of great halls. It would be a fine thing to know the shape that must be given to a solid in order that it would be equally resistant at all points, and no more easily broken by a given weight pressing on it in the middle than at any other place. 26

Salv. I was about to tell you something very noteworthy and wonderful to this purpose; here is a diagram, the better to explain this. Here, DB is a prism in which the resistance to fracture by a force pressing on end B is, as previously demonstrated, less at the end AD than is the resistance at CI, by as much as length CB is less than BA.²⁷ Next, consider the same prism sawed through diagonally along the line FB, so that the opposite faces form two triangles, one of which, FAB, is facing us. This solid has a nature contrary to that of the prism, since it less resists being broken over the point



^{26.} The problem is to find a beam supported at both ends that would bear some constant given weight as a maximum at any point. Salviati's next remark suggests that he will discuss a related but different problem; cf. note 31, below.

^{27.} What had been proved was not this, but that the weights required for breaking prisms supported at A and C were inverse to the lengths AB and BC, as Viviani noted in his copy of the book.

C than over A, by a force applied at B, in proportion as CB is less than BA. This is easily proved.

Consider the section CNO parallel to AFD; in triangle FAB, line FA has to CN the same ratio that line AB has to BC. Now understand points A and C to be the fulcrums of two similar levers whose arms are BA and AF, BC and CN. The moment of the force applied at B [acting] through distance BA against the resistance situated at distance AF will be that which the same force [applied] at B has, acting through distance BC against the same resistance situated at distance CN. But the resistance to be overcome by the force applied at B, at the fulcrum C situated at distance CN, is as much less than the resistance at A as rectangle CO is less than rectangle AD; that is, as much as line CN is less than AF, or CB than BA. Hence the resistance of part OCB to being broken [off] at C is as much less than the resistance of all DAB to being broken at A as the length CB is less than AB. Thus we have taken away from the beam or prism DB a part, in fact one-half, by cutting it diagonally, leaving the wedge or triangular prism FBA; and these two solids are of contrary condition, the former being more resistant the more it is shortened [in the direction of B], and the latter losing robustness as it is shortened. Now, this being the case, it seems quite reasonable and even necessary that a cut can be made after which, the superfluous part being removed, there remains a solid of such shape that it is equally resistant in all its parts.

Simp. Indeed, it is necessary that where we pass from the greater to the less, we also meet with the equal.

Sagr. But the point now is to find how to guide the saw so as to make this cut.

Simp. It seems to me that this should be an easy task. By cutting the prism diagonally and taking away half, the shape that remains has its nature contrary to that of the entire prism, in such a way that wherever the latter gained strength, the former lost as much. So I believe that we should take the middle path; that is, by taking only one-half of the half, or one-quarter part of the whole, the remaining figures will neither gain nor lose robustness at any of those places at which the other two figures had equal losses and gains.

Salv. You have not hit the target, Simplicio. As I shall show you, that which can be sawed from the prism and removed without weakening it is in truth not one-quarter,

C B

but one-third. Now, as Sagredo has mentioned, it remains to find the line by which the saw should travel, which line I shall prove to be parabolic. But first it is necessary to demonstrate a certain lemma, which is this:

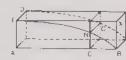
[LEMMA]

If there are two balances or levers, divided by their supports in such a way that the two distances at which the forces [to be compared] are applied shall be to each other in the squared ratio of the distances of the resistances, and if those resistances are to each other as their distances, then the sustaining powers [at the two points] will be equal.

Let AB and CD be two levers, divided by their fulcrums E and F in such a way that distance EB has to FD the squared ratio of distance EA to FC, and assume, at A and C, resistances in the ratio of EA and FC.28 I say that equal powers at B and D will sustain the resistances A and C. Take EG as the mean proportional between EB and FD; then as BE to EG, so GE will be to FD, and AE to CF, which was taken to be the [ratio of the] resistance A to the resistance C. Since AE is to CF as EG is to FD, by permuting, GE will be to EA as DF is to FC. Therefore, since the two levers, DC and GA, are proportionately divided at points F and E, the power which, when applied at D, balances resistance C, when moved to G will balance the same resistance C moved to A. But by the assumption, resistance A has to resistance C the same ratio that AE has to CF, or BE to EG. Therefore the power [at] G, or we may say [at] D, when placed at B, will sustain the resistance situated at A; which was to be proved.

This understood, let the parabolic line FNB, whose apex is B, be drawn on the face FB of prism DB, and let the prism be sawed along this line, leaving the solid that lies between the base AD, the rectangular plane AG, the straight line BG, and the surface BGDF, which has the curvature of the parabolic line FNB. I say that this solid [taken absolutely] is equally resistant throughout.²⁹

Take the plane section CO, parallel to AD, and think of



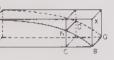
A P C C D

^{28.} The words from "and assume . . ." to the end of this sentence appear in the Pieroni MS but not in printed editions prior to the Opere.

^{29.} In the sense of breaking indifferently at F or N when the weight is applied at B.

two levers divided by and placed on the fulcrums A and C, so that the arms of one lever are BA and AF, and of the other, BC and CN. Since in the parabola FBA, AB is to BC as the square of FA is to the square of CN, it is manifest that arm BA of one lever has to arm BC of the other, the squared ratio of arm AF to arm CN. And since the resistance to be balanced by lever BA has to the resistance to be balanced by lever BC the same ratio that rectangle DA has to rectangle DC, which is the same as that of line AF to NC (the other two arms of the levers), it is evident from the above lemma that the same force which, applied by the line BC, balances resistance DA, will also balance resistance CO. The same is demonstrated when the solid is cut at any other place; and therefore this parabolic solid [taken absolutely] is equally resistant throughout.

181



That one-third is removed by cutting the prism along the parabolic line *FNB* becomes apparent, because the semi-parabola *FNBA* and the rectangle *FB* are the bases of two solids lying between two parallel planes, that is, between rectangles *FB* and *DG*, whence they have the same ratio as that of their bases. But rectangle *FB* is three-halves of semi-parabola *FNBA*; therefore, the prism being cut along the parabolic line, one-third is taken away. From this it is seen that beamwork can be built, without any reduction in strength, while diminishing weight by over thirty-three per cent. In large ships, especially to support the decks, this may be quite useful, since lightness is extremely important in such structures.³¹

Sagr. Its uses are so numerous that it would be a long task, or impossible, to record them all. But leaving that aside, I had rather understand that the lightening made is in the ratio you have assigned. I understand quite well that the cut along the diagonal removes one-half the weight; I

^{30.} The words "... to a force applied at BG" are required at the very least, and even then this would hold only for a weightless beam—or as Galileo would say, a beam "taken absolutely." This oversight became the topic of further study and controversy by Francois Blondel (1626-86), Viviani, and Alessandro Marchetti (1633-1714). Yet it should be noted that the entire discussion by Galileo opened (p. 173) as if intended "absolutely"; that is, by abstracting heaviness.

^{31.} Obviously Galileo did not perceive the essential difference between his problem and that of beams supported at both ends, for which the shape sought turned out to be elliptical rather than parabolic; cf. notes 26 and 30, above.

can believe that this parabolical cut carries away one-third of the prism on Salviati's word, always truthful, but on this I should be thankful for science rather than faith.

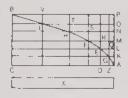
Salv. Then you would like to have the proof that the excess of the prism over what we may here call the parabolic solid is one-third of the whole prism. I know that I once demonstrated this, and I shall now try whether I can put the proof together again. I recall that for this I made use of a certain lemma of Archimedes in his book On Spiral Lines, and this is that if any given number of lines equally exceed one another, the excess being equal to the shortest of them; and given an equal number of lines each equal to the longest, then the [sum of the] squares of all the latter is less than triple the [sum of the] squares of the former lines, while it is more than triple the same after deducting the square of the longest line.³²

Assuming this lemma, let the parabolic line AB be inscribed in the rectangle ACBP. We must prove that the mixed triangle 33 BAP, whose sides are BP and PA, and whose base is the parabolic line BA, is one-third of the whole rectangle CP. If it is not, it will be either more than one-third, or less. Let it be less, if possible, and let it be short by the space X. Divide the rectangle continually into equal parts by lines parallel to the sides BP and CA; eventually we shall arrive at parts less than space X. Let one such part be rectangle OB, and through the points at which the other parallels cut the parabolic line, pass lines parallel to AP.

Now, by "circumscribed about our mixed triangle," I shall mean the figure composed of rectangles BO, IN, HM, FL, EK, and GA, which [broken-line] figure will be less than one-third of the rectangle CP, since the excess of this figure over the mixed triangle is much less than rectangle BO, and that in turn is less than space X [by construction].

Sagr. A moment, please, for I do not see why the excess of this circumscribed figure, over and above the mixed triangle, is much less than rectangle BO.

Salv. Rectangle BO is equal, is it not, to the sum of all these little rectangles through which our parabolic line



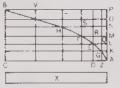
^{32.} Archimedes, On Spiral Lines, Prop. 10 (Heath, Archimedes, p. 162, with proof on pp. 107-9, the same theorem having been used as a lemma to Prop. 2, On Conoids and Spheroids). Galileo's next demonstration illustrates the Archimedean method of exhaustion.

^{33.} The three-sided figure of which one side is a curved line.

passes? I am speaking of BI, IH, HF, FE, EG, and GA, of each of which only a part lies outside the mixed triangle. And wasn't rectangle BO assumed to be also less than space X? Therefore if, for the adversary, the [mixed] triangle plus X equaled one-third of the rectangle CP, then the circumscribed figure, which adds to the [mixed] triangle less than space X, will still have to be less than one-third of rectangle CP. But this cannot be, since [as will be shown] it is greater than one-third; hence it is not true that our mixed triangle is less than one-third of the rectangle.

183

Sagr. I understand the answer to my question, but now you must prove to us that the circumscribed figure is more than one-third of rectangle CP, in which I believe we shall have a great deal more trouble.



Salv. Oh, there is no great difficulty about it. In the parabola, the square of line DE has to the square of ZG the same ratio that line DA has to AZ, which is the ratio of rectangle KE to rectangle AG, the altitudes AK and KL being equal. Therefore the ratio of the square ED to the square ED (that is, of square ED to square ED to rectangle ED to rectangle ED to rectangle ED to rectangle ED to the square ED to rectangle ED to rectangle ED to square ED to the square ED to rectangle ED to rectangle ED to square ED to square ED to the square ED to square ED to the square ED to rectangle ED to square ED

Next, consider that the circumscribed figure is composed of spaces that are to one another as the squares of lines that exceed one another by differences equal to the shortest, and that the rectangle *CP* is composed of that same number of spaces, each of which is equal to the longest, namely, all the rectangles equal to *OB*. Then, by the lemma from Archimedes, the circumscribed figure is more than one-third of rectangle *CP*. But it was also less, which is impossible. And thus the mixed triangle is not less than one-third of rectangle *CP*.

Likewise I say that it is not more. For if it is more than one-third of rectangle CP, make space X [now] equal to the excess of the [mixed] triangle over one-third of rectangle CP. Then, having made the division and subdivision of the rectangle into ever-equal rectangles, we shall again arrive at one such that it is less than space X. This done, and rectangle

^{34.} Strictly speaking, the Archimedean theorem applies to sums of squares only, but a corollary to it states that any geometrically similar figures of any kind may be substituted for squares.

BO being less than X, describe the figure as above, and we shall have inscribed within the mixed triangle a figure, composed of the rectangles VO, TN, SM, RL, and OK, which will not be less than one-third of rectangle CP. For the mixed triangle exceeds this inscribed figure by much less than it surpasses one-third of rectangle CP, inasmuch as the excess of the [mixed] triangle over and above one-third of rectangle CP is equal to space X, which is [again] less than rectangle BO, and this latter is still less than the excess of the [mixed] triangle over the inscribed figure. For BO is equal to all the rectangles AG, GE, EF, FH, HI, and IB, and the excesses of the [mixed] triangle over the inscribed figure are less than one-half of these. And since the [mixed] triangle exceeds one-third of the rectangle CP by much more (that is, by space X) than it exceeds the inscribed figure, this figure will still be greater than one-third of rectangle CP. But by the assumed lemma, it is less, since the rectangle CP, as aggregate of all the long rectangles, has the same ratio to the component rectangles of the inscribed figure, that the aggregate of all the squares of lines equal to the longest has to the squares of all the lines that equally exceed [one another, after] deducting the square of the longest. And thus, as happens with the squares [of the lines], the whole aggregate of long [rectangles], which is rectangle CP, is more than triple the aggregate of the [rectangles] exceeding one another, omitting the longest, that compose the inscribed figure. Therefore the mixed triangle is neither greater nor less than one-third of rectangle CP, and they are accordingly equal.

Sagr. A beautiful and ingenious demonstration, so much the more so in that it gives us the quadrature of the parabola, showing this to be four-thirds of the triangle inscribed in it, 35 This proves something that Archimedes demonstrated by two different trains of many propositions, both of them admirable, and which was also demonstrated more recently by Luca Valerio, a second Archimedes according to our age 36, whose demonstration is given in the book he wrote

36. Cf. note 20 to First Day, Valerio's proof is found in Prop. IX of his

Quadratura parabolae (Rome, 1606).

^{35.} The true triangle ABC, which is not drawn in Galileo's diagram; this is not to be confused with the "mixed" triangle (note 33, above) used in the proof. See Archimedes, Quadrature of the Parabola, Props. 17, 24 (Heath, Archimedes, pp. 246, 251-52).

on the center of gravity in solids.

Salv. A book truly not to be placed below anything written by the most famous geometers of the present or all past centuries. When it was seen by our Academician, it caused him to desist from pursuing the discoveries that he had been writing about the same subject, since he saw the whole thing so happily revealed and demonstrated by Signor Valerio.³⁷

Sagr. I was told of all these events by the Academician himself, and also tried to get him to let me see the demonstrations he had already found when he met with Signor Valerio's book, but I did not succeed in seeing them.

Salv. I have a copy and will show it to you, for it will please you to see the difference in the methods by which these two authors move through the investigation of the same conclusions and their demonstrations. Some of the conclusions have different explanations, though in fact equally true.

Sagr. I shall be very happy to see them; when you return to our customary meetings, do me the favor of bringing them along. Meanwhile, since this [matter] of the resistance of a solid removed from a prism by a parabolic cut is an operation no less elegant than useful in many mechanical works, it would be a good thing for artisans to have some easy and speedy rule for drawing the parabolic line on the surface of the prism.

Salv. There are many ways of drawing such lines, of which two are speedier than the rest; I shall tell these to you. One is really marvelous, for by this method, in less time than someone else can draw finely with a compass on paper four or six circles of different sizes, I can draw thirty or forty parabolic lines no less fine, exact, and neat than the circumferences of those circles. I use an exquisitely round bronze ball, no larger than a nut; this is rolled [tirata] on a metal mirror held not vertically but somewhat tilted, so that the ball in motion runs over it and presses it lightly. In moving, it leaves a parabolic line, very thin, and smoothly traced. This [parabola] will be wider or narrower, according

^{37.} At Valerio's request, Galileo had withheld publication of his early work on the same subject, here included as an appendix, when that was planned in 1613, because Valerio was at work on a revised edition of the work cited in the text. Galileo's posthumous tribute to Valerio is thus more than generous, particularly in view of Valerio's opposition to his Copernican campaign at Rome in 1616.

as the ball is rolled higher or lower. From this, we have a clear and sensible experience that the motion of projectiles is made along parabolic lines, an effect first observed by our friend, who also gives a demonstration of it. 38 We shall all see this in his book on motion at the next [primo] meeting. To describe parabolas in this way, the ball must be somewhat warmed and moistened by manipulating it in the hand, so that the traces it will leave shall be more apparent on the mirror.

186

The other way to draw on the prism the line we seek is to fix two nails in a wall in a horizontal line, separated by double the width of the rectangle in which we wish to draw the semiparabola. From these two nails hang a fine chain, of such length that its curve [sacca] will extend over the length of the prism. This chain curves in a parabolic shape, so that if we mark points on the wall along the path of the chain, we shall have drawn a full parabola. 39 By means of a perpendicular hung from the center between the two nails. this will be divided into equal parts. There is then no difficulty about transferring such a line onto the opposite faces of the prism; an average craftsman will know how to do this. Or one may use the geometrical lines marked on our friend's [proportional] compass to mark out the points of the same line on the face of the prism directly, without any other stratagem.40

Thus far we have demonstrated many conclusions relating to the theory of resistances of solids to fracture, having first opened the door to this science by supposing known their longitudinal resistance. It is thus possible to go on ahead, discovering more and more conclusions and their demonstrations, which are inexhaustible [infinite] in nature. But now, as the final end of today's discussions, I want to add the theory of resistances of hollow [vacui] solids. Art, and nature even more, makes use of these in thousands of operations in which robustness is increased without adding weight, as

^{38.} The parabola underlay Galileo's first mathematical treatise composed in 1587. The same two methods of tracing parabolas are also described in the undated notebook now preserved at Paris, left by Galileo's patron, Guidobaldo del Monte (1545–1607).

^{39.} The curve formed by a hanging chain is a catenary, not a parabola, but closely approximates one under the conditions given in the Fourth Day (p. 310).

^{40.} Galileo's "geometric and military compass," devised about 1597, included a scale of squares facilitating the drawing of parabolas.

is seen in the bones of birds and in many stalks [canne] that are light and very resistant to bending and breaking. For a straw sustains an ear much heavier than the whole stem, but if this were made of the same quantity of material compacted, it would be much less resistant to bending and breaking. Hence art has observed, and experience has confirmed, that a hollow rod or a tube of wood or metal is much firmer than it would be if it were of the same weight and length, but solid, and consequently thinner; and thus art has found how to make lances hollow when it is desired to have them strong and light. We shall, therefore, show that:

[PROPOSITION XIII]

The resistances of two cylinders of equal weight and length, one of which is hollow and the other solid, are to each other as the diameters.

Let AE be the tube or hollow cylinder, and IN the solid cylinder, equal in weight and equally long; I say that the

resistance of the tube AE to fracture has to the resistance of the solid cylinder IN the same ratio that the diameter AB has to the diameter IL. This is manifest, for the tube [AE] and the cylinder IN being equal [in volume and material] and equally long, the circle IL that is the base of the cylinder will be equal to the doughnut [ciambella]41 AB that is the base of the tube AE (I call the surface that remains when a smaller circle is taken from a larger one concentric to it a "doughnut"); whence their absolute resistances will be equal. In breaking the cylinder IN across, we use the length LN as a lever with its fulcrum at point L, and the radius (or diameter) LI as its counterlever. But in the tube, the arm of the lever BE is equal to LN, while the counterlever beyond the fulcrum B is the radius (or diameter) AB. Hence it is clear that the resistance of the tube will exceed that of the solid cylinder in the ratio of the diameter AB over the

^{41.} Ciambella is the name of a flat pastry having a central hole. See p. 74 for similar uses by Galileo of homely expressions as technical terms for geometric forms.

diameter IL; which is what we sought. The robustness of the tube therefore gains over the robustness of the solid cylinder in proportion to the diameters, provided always that both are of the same material, weight, and length.

It will be good next to investigate what happens in other cases, in general, between all equally long tubes and solid cylinders unequal in weight, and more or less widely hollowed out. And first we shall demonstrate how:

[PROPOSITION XIV]

Given a hollow tube, to find a filled cylinder equal to it [in resistance to fracture].

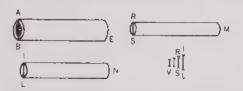
The operation is very easy. Let line AB be the diameter of the tube, and CD the diameter of its hollow. In the larger circle draw line AE equal to the diameter CD, and join E and B. Since in the semicircle AEB, E is a right angle, the circle whose diameter is AB will be equal to the two circles of diameters AE and EB. But AE is the diameter of the hollow of the tube: therefore the circle whose diameter is EB will be equal to the doughnut ACBD. Hence the solid cylinder whose base is the circle of diameter EB will be equal [in area, and hence resistance] to the tube, the two being of equal length.

This proved, we shall quickly:

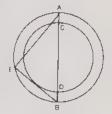
[PROPOSITION XV]

Find the ratio of the resistances of any tube and any cylinder whatever, of equal lengths.

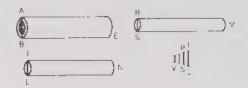
Let there be the tube ABE and the cylinder RSM, of equal length; we must find the ratio between their resistances. By



the preceding [proposition], find the cylinder ILN equal to the tube and of the same length. Let line V be the fourth proportional of lines IL and RS, the diameters of the bases of cylinders IN and RM. I say that the resistance of the tube AE is to that of the cylinder RM as line AB is to V. For the tube AE being equal to and of equal length with the cylinder



IN, the resistance of the tube will be to the resistance of the cylinder as line AB is to IL; but the resistance of cylinder IN is to the resistance of cylinder RM as the cube of IL



is to the cube of RS; that is, as line IL is to V. Therefore, by equidistance of ratios, the resistance of tube AE has to the resistance of cylinder RM the same ratio that line AB has to V; which is what was sought.

The Second Day Ends⁴²

^{42.} Division of the book at this point was made by the publishers. Lack of the usual conversational conclusion here, and of a conversational opening for the Third Day, suggests that Galileo intended to add material here but failed to get it to Leyden in time. See note 30 to Fourth Day, below.

Third Day

190

[Salviati (reading from Galileo's Latin treatise):]

On Local Motion

We bring forward [promovemus] a brand new science concerning a very old subject.

There is perhaps nothing in nature older than MOTION. about which volumes neither few nor small have been written by philosophers; yet I find many essentials [symptomata] of it that are worth knowing which have not even been remarked, let alone demonstrated. Certain commonplaces have been noted. as for example that in natural motion, heavy falling things continually accelerate; but the proportion according to which this acceleration takes place has not yet been set forth. Indeed no one, so far as I know, has demonstrated that the spaces run through in equal times by a moveable descending from rest maintain among themselves the same rule [rationem] as do the odd numbers following upon unity.1 It has been observed that missiles or projectiles trace out a line somehow curved, but no one has brought out that this is a parabola. That it is, and other things neither few nor less worthy [than this] of being known, will be demonstrated by me, and (what is in my opinion more worthwhile) there will be opened a gateway and a road to a large and excellent science of which these labors of ours shall be the elements, [a science] into which minds more piercing than mine shall penetrate to recesses still deeper.

We shall divide this treatise into three parts. In the first part we consider that which relates to equable or uniform

^{1.} Although important rules of uniformly accelerated motion had been given by medieval writers, those to which Galileo alludes were not among them. Neither the progression of spaces traversed according to the odd numbers, nor the relation of total distances to the squares of times, had been related to free fall. Those relations had been found by Galileo in 1604, and were utilized in his *Dialogue*, pp. 221–23, 227–29 (*Opere*. VII. 248–50, 253–56). His neglect to mention this may have been due to the fact that the *Dialogue* was a prohibited book. That Galileo did not mention here Cavalieri's application of those rules in 1632 is understandable, as is his omission in the next sentence of Cavalieri's derivation of the parabolic trajectory: cf. note 30 to First Day!

motion; in the second, we write of motion naturally accelerated; and in the third, of violent motion, or of projectiles.

191

On Equable Motion

Concerning equable or uniform motion, we require a single definition which I offer in this form:

DEFINITION

Equal or uniform motion I understand to be that of which the parts run through by the moveable in any equal times whatever are equal to one another.

NOTE: To the old definition, which simply calls motion "equable" when equal spaces are completed [transiguntur] in equal times, it seems good to add the qualifier "any whatever," that is, in all equal times; for it may happen that a moveable passes through equal spaces in some equal times although the spaces completed in smaller parts of those same times, themselves equal, are not equal.

From the definition there hang four axioms, as follows:

AXIOM I

During the same equable motion, the space completed in a longer time is greater than the space completed in shorter time.

AXIOM II

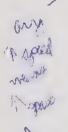
The time in which a greater space is traversed in the same equable motion is longer than the time in which a smaller space is traversed.

AXIOM III 3

The space traversed with greater speed is greater than the

2. The "old definition" is presumably that of Aristotle, *Physica* 237b. 27-30: "In all cases where a thing is in motion with uniform velocity... if we take a part of the motion which shall be commensurable with the whole, the whole motion is completed in as many equal periods of time as there are parts of the motion." Galileo's definition removes the restriction to commensurables. Archimedes did not define uniform motion in any surviving work, but his book *On Spiral Lines*, Prop. 1, implied Galileo's addition, which had also been correctly given by Richard Swineshead in the fourteenth century.

3. This and the next axiom, unlike the first two, are not restricted to uniform motion; like Props. II and III below, which depend on them, they are of perfectly general applicability.



space traversed in the same time with lesser speed.

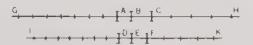
AXIOM IV

The speed with which more space is traversed in the same time is greater than the speed with which less space is traversed.

PROPOSITION I, THEOREM I4

If a moveable equably carried [latum] with the same speed passes through two spaces, the times of motion will be to one another as the spaces passed through.

Let the moveable equably carried with the same speed pass through two spaces, AB and BC; and let the time of motion through AB be DE, while the time of motion through BC is EF; I say that space AB is to space BC as time DE is to time EF.



Extend the spaces toward G and H, and the times toward I and K. In AG take any number of spaces [each] equal to AB, and in DI likewise as many times [each] equal to DE. Further, let there be taken in CH any multitude of spaces [each] equal to CB, and in FK that multitude of times [each] equal to EF. Space BG and time EI will now be equimultiples of space BA and time ED [respectively], according to whatever multiplication was taken. Similarly, space HB and time KE will be equimultiples of space CB and time EF in such multiplication. And since DE is the time of movement through AB, the whole of EI will be the time of the whole [space] BG, since this motion is assumed equable, and in EI there are as many equal times DE as there are equal spaces BA in BG; and similarly it is concluded that KE is the time of movement through HB. But since the motion is assumed equable, if the space GB is equal to BH, the time IE will be equal to time EK. while if GB is greater than BH, so will IE be greater than EK; and if less, less. Thus there are four magnitudes, AB first,

192 proting

equalite side

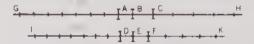
1

^{4.} For ease of reference in this translation, the proposition numbers are placed before the theorem or problem numbers, reversing the original order. Theorem I is the converse of Archimedes, On Spiral Lines, Prop. 1, whose proof was likewise based on the Eudoxian definition of "same ratio" (Euclid, Elements V. Def. 5).

BC second. DE third, and EF fourth; and of the first and third (that is, of space AB and time DE), equimultiples are taken according to any multiplication, [i.e.] the time IE and the space GB; and it has been demonstrated that these either both equal, both fall short of, or both exceed the time EK and the space BH, which are equimultiples of the second and fourth. Therefore the first has to the second (that is, space AB has to space BC) the same ratio as the third to the fourth (that is, time DE to time EF); which was to be demonstrated.

PROPOSITION II. THEOREM II

Grisping If a moveable passes through two spaces in equal times, these spaces will be to one another as the speeds. And if the spaces are as the speeds, the times will be equal.



Taking the previous diagram, let there be two spaces, AB and BC, completed in equal times, space AB with speed DE and space BC with speed EF; I say that space AB is to space BC as speed DE is to speed EF. Again, as above, taking equimultiples both of spaces and of speeds according to any multiplication—that is, GB and IE [equimultiples] of AB and DE, and likewise HB and KE [equimultiples] of BC and FF—it is concluded in the same way as above that multiples GB and IE either both fall short of, or equal, or exceed equimultiples BH and EK. Therefore the proposition is manifest.

PROPOSITION III. THEOREM III

Of movements through the same space at unequal speeds. the times and speeds are inversely proportional.

Let there be unequal speeds. A greater and B lesser, and let there be motion through the same space CD according to each [speed]; I say that the time in which speed A goes through [permeat] CD is, to the time in which speed B goes through the same space, as speed B is to speed A. For let CD be to

5. The statements of this and the next theorem contain no restriction to equable or uniform motion, nor do their proofs involve restricted axioms; cf. note 3, above. Galileo used Prop. II in certain proofs relating to accelerated motion, for example, on p. 222.

6. The wording here which makes a speed go through or traverse a distance is curious. Elsewhere Galileo sometimes speaks of speeds as being spent, consumed, or used up (as we say of time) in the traversing of a space by a moveable.

CE as A is to B; then from the preceding, the time in which speed A traverses [conficit] CD is the same as the time in which B traverses CE; but the time in which speed B traverses CE is, to the time in which the same [B] traverses CD, as CE is to CD. Therefore the time in which speed A traverses CD is, to the time in which speed B traverses the same CD, as CE is to CD, or as speed B is to speed A; which was proposed.

PROPOSITION IV. THEOREM IV

If two moveables are carried in equable motion but at unequal speeds, the spaces run through by them in unequal times have the ratio compounded from the ratio of speeds and from the ratio of times.

Let two moveables, E and F, be moved in equable motion, and let the ratio of the speed of moveable E be to the speed of moveable F as A is to B, while the ratio of the time in which E is moved, to the time in which F is moved, is as C is to D; I say that the space run through by E at speed A in time C has, to the space run through by F at speed B in time D, the ratio compounded from the ratio of speed A to speed B and from the ratio of time C to time D.

Let G be the space run through by E at speed A in time C, and let G be to I as speed A is to speed B, and let I be to L as time C is to time D. It follows that I is the space through which F is moved in the same time as that in which E is moved through G, since spaces G and I are as speeds A and B. Since I is to L as time C is to time D, and I is the space that is traversed by moveable F in time C, then L will be the space traversed by F in time D with speed B. Hence the ratio of G to L is compounded from the ratios of G to I and of I to L; that is, from the ratios of speed A to speed B and of time C to time D; therefore the proposition holds.

PROPOSITION V. THEOREM V

If two moveables are carried in equable motion but with unequal speeds, and unequal spaces are run through, then the ratio of the times will be compounded from the ratio of spaces and from the inverse ratio of speeds.

Let there be two moveables A and B, and let the speed of A be to the speed of B as V is to T; and let the spaces

^{7.} The Archimedean concept of compound ratios is essential here, as elsewhere in Galileo's applications of mathematics to physics; cf. Introduction, Glossary, note 9 to Second Day, and pp. 210, 220, below.

run through be as S is to R; I say that the ratio of the time in which A is moved, to the time in which B is moved, is compounded from the ratio of speed T to speed V and from the ratio of space S to space R.

Let C be the time of motion A, and as speed T is to speed V, so let time C be to time E. Since C is the time in which A, at speed V, traverses space S, and since time C is to time E as speed T of moveable B is to speed V, time E will be that in which moveable B traverses the same space S. Now make time E to time G as space S is to space R. Clearly, G is the time in which B will traverse space R. And since the ratio of C to G is compounded from the ratios C to E and E to G, the ratio of C to E is the same as the inverse ratio of the speeds of moveables A and B; that is, [the same] as the ratio of T to V. But the ratio of E to G is the same as the ratio of spaces S and R; therefore the proposition holds.

196

PROPOSITION VI. THEOREM VI

If two moveables are carried in equable motion, the ratio of their speeds will be compounded from the ratio of spaces run through and from the inverse ratio of times. Let two moveables, A and B, be carried in equable motion, and let the spaces run through by them be in the ratio of V to T, while the times are as S is to R; I say that the speed of moveable A has to the speed of moveable B the ratio compounded from the ratios of space V to space T and of time R to time S.

Let speed C be that with which moveable A traverses space V in time S, and let speed C have to another [speed]. E, the ratio that space V has to space T. Then E will be the speed with which moveable B traverses space T in the same time, S. But if speed E is made to another [speed]. G, as time R is to time S, then speed G will be that with which moveable B traverses space T in time R. Thus we have speed C, with which moveable A traverses space V in time S, and speed G, with which moveable B traverses space T in time R; and the ratio of C to G is compounded from the ratios C to E and E to G. But the ratio C to E is assumed to be the same as the ratio of R to S; therefore the proposition holds.

Salv. What we have just seen is all that our Author has written of equable motion. We therefore pass on to a new

and more subtle contemplation, concerning naturally accelerated motion, which is that which is universally carried out by heavy falling moveables. Here is his title and his introduction:

On Naturally Accelerated Motion⁸

197

Those things that happen which relate to equable motion have been considered in the preceding book; next, accelerated motion is to be treated of.

And first, it is appropriate to seek out and clarify the definition that best agrees with that [accelerated motion] which nature employs. Not that there is anything wrong with inventing at pleasure some kind of motion and theorizing about its consequent properties, in the way that some men have derived spiral and conchoidal lines from certain motions, though nature makes no use of these [paths]; and by pretending these, men have laudably demonstrated their essentials from assumptions [ex suppositione.] But since nature does employ a certain kind of acceleration for descending heavy things, we decided to look into their properties so that we might be sure that the definition, of accelerated motion which we are about to adduce agrees with the essence of naturally accelerated motion. And at length, after continual agitation of mind, we are confident that this has been found, chiefly for the very powerful reason that the essentials successively demonstrated by us correspond to, and are seen to be in agreement with that which physical experiments [naturalia experimenta] show forth to the senses.9 Further, it is as though we have been led by the hand to the investigation of naturally accelerated motion by consideration of the custom and procedure of nature herself in all her other works, in the performance of which she habitually employs the first, simplest, and easiest means. And indeed, no one of judgment believes that swimming or flying can be accomplished in a simpler or easier way than that which fish and birds employ by natural instinct.

^{8.} It is significant that this title refers to natural rather than to uniform acceleration. Galileo's central topic is free fall, and he defines uniformity on the basis of natural phenomena. This reverses the medieval procedure, in which a purely mathematical analysis of accelerated motion was carried out, often illustrated by ingenious examples but never based on reference to free fall.

^{9.} Compare the statement of Heinrich Hertz cited in the Introduction.

Thus when I consider that a stone, falling from rest at some height, successively acquires new increments of speed, why should I not believe that those additions are made by the simplest and most evident rule? For if we look into this attentively, we can discover no simpler addition and increase than that which is added on always in the same way. We easily understand that the closest affinity holds between time and motion, and thus equable and uniform motion is defined through uniformities of times and spaces; and indeed, we call movement equable when in equal times equal spaces are traversed. And by this same equality of parts of time, we can perceive the increase of swiftness to be made simply, conceiving mentally that this motion is uniformly and continually accelerated in the same way whenever, in any equal times, equal additions of swiftness are added on.

Thus, taking any equal particles of time whatever, from the first instant in which the moveable departs from rest and descent is begun, the degree of swiftness acquired in the first and second little parts of time [together] is double the degree that the moveable acquired in the first little part [of time]; and the degree that it gets in three little parts of time is triple; and in four, quadruple that same degree [acquired] in the first particle of time. So, for clearer understanding, if the moveable were to continue its motion at the degree of momentum of speed acquired in the first little part of time, and were to extend its motion successively and equably with that degree, this movement would be twice as slow as [that] at the degree of speed obtained in two little parts of time. And thus it is seen that we shall not depart far from the correct rule if we assume that intensification of speed is made according to the extension of time; from which the definition of the motion of which we are going to treat may be put thus:

[DEFINITION]

I say that that motion is equably or uniformly accelerated which, abandoning rest, adds on to itself equal momenta of swiftness in equal times.

Sagr. Just as it would be unreasonable for me to oppose this, or any other definition whatever assigned by any author, all

10. A more ordinary, intuitive view was that the simplest rule was to take the ever-changing speeds as proportional to distances traversed from rest. An essential mathematical disparity between that rule and Galileo's is shown in the discussion on pp. 203-4, below.

[definitions] being arbitrary, so I may, without offence, doubt whether this definition, conceived and assumed in the abstract, is adapted to, suitable for, and verified in the kind of accelerated motion that heavy bodies in fact employ in falling naturally. And since it seems that the Author promises us that what he has defined is the natural motion of heavy bodies, I should like to hear you remove certain doubts that disturb my mind, so that I can then apply myself with better attention to the propositions that are expected, and their demonstrations.

Salv. It will be good for you and Simplicio to propound the difficulties, which I imagine will be the same ones that occurred to me when I first saw this treatise, and that our Author himself put to rest for me in our discussions, or that I removed for myself by thinking them out.

Sagr. I picture to myself a heavy body falling. It leaves from rest; that is, from the deprivation of any speed whatever, and enters into motion in which it goes accelerating according to the ratio of increase of time from its first instant of motion. It will have obtained, for example, eight degrees of speed in eight pulse-beats, of which at the fourth beat it will have gained four; at the second [beat], two; and at the first, one. Now, time being infinitely divisible, what follows from this? The speed being always diminished in this ratio, there will be no degree of speed, however small (or we might say, "no degree of slowness, however great"), such that the moveable will not be found to have this [at some time] after its departure from infinite slowness, that is, from rest. Thus if the degree of speed that it had at four beats of time were such that, maintaining this uniformly, it would run two miles in one hour, while with the degree of speed that it had at the second beat it would have made one mile an hour, it must be said that in instants of time closer and closer to the first finstantl of its moving from rest, it would be found to be so slow that, continuing to move with this slowness, it would not pass a mile in an hour, nor in a day. nor in a year, nor in a thousand [years], and it would not pass even one span in some still longer time. Such events I find very hard to accommodate in my imagination, when our senses show us that a heavy body in falling arrives immediately at a very great speed.

Salv. This is one of the difficulties that gave me pause at the outset; but not long afterward I removed it, and its removal was effected by the same experience that presently sustains it for you.

Force of which

200

You say that it appears to you that experience shows the heavy body, having hardly left from rest, entering into a very considerable speed; and I say that this same experience makes it clear to us that the first impetuses of the falling body, however heavy it may be, are very slow indeed. Place a heavy body on some yielding material, and leave it until it has pressed as much as it can with its mere weight. It is obvious that if you now raise it one or two braccia, and then let it fall on the same material, it will make a new pressure on impact, greater than it made by its weight alone. This effect will be caused by the falling moveable in conjunction with the speed gained in fall, and will be greater and greater according as the height is greater from which the impact is made; that is, according as the speed of the striking body is greater. The amount of speed of a falling body, then, we can estimate without error from the quality and quantity of its impact. But tell me, gentlemen: if you let a sledge fall on a pole from

a height of four braccia, and it drives this, say, four inches into the ground, and will drive it much less from a height of two braccia, and still less from a height of one, and less yet from a span only; if finally it is raised but a single inch, how much more will it accomplish than if it were placed on top [of the pole] without striking it at all? Certainly very little. And its effect would be quite imperceptible if it were lifted only the thickness of a leaf. Now, since the effect of impact is governed by the speed of a given percussent, who can doubt that its motion is very slow and minimal when its action is imperceptible? You now see how great is the force of truth, when the same experience that seemed to prove one thing at first glance

assures us of the contrary when it is better considered.

But without restricting ourselves to this experience, though no doubt it is quite conclusive, it seems to me not difficult to penetrate this truth by simple reasoning. We have a heavy stone, held in the air at rest. It is freed from support and set at liberty; being heavier than air, it goes falling downward, not with uniform motion, but slowly at first and continually accelerated thereafter. Now, since speed may be increased or diminished in infinitum, what argument can persuade me that this moveable, departing from infinite slowness (which is rest), enters immediately into a speed of ten degrees rather than into one of four, or into the latter before a speed of two, or one, or one-half, or one one-hundredth? Or, in short, into all the lesser [degrees] in infinitum?

Please hear me out. I believe you would not hesitate to grant me that the acquisition of degrees of speed by the stone falling from the state of rest may occur in the same order as the diminution and loss of those same degrees when, driven by impelling force, the stone is hurled upward to the same height. But if that is so, I do not see how it can be supposed that in the diminution of speed in the ascending stone, consuming the whole speed, the stone can arrive at rest before passing through every degree of slowness.

Simp. But if the degrees of greater and greater tardity are infinite, it will never consume them all, and this rising heavy body will never come to rest, but will move forever while always slowing down—something that is not seen to happen.

Salv. This would be so, Simplicio, if the moveable were to hold itself for any time in each degree; but it merely passes there, without remaining beyond an instant. And since in any finite time [tempo quanto], however small, there are infinitely many instants, there are enough to correspond to the infinitely many degrees of diminished speed. It is obvious that this rising heavy body does not persist for any finite time in any one degree of speed, for if any finite time is assigned, and if the moveable had the same degree of speed at the first instant of that time and also at the last, then it could likewise be driven upward with this latter degree [of speed] through as much space [again], just as it was carried from the first [instant] to the second; and at the same rate it would pass from the second to a third, and finally, it would continue its uniform motion in infinitum.

Sagr. From this reasoning, it seems to me that a very appropriate answer can be deduced for the question agitated among philosophers as to the possible cause of acceleration of the natural motion of heavy bodies. For let us consider that in the heavy body hurled upwards, the force [virtia] impressed upon it by the thrower is continually diminishing, and that this is the force that drives it upward as long as this remains greater than the contrary force of its heaviness; then when these two [forces] reach equilibrium, the moveable stops rising and passes through a state of rest. Here the impressed impetus is [still] not annihilated, but merely that excess has been consumed that it previously had over the heaviness of the moveable, by which [excess] it prevailed over this [heaviness] and drove [the body] upward. The diminutions of this alien impetus then continuing, and in consequence the advantage

201

nor ratio

19 force 15 grands where

passing over to the side of the heaviness, descent commences, though slowly because of the opposition of the impressed force, a good part of which still remains in the moveable. And since this continues to diminish, and comes to be overpowered in ever-greater ratio by the heaviness, the continual acceleration of the motion arises therefrom.¹¹

Simp. The idea is clever, but more subtle than sound; for if it were valid, it would explain only those natural motions which had been preceded by violent motion, in which some part of the external impetus still remained alive. But where there is no such residue, and the moveable leaves from long-standing rest, the whole argument loses its force.

Sagr. I believe you are mistaken, and that the distinction of cases made by you is superfluous, or rather, is idle. For tell me: can the thrower impress on the projectile sometimes much force, and sometimes little, so that it may be driven upward a hundred braccia, or twenty, or four, or only one?

202 Simp. No doubt he can.

Sagr. No less will the force impressed be able to overcome the resistance of heaviness by so little that it would not raise [the body] more than an inch. And finally, the force of projection may be so small as just to equal the resistance of the heaviness, so that the moveable is not thrown upward, but merely sustained. Thus, when you support a rock in your hand. what else are you doing but impressing on it just as much of that upward impelling force as equals the power of its heaviness to draw it downward? And do you not continue this force of yours, keeping it impressed through the whole time that you support [the rock | in your hand? Does the force perhaps diminish during the length of time that you support the rock? Now, as to this sustaining that prevents the fall of the rock, what difference does it make whether it comes from your hand, or a table, or a rope tied to it? None whatever, You must conclude, then, Simplicio, that it makes no difference at all whether the fall of the rock is preceded by a long rest, or a short one, or one only momentary, and that the rock always starts with just as much of the force contrary to its heaviness as was needed to hold it at rest.

Salv. The present does not seem to me to be an opportune time to enter into the investigation of the cause of the accel-

^{11.} What Sagredo presents here was Galileo's own first approach to the question of natural acceleration by seeking its cause; cf. On Motion, pp. 89-91 (Opere, I, 319-20) and note 12, below.

eration of natural motion, concerning which various philosophers have produced various opinions, some of them reducing this to approach to the center; others to the presence of successively less parts of the medium (remaining) to be divided; and others to a certain extrusion by the surrounding medium which, in rejoining itself behind the moveable, goes pressing and continually pushing it out. Such fantasies, and others like them, would have to be examined and resolved, with little gain. For the present, it suffices our Author that we understand him to want us to investigate and demonstrate some attributes [passiones] of a motion so accelerated (whatever be the cause of its acceleration) that the momenta of its speed go increasing, after its departure from rest, in that simple ratio with which the continuation of time increases, which is the same as to say that in equal times, equal additions of speed are made. And if it shall be found that the events that then shall have been demonstrated are verified in the motion of naturally falling and accelerated heavy bodies,12 we may deem that the definition assumed includes that motion of heavy things, and that it is true that their acceleration goes increasing as the time and the duration of motion increases.

Sagr. By what I now picture to myself in my mind, it appears to me that this could perhaps be defined with greater clarity, without varying the concept, [as follows]: Uniformly accelerated motion is that in which the speed goes increasing according to the increase of space traversed. Thus for example, the degree of speed acquired by the moveable in the descent of four braccia would be double that which it had after falling through the space of two, and this would be the double of that resulting in the space of the first braccio. For there seems to me to be no doubt that the heavy body coming from a height of six braccia has, and strikes with, double the impetus that it would have from falling three braccia, and triple that which it would have from two, and six times that had in the space of one. ¹³

Salv. It is very comforting to have had such a companion in

^{12.} Note the similarity to the statement of Hertz cited in the Introduction. Rejection of causal inquiries was Galileo's most revolutionary proposal in physics, inasmuch as the traditional goal of that science was the determination of causes.

^{13.} It is true that impact is proportional to the height of fall, but this does not apply to the speed acquired, as Sagredo assumes; cf. note 17, below. Galileo had made this assumption in 1604, in effect using it to define "velocity" physically (Opere, X, 115; VIII, 373).

204

error, and I can tell you that your reasoning has in it so much of the plausible and probable, that our Author himself did not deny to me, when I proposed it to him, that he had labored for some time under the same fallacy. But what made me marvel then was to see revealed, in a few simple words, to be not only false but impossible, two propositions which are so plausible that I have propounded them to many people, and have not found one who did not freely concede them to me.

Simp. Truly, I should be one of those who concede them. That the falling heavy body vires acquirat eundo [acquires force in going], 14 the speed increasing in the ratio of the space, while the momentum of the same percussent is double when it comes from double height, appear to me as propositions to be

granted without repugnance or controversy.

Salv. And yet they are as false and impossible as [it is] that motion should be made instantaneously, and here is a very clear proof of it. When speeds have the same ratio as the spaces passed or to be passed, those spaces come to be passed in equal times; 15 if therefore the speeds with which the falling body passed the space of four braccia were the doubles of the speeds 16 with which it passed the first two braccia, as one space is double the other space, then the times of those passages are equal; but for the same moveable to pass the four braccia and the two in the same time cannot take place except in instantaneous motion. But we see that the falling heavy body makes its motion in time, and passes the two braccia in less [time] than the four; therefore it is false that its speed increases as the space.

The other proposition is shown to be false with the same clarity. For that which strikes being the same body, the difference and momenta of the impacts must be determined only by the difference of the speeds;¹⁷ if therefore the per-

14. Virgil, Aeneid iv.175, where the reference is to rumor.

15. Cf. Prop. II and notes 3, 5, above. The ensuing argument may be an application of this rule to instantaneous velocities, whereas it had previously been proved only for finite motions.

16. The plurals are essential to Galileo's concept, which is that of establishing a one-to-one correspondence between all possible speeds in the whole motion and all possible speeds in the first half of it. For speeds proportional to distances, this leads to a contradiction of experience, though for speeds proportional to time it does not.

17. If "determined by" means "proportional to," this inference is incorrect, since impact is proportional not to velocity but to its square; cf. note 13, above. Fall through doubled height does in fact double the impact, but this results from speed increased as the square root of two, and not from doubled speed. Galileo appears here to believe the apparent doubling of impact

cussent coming from a double height delivers a blow of double momentum, it must strike with double speed; but double speed passes the double space in the same time, and we see the time of descent to be longer from the greater height. 18

Sagr. Too evident and too easy is this [reasoning] with which you make hidden conclusions manifest. This great facility renders the conclusions less prized than when they were under seeming contradiction. I think that people generally will little esteem ideas gained with so little trouble, in comparison with those over which long and unresolvable altercations are waged.

Salv. Things would not be so bad if men who show with great brevity and clarity the fallacies of propositions that have commonly been held to be true by people in general received only such bearable injury as scorn in place of thanks. What is truly unpleasant and annoying is a certain other attitude that some people habitually take. Claiming, in the same studies, at least parity with anyone that exists, these men see that the conclusions they have been putting forth as true are later exposed by someone else, and shown to be false by short and easy reasoning. I shall not call their reaction envy, which then usually transforms itself into rage and hatred against those who reveal such fallacies, but I do say that they are goaded by a desire to maintain inveterate errors rather than to permit newly discovered truths to be accepted. This desire sometimes induces them to write in contradiction to those truths of which they themselves are only too aware in their own hearts, merely to keep down the reputations of other men in the estimation of the common herd of little understanding. I have heard from our Academician not a few such false conclusions, accepted as true and [yet] easy to refute; and I have kept a record of some of these.

Sagr. And you must not keep them from us, but must share them with us some time, even if we need a special session for the purpose. But now, taking up our thread again, it seems to me that we have at this point fixed the definition of uniformly accelerated motion, of which we shall treat in the ensuing discussion; and it is this:

205

to be illusory; cf. note 18, below.

^{18.} The logical conclusion here is that the blow delivered is not one of doubled momentum, since it cannot be of doubled speed (denial of consequent). The argument is so elliptical as to suggest a confusion of terminal speed with overall speed, which in the context is improbable. More likely, Galileo expected the reader to review the preceding argument in full.

[DEFINITION]

We shall call that motion equably or uniformly accelerated which, abandoning rest, adds on to itself equal momenta of swiftness in equal times.

Salv. This definition established, the Author requires and takes as true one single assumption; that is:

[POSTULATE]

I assume that the degrees of speed acquired by the same moveable over different inclinations of planes are equal whenever the heights of those planes are equal. 19

He calls the "height" of an inclined plane that vertical from the upper end of the plane which falls on the horizontal line extended through the lower end of the said inclined plane. For an understanding of this, take line AB parallel to the horizon, upon which are the two inclined planes CA and CD; the vertical CB, falling to the horizontal BA, is called by the Author the height [or altitude, or elevation] of planes CA and CD. Here he assumes that the degrees of speed of the same moveable, descending along the inclined planes CA and CD to points A and D, are equal, because their height is the same CB; and the like is also to be understood of the degree of speed that the same body falling from the point C would have at B.

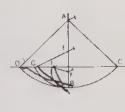
Sagr. This assumption truly seems to me to be so probable as to be granted without argument, supposing always that all accidental and external impediments are removed, and that the planes are quite solid and smooth, and that the moveable is of perfectly round shape, so that both plane and moveable alike have no roughness. With all obstacles and impediments removed, my good sense [il lume naturale] tells me without difficulty that a heavy and perfectly round ball, descending along the lines CA, CD, and CB, would arrive at the terminal points A, D, and B with equal impetus.

Salv. You reason from good probability. But apart from mere plausibility. I wish to increase the probability so much by an experiment that it will fall little short of equality with necessary demonstration. Imagine this page to be a vertical wall, and that from a nail driven into it, a lead ball of one or two ounces hangs vertically, suspended by a fine thread

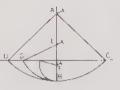
^{19.} An attempted demonstration of this postulate was added at Galileo's request to editions after 1638, and was placed immediately before Prop. III, below, for reasons explained in note 26, below.

two or three braccia in length, AB. Draw on the wall a horizontal line DC, cutting at right angles the vertical AB, which hangs a couple of inches out from the wall; then, moving the thread AB with its ball to AC, set the ball free. It will be seen first to descend, describing the arc CB, and then to pass the point B, running along the arc BD and rising almost up to the parallel marked CD, falling short of this by a very small interval and being prevented from arriving there exactly by the impediment of the air and the thread.20 From this we can truthfully conclude that the impetus acquired by the ball at point B in descent through are CB was sufficient to drive it back up again to the same height through a similar arc BD. Having made and repeated this experiment several times, let us fix in the wall along the vertical AB, as at E or F. a nail extending out several inches, so that the thread AC, moving as before to carry the ball C through the arc CB, is stopped when it comes to B by this nail, E, and is constrained to travel along the circumference BG, described about the center E. We shall see from this that the same impetus can be made that, when reached at B before, drove this same moveable through the arc BD to the height of horizontal CD, but now, gentlemen, you will be pleased to see that the ball is conducted to the horizontal at point G. And the same thing happens if the nail is placed lower down, as at F, whence the ball will describe the arc BI, ending its rise always precisely at the same line, CD. If the interfering nail is so low that the thread advancing under it could not get up to the height CD, as would happen when the nail was closer to point B than to the intersection of AB with the horizontal CD, then the thread will ride on the nail and wind itself around it.

This experiment leaves no room for doubt as to the truth of our assumption, for the two arcs CB and DB being equal and similarly situated, the acquisition of momentum made by descent through the arc CB is the same as that made by descent through the arc DB; but the momentum acquired at B through arc CB is able to drive the same moveable back up through arc BD, whence also the momentum acquired in the descent DB is equal to that which drives the same moveable through the same arc from B to D. So that in general, every momentum acquired by descent through an arc equals one which can make



^{20.} Mention of the thread shows that Galileo continued to adhere to his belief that even in the absence of any medium, a flexible pendulum would eventually stop; see *Dialogue*, pp. 230-31 (*Opere*, VII, 257).



the same moveable rise through that same arc; and all the momenta that make it rise through all the arcs BD, BG, and BI are equal, because they are created by the same momentum acquired through the descent CB, as experiment shows. Hence all the momenta acquired through descents along arcs DB, GB, and IB are equal.

Sagr. The argument appears to me conclusive, and the experiment is so well adapted to verify the postulate that it may very well be worthy of being conceded as if it had been proved.

Salv. I do not want any of us to assume more than need be, Sagredo; especially because we are going to make use of this assumption chiefly in motions made along straight surfaces. and not curved ones, in which acceleration proceeds by degrees very different from those that we assume it to take when it proceeds in straight lines.21 The experiment adduced thus shows us that descent through arc CB confers such momentum on the moveable as to reconduct it to the same height along any of the arcs BD, BG, or BI. But we cannot show on this evidence that the same would happen when levenl a most perfect sphere is to descend along straight planes inclined according to the tilt of the chords of those arcs. Indeed, we may believe that since straight planes would form angles at point B, a ball that had descended along the incline through the chord CB would encounter obstruction from planes ascending according to chords BD, BG, or BI; and in striking against those, it would lose some of its impetus, so that in rising it could not get back to the height of line CD. But if the obstacle that prejudices this experiment were removed, it seems to me that the mind understands that the impetus, which in fact takes [its] strength from the amount of the drop, would be able to carry the moveable back up to the same height.

Hence let us take this for the present as a postulate, of which the absolute truth will be later established for us by our seeing that other conclusions, built on this hypothesis, do indeed correspond with and exactly conform to experience.²²

^{21.} Galileo had known this as early as 1602 from the fact that a body descends more swiftly along conjugate chords of a circular arc than along its chord, though the latter path is the shorter (*Opere*, X, 100). Cf. the scholium to Prop. XXXVI, below, and note 48.

^{22.} The reference here is not to the attempted demonstration preceding Theorem III, below, which was composed later (notes 19, above, 26, 27, below). The certainty referred to here derives from observed agreements

This postulate alone having been assumed by the Author, he passes on to the propositions, proving their demonstratively; and the first is this:

PROPOSITION I. THEOREM I

The time in which a certain space is traversed by a moveable in uniformly accelerated movement from rest is equal to the time in which the same space would be traversed by the same moveable carried in uniform motion whose degree of speed is one-half the maximum and final degree of speed of the previous, uniformly accelerated, motion.²³

Let line AB represent the time in which the space CD is traversed by a moveable in uniformly accelerated movement from rest at C. Let EB, drawn in any way upon AB, represent the maximum and final degree of speed increased in the instants of the time AB. All the lines reaching AE from single points of the line AB and drawn parallel to BE will represent the increasing degrees of speed after the instant A. Next, I bisect BE at F, and I draw FG and AG parallel to BA and BF; the parallelogram AGFB will [thus] be constructed, equal to the triangle AEB, its side GF bisecting AE at I.

Now if the parallels in triangle AEB are extended as far as IG, we shall have the aggregate of all parallels contained in the the quadrilateral equal to the aggregate of those included in triangle AEB, for those in triangle IEF are matched by those contained in triangle GIA, while those which are in the trapezium AIFB are common. Since each instant and all instants of time AB correspond to each point and all points of line AB, from which points the parallels drawn and included within triangle AEB represent increasing degrees of the increased speed, while the parallels contained within the parallelogram represent in the same way just as many degrees of speed not increased but

in accordance with the Hertzian principle cited in the Introduction; cf. also notes 8, 9, 12, above, and note 25, below.

^{23.} Characteristic of Galileo's concern with actual events (note 8, above) is his utilization of one-half the terminal speed, which could be measured by observing horizontally deflected bodies. Medieval writers assumed an ideal mean-speed to measure every uniformly accelerated motion directly. Galileo's proof matched elements in two infinite aggregates for each instant and all instants, conceiving that in uniform motion there is not one single speed but infinitely many, all equal, and corresponding to the infinitely many speeds, all different, in accelerated motion.

equable, it appears that there are just as many momenta of speed consumed in the accelerated motion according to the increasing parallels of triangle AEB, as in the equable motion according to the parallels of the parallelogram GB. For the deficit of momenta in the first half of the accelerated motion (the momenta represented by the parallels in triangle AGI falling short) is made up by the momenta represented by the parallels of triangle IEF.

It is therefore evident that equal spaces will be run through in the same time by two moveables, of which one is moved with a motion uniformly accelerated from rest, and the other with equable motion having a momentum one-half the momentum of the maximum speed of the accelerated motion; which was [the proposition] intended.

PROPOSITION II. THEOREM II

If a moveable descends from rest in uniformly accelerated motion, the spaces run through in any times whatever are to each other as the duplicate ratio of their times; that is, are as the squares of those times.

Let the flow of time from some first instant A be represented by the line AB, in which let there be taken any two times, AD and AE. Let HI be the line in which the uniformly accelerated moveable descends from point H as the first beginning of motion; let space HL be run through in the first time AD, and HM be the space through which it descends in time AE. I say that space MH is to space HL in the duplicate ratio of time EA to time AD. Or let us say that spaces MH and HL have the same ratio as do the squares of EA and AD.

Draw line AC at any angle with AB. Fom points D and E draw the parallels DO and EP, of which DO will represent the maximum degree of speed acquired at instant D of time AD, and PE the maximum degree of speed acquired at instant E of time AE. Since it was demonstrated above that as to spaces run through, those are equal to one another of which one is traversed by a moveable in uniformly accelerated motion from rest, and the other is traversed in the same time by a moveable carried in equable motion whose speed is one-half the maximum acquired in the accelerated motion, it follows that spaces MH and LH are the same that would be traversed in times EA and DA in equable motions whose speeds are as the halves of PE and OD. Therefore if it is shown that these spaces MH and LH are in the duplicate ratio of the times EA and DA, what is intended will be proved.

Now in Proposition IV of Book I ["On Uniform Motion." above] it was demonstrated that the spaces run through by moveables carried in equable motion have to one another the ratio compounded from the ratio of speeds and from the ratio of times. Here, indeed, the ratio of speeds is the same as the ratio of times since the ratio of one-half PF to one half OD, or of PE to OD, is that of AF to AD. Hence the ratio of spaces run through is the duplicate ratio of the times; which was to be demonstrated.

It also follows from this that this same ratio of spaces is the duplicate ratio of the maximum degrees of speed; that is, of lines PE and OD, since PE is to OD as EA is to DA.

COROLLARY 1

From this it is manifest that if there are any number of equal times taken successively from the first instant or beginning of motion, say AD, DE, EF, and FG, in which spaces HL, LM, MN, and NI are traversed, then these spaces will be to one another as are the odd numbers from unity, that is, as 1, 3, 5, 7; but this is the rule [ratio] for excesses of squares of lines equally exceeding one another [and] whose [common] excess is equal to the least of the same lines, or, let us say, of the squares successively from unity. Thus when the degrees of speed are increased in equal times according to the simple series of natural numbers, the spaces run through in the same times undergo increases according with the series of odd numbers from unity.

Sagr. Please suspend the reading for a bit, while I develop a fancy that has come to my mind about a certain conception. To explain this, and for my own as well as for your clearer understanding. I'll draw a little diagram. I imagine by this line AI the progress of time after the first instant at A; and going from A at any angle you wish, I draw the straight line AF. And joining points I and F, I divide the time AI at the middle in C, and I draw CB parallel to IF, taking CB to be the maximum degree of the speed which, commencing from rest at A, grows according to the increase of the parallels to BC extended in triangle ABC; which is the same as to increase [according] as the time increases.

I assume without argument, from the discussion up to this point, that the space passed by the moveable falling with its speed increased in the said way is equal to the space that would AE: A DecompAt)

AE! AD Comptte;

168

211

212



be passed by the same moveable if it were moved during the same time AC in uniform motion whose degree of speed was equal to EC, one-half of BC. I now go on to imagine the moveable [to have] descended with accelerated motion and to be found at instant C to have the degree of speed BC. It is manifest that if it continued to be moved with the same degree of speed BC, without accelerating further, then in the ensuing time CI it would pass a space double that which it passed in the equal time AC with degree of uniform speed EC, one-half the degree BC.24 But since the moveable descends with speed always uniformly increased in all equal times, it will add to the degree CB, in the ensuing time CI, those same momenta of speed growing according to the parallels of triangle BFG, equal to triangle ABC; so that to the degree of speed GI there being added one-half the degree FG, the maximum of those [speeds] acquired in the accelerated motion governed by the parallels of triangle BFG, we shall have the degree of speed IN. with which it would be moved with uniform motion during time CI. That degree IN is triple the degree EC convinces [us] that the space passed in the second time CI must be triple that [which was] passed in the first time CA.

And if we assume added to AI a further equal part of time IO, and enlarge the triangle out to APO, then it is manifest that if the motion continued through the whole time IO with the degree of speed IF acquired in the accelerated motion during time AI, this degree IF being quadruple EC, the space passed in time IO would be quadruple that passed in the first equal time AC. Continuing the growth of uniform acceleration in triangle FPQ, similar to that of triangle ABC which, reduced to equable motion, adds the degree equal to EC, and adding QR equal to EC, we shall have the entire equable speed exercised over time IO quintuple the equable [speed] of the first time AC; and hence the space passed [will be] quintuple that [which was] passed in the first time AC.

Thus you see also, in this simple calculation, that the spaces passed in equal times by a moveable which, parting from rest, acquires speed in agreement with the growth of time, are to one another as the odd numbers from unity, 1, 3, 5; and taking jointly the spaces passed, that which is passed in double the time is four times that passed in the half [i.e., in the given time].

24. This "double-distance" rule was in fact not found by Galileo until after his odd-number rule, so that here the order of presentation follows his order of discovery. Cf. scholium to Prop. XXIII, below, and Prop. XXV.

and that passed in triple the time is nine times [as great.] And in short, the spaces passed are in the duplicate ratio of the times; that is, are as the squares of those times.

Simp. Really I have taken more pleasure from this simple and clear reasoning of Sagredo's than from the (for me) more obscure demonstration of the Author, so that I am better able to see why the matter must proceed in this way, once the definition of uniformly accelerated motion has been postulated and accepted. But I am still doubtful whether this is the acceleration employed by nature in the motion of her falling heavy bodies. Hence, for my understanding and for that of other people like me, I think that it would be suitable at this place [for you] to adduce some experiment from those (of which you have said that there are many) that agree in various cases with the demonstrated conclusions.

Salv. Like a true scientist, you make a very reasonable demand, for this is usual and necessary in those sciences which apply mathematical demonstrations to physical conclusions, as may be seen among writers on optics, astronomers, mechanics, musicians, and others who confirm their principles with sensory experiences, those being foundations of all the resulting structure. I do not want to have it appear a waste of time [superfluo] on our part, [as] if we had reasoned at excessive length about this first and chief foundation upon which rests an immense framework of infinitely many conclusions -of which we have only a tiny part put down in this book by the Author, who will have gone far to open the entrance and portal that has until now been closed to speculative minds. Therefore as to the experiments: the Author has not failed to make them, and in order to be assured that the acceleration of heavy bodies falling naturally does follow the ratio expounded above, I have often made the test [prova] in the following manner, and in his company.

In a wooden beam or rafter about twelve braccia long, half a braccio wide, and three inches thick, a channel was rabbeted in along the narrowest dimension, a little over an inch wide and made very straight; so that this would be clean and smooth, there was glued within it a piece of vellum, as much smoothed and cleaned as possible. In this there was made to descend a very hard bronze ball, well rounded and polished, the beam having been tilted by elevating one end of it above the horizontal plane from one to two braccia, at will. As I said, the ball was allowed to descend along [per] the

said groove, and we noted (in the manner I shall presently tell you) the time that it consumed in running all the way, repeating the same process many times, in order to be quite sure as to the amount of time, in which we never found a difference of even the tenth part of a pulse-beat.²⁵

This operation being precisely established, we made the same ball descend only one-quarter the length of this channel, and the time of its descent being measured, this was found always to be precisely one-half the other. Next making the experiment for other lengths, examining now the time for the whole length [in comparison] with the time of one-half, or with that of two-thirds, or of three-quarters, and finally with any other divison, by experiments repeated a full hundred times, the spaces were always found to be to one another as the squares of the times. And this [held] for all inclinations of the plane; that is, of the channel in which the ball was made to descend, where we observed also that the times of descent for diverse inclinations maintained among themselves accurately that ratio that we shall find later assigned and demonstrated by our Author.

As to the measure of time, we had a large pail filled with water and fastened from above, which had a slender tube affixed to its bottom, through which a narrow thread of water ran; this was received in a little beaker during the entire time that the ball descended along the channel or parts of it. The little amounts of water collected in this way were weighed from time to time on a delicate balance, the differences and ratios of the weights giving us the differences and ratios of the times, and with such precision that, as I have said, these operations repeated time and again never differed by any notable amount.

Simp. It would have given me great satisfaction to have been present at these experiments. But being certain of your diligence in making them and your fidelity in relating them, I am content to assume them as most certain and true.

Salv. Then we may resume our reading, and proceed.

214

COROLLARY II

It is deduced, second, that if at the beginning of motion

25. Actual results obtained by procedures similar to Galileo's vindicate his claim as to their reliability. His manuscript records of another type of inclined plane experiment show him to have obtained results within one percent of modern theoretical values.

15 5X. 3

there are taken any two spaces whatever, run through in any [two] times, the times will be to each other as either of these two spaces is to the mean proportional space between the two given spaces.

From the beginning of motion, S, take two spaces, ST and SW of which the mean proportional shall be SX; the time of fall through ST will be to the time of fall through SV as ST is to SX; or let us say that the time through SV is to the time through ST as VS is to SX. Since it has been demonstrated that the spaces run through are in the duplicate ratio of the times (or what is the same thing, are as the squares of the times), the ratio of space VS to space ST is the doubled ratio of VS to SX, or is the same as that of the squares of VS and SX. It follows that the ratio of times of motion through SV and ST are as the spaces. or the lines, VS and SX. VIT : 13:MP

SCHOLIUM

What we have demonstrated for movements run through along verticals is to be understood also to apply to planes. however inclined; for these, it is indeed assumed that the degree of increased speed [accelerationis] grows in the same ratio; that is, according to the increase of time, or let us say according to the series of natural numbers from unity. 26

Salv. Here, Sagredo, I want permission to defer the present reading for a time, though perhaps I shall bore Simplicio, in order that I may explain further what has been said and proved up to this point. At the same time it occurs to me that, by telling you of some mechanical conclusions reached long ago by our Academician, I can add new confirmation of the truth of that principle which has already been examined by us with probable reasonings and by experiments. More important, this will be geometrically proved after the prior demonstration of a single lemma that is elementary in the study of impetuses.

Sagr. When you promise such gains, there is no amount of time I should not willingly spend in trying to confirm and completely establish these sciences of motion. For my part, I not only grant permission to you to satisfy us on this matter, but I even beg you to allay as swiftly as possible the curiosity you have aroused in me. I think Simplicio feels the same way about this.

26. The ensuing section was added later (note 19, above) without disturbing the original text order. Dictated by the blind Galileo about October 1638 and revised in November 1639, it was put into dialogue form by Viviani and inserted in the 1655 edition. It was placed at this point rather than with the earlier statement of the postulate because it requires prior demonstration of Prop. II, in which the postulate was not used.

[215]

Simp. How can I say otherwise?

Salv. Then, since you give me leave, consider it in the first place as a well-known effect that the momenta or speeds of the same moveable are different on diverse inclined planes, and that the greatest [speed] is along the vertical. The speed diminishes along other inclines according as they depart more from the vertical and are more obliquely tilted. Whence the impetus, power [talento], energy, or let us say momentum of descent, comes to be reduced in the underlying plane on which the moveable is supported and descends.

The better to explain this, let the line AB be assumed to be erected vertically on the horizontal AC, and then let it be tilted at different inclinations with respect to the horizontal, as at AD, AE, AF, etc. I say that the impetus of the heavy body for descending is maximal and total along the vertical BA, is less than that along DA, still less along EA, successively diminishes along the more inclined FA, and is finally completely extinguished on the horizontal CA, where the moveable is found to be indifferent to motion and to rest, and has in itself no inclination to move in any direction, nor yet any resistance to being moved. Thus it is impossible that a heavy body (or combination thereof) should naturally move upward, departing from the common center toward which all heavy bodies mutually converge [conspirano]; and hence it is impossible that these be moved spontaneously except with that motion by which their own center of gravity approaches the said common center.27 Whence, on the horizontal, which here means a surface [everywhere] equidistant from the said [common] center, and therefore quite devoid of tilt, the impetus or momentum of the moveable will be null.

[216]

This change of impetus assumed, I must next explain something that our Academician, in an old treatise on mechanics written at Padua for the use of his pupils, 28 demonstrated at length and conclusively in connection with his treatment of the origin and character of that marvelous instrument, the screw; namely, the ratio in which this change of impetus along planes of different inclinations takes place. Given the inclined plane AF, for example, and taking as its elevation above the horizontal the line FC, along which the impetus of a heavy body and its momentum in descent is maximum, we seek the ratio that this momentum has to the momentum of the same moveable along the incline FA, which ratio, I say, is inverse to that of the said

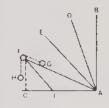
^{27.} This conception became a fundamental principle in Torricelli's continuation of Galileo's work; cf. E. Torricelli, *Opere* (Faenza, 1919), II, 105 ff. Comparison with Galileo's dictated text (note 26, above) suggests that this sentence was interpolated by Viviani when he put the argument in dialogue form.

^{28.} Galileo's treatise On Mechanics was first published in a French translation by Marin Mersenne (1588-1648) in 1634. The original Italian, of which three manuscript forms exist (1593, 1594, and ca. 1600), was posthumously published in 1649.

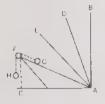
lengths. This is the lemma to be put before the theorem that I hope then to be able to demonstrate.

It is manifest that the impetus of descent of a heavy body is as great as the minimum resistance or force that suffices to fix it and hold it [at rest]. I shall use the heaviness of another moveable for that force and resistance, and [as] a measure thereof. Let the moveable G, then, be placed on plane FA, tied with a thread which rides over F and is attached to the weight H; and let us consider that the space of the vertical descent or rise of this [H] is always equal to the whole rise or descent of the other moveable, G, along the incline AF-not just to the vertical rise or fall, through which the moveable G (like any other moveable) exclusively exercises its resistance. That much is evident. For consider the motion of the moveable G in the triangle AFC (for example, upward from A to F) as composed of the horizontal transversal AC and the vertical CF. As before, there is no resistance to its being moved along the horizontal, since by means of such a motion no loss or gain whatever is made with regard to its distance from the common center of heavy things, that being conserved always the same on the horizontal [as defined above]. It follows that the resistance is only with respect to compulsion to go up the vertical CF. Hence the heavy body G, moving from A to F, resists in rising only the vertical space CF; but that other heavy body H must descend vertically as much as the whole space FA. And this ratio of ascent and descent remains always the same, being as little or as great as the motion of the said moveables by reason of their connection together. Thus we may assert and affirm that when equilibrium (that is, rest) is to prevail between two moveables, their [overall] speeds or their propensions to motion—that is, the spaces they would pass in the same time- must be inverse to their weights [gravità], exactly as is demonstrated in all cases of mechanical move-

Thus, in order to hinder the descent of G, it will suffice that H be as much lighter than G as the space CF is proportionately less than the space FA. Hence if the heavy body G is, to the heavy body H, as FA is to FC, equilibrium will follow; that is, the heavy bodies Hand G will be of equal moments, and the motion of these moveables will cease. Now, we have agreed that the impetus, energy, momentum, or propensity to motion of a moveable is as much as the minimum force or resistance that suffices to stop it; and it has been concluded that the heavy body H suffices to prohibit motion to the heavy body G; hence the lesser weight H, which excreises its total [static] moment in the vertical FC, will be the precise measure of the partial moment that the greater weight G exercises along the inclined plane FA. But the measure of the total moment of heavy body G is G itself, since to hinder the vertical descent of a heavy body, there is required the opposition of one equally heavy when both are free to move vertically. Therefore the partial impetus or momentum of G along the incline



[217]



218

FA will be, to the maximum and total impetus of G along the vertical FC, as the weight H is to the weight G, which is (by construction) as the vertical FC (the height of the incline) is to the incline FA itself.

This is what was proposed to be demonstrated as the lemma; and as we shall see, it is assumed by our Author as known in the second part of Proposition VI of the present treatise.

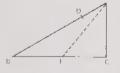
Sagr. It seems to me that from what you have concluded thus far, it can be easily deduced, arguing by perturbed equidistance of ratios, that the momenta of the same moveable along differently inclined planes having the same height, such as FA and FI, are in the inverse ratio of those same planes.

Salv. A true conclusion. This established, I go on next to demonstrate the theorem itself; that is:

[ADDED THEOREM]

The degrees of speed acquired by a moveable in descent with natural motion from the same height, along planes inclined in any way whatever, are equal upon their arrival at the horizontal, all impediments being removed.

Here you must first note that it has already been established that along any inclinations, the moveable upon its departure from rest increases its speed, or amount of impetus, in proportion to the time, in accordance with the definition given by the Author for naturally accelerated motion. Whence, as he has demonstrated in the last preceding proposition, the spaces passed are in the squared ratio of the times, and consequently of the degrees of speed. Whatever the [ratio of] impetuses at the beginning [nella prima mossa], that proportionality will hold for the degrees of the speeds gained during the same time, since both [impetuses and speeds] increase in the same ratio during the same time.



Now let the height of the inclined plane AB above the horizontal be the vertical AC, the horizontal being CB. Since, as we concluded earlier, the impetus of a moveable along the vertical AC is, to its impetus along the incline AB, as AB is to AC, [then] in the incline AB take AD as the third proportional of AB and AC; the impetus [to move] along AC is, to the impetus [to move] along AB (that is, [to move] along AD), as [AB] is to AC or as [AC] is to AD. Hence the moveable, in the same time that it passes the vertical space AC, would also pass the space AD along the incline AB (the momenta being as the spaces); and the degree of speed at C will have to the degree of speed at D the same ratio that AC has to AD. But the speed at B is to the speed at D as the time through AB is to the time through AD, by our definition of accelerated motion; and the time through AB is to the time through AD as AC (the mean proportional between BA and AD) is to AD, by the last corollary to Proposition II. Therefore the speeds at B and C [both] have to the speed at D the same ratio that AC has to AD, and hence [the speeds at B and C] are equal; which is the theorem intended to be demonstrated.

From this we may more conclusively prove the Author's ensuing Proposition III, in which he makes use of the [earlier] postulate; this [theorem] states that the time along the incline has to the time along the vertical the same ratio that the incline has to the vertical. So let us say: If BA is the time along AB, ²⁹ the time along AD will be the mean proportional between these [AB] and AD], that is, AC, by the second corollary to Proposition II. But if AC is the time along AD, it will also be the time along AC, since AD and AC are run through in equal times. And since if BA is the time along AB, AC will be the time along AC, then it follows that as AB is to AC, so is the time along AB to the time along AC.

By the same reasoning it will be proved that the time along AC is to the time along some other incline, AE, as AC is to AE; therefore, by equidistance of ratios, the time along incline AB is to the time along incline AE homologously as AB is to AE, etc.

As Sagredo will readily see [later], the Author's Proposition VI could be immediately proved from the same application of this theorem. But enough for now of this digression, which has perhaps turned out to be too tedious, though it is certainly profitable in these matters of motion.

Sagr. And not only greatly to my taste, but most essential to a complete understanding of that principle.

Salv. Then I shall resume the reading of the text.

PROPOSITION III. THEOREM III

If the same moveable is carried from rest on an inclined plane, and also along a vertical of the same height, the times of the movements will be to one another as the lengths of the plane and of the vertical.

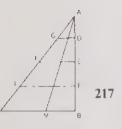
Let the inclined plane AC and the vertical AB each have the same altitude above the horizontal CB, that is, the line BA. I say that the time of descent along plane AC has, to the time of fall of the same moveable along the vertical AB, the same ratio that the length of plane AC has to the length of vertical AB. Assume any lines DG, El, and FL parallel to the horizontal CB; it follows from our postulate that the degrees of speed acquired by the moveable from the first beginning of motion, A, to the points G and D, are equal, since their approaches to the horizontal are equal; likewise, the speeds at points I and E are the same, as are

[219]

215



29. Galileo employs a single line to represent both distances and times frequently in the remaining propositions, using bisection for halving distances and mean proportionals for halving times, without further explanation; see, for example, Prop. XII, below, and see further at pp. 287-88.



Ment well 218

the speeds at L and F. Now, if not only these, but parallels from all points of the line AB are supposed drawn as far as line AC, the momenta or degrees of speed at both ends of each parallel are always matched with each other. Thus the two spaces AC and AB are traversed at the same degrees of speed. But it has been shown that if two spaces are traversed by a moveable which is carried at the same degrees of speed, then whatever ratio those spaces have, the times of motion have the same [ratio]. Therefore the time of motion through AC is to the time through AB as the length of plane AC is to the length of vertical AB; which was to be demonstrated.

Sagr. It appears to me that the same can be very clearly and briefly concluded, since it has already been shown that the overall [somma del] accelerated motion 31 of passage through AC (and AB) is that of the equable motion whose degree of speed is one-half the maximum degree, [at] CB. Therefore, the two spaces AC and AB being [considered as] passed with the same equable motion, it is manifest by Proposition I of Book I that the times of [these] passages will be as the spaces themselves.

[Salv. (resuming his reading):]

COROLLARY

From this it is deduced that the times of descent over differently inclined planes of the same height are to one another as their lengths. For if we suppose another plane AM from A, terminated at the same horizontal CB, it will be proved likewise that the time of descent through AM is to the time through AB as line AM is to AB; also, as the time AB is to the time through AC, so is line AB to AC; therefore, by equidistance of ratios, as AM is to AC, so is

30. The plural, "degrees of speed," shows that reference is not directly to Prop. I on uniform motion; rather, this appears to be an extension of that proposition to instantaneous speeds by reasoning similar to the argument used in rejecting proportionality of speeds to distances in free fall (p. 203 and note 15, above). Strictly speaking, the extension had not been "shown," though it follows easily from such an argument and the general definition of equal speeds as those in which proportional distances are traversed in proportional times; cf. Dialogue, p. 24 (Opere, VII, 48).

31. The notion of a "total" or "overall" motion employed here in

31. The notion of a "total" or "overall" motion employed here in reference to Theorem I, above, had been preceded in Galileo's thought by a notion of total or overall speed; see *Dialogue*, p. 229 (*Opere*, VII, 256). Traces of that earlier concept survive in the scholium to Prop. XXIII, below; see also note 20 to the Added Day on percussion, below.

the time through AM to the time through AC.

PROPOSITION IV. THEOREM IV

The times of motion over equal planes, unequally inclined, are to each other inversely as the square root of the ratio of the heights of those planes.

Let BA and BC be equal planes from the same terminus, B, but unequally inclined; and let horizontal lines AE and CD be drawn to the vertical BD, plane BA having height BE and plane BC height BD. And let BI be the mean proportional of these elevations DB and BE; it follows that the ratio of DB to BI is the square root of the ratio of DB to BE. I now say that the ratio of the times of descent or movement over planes BA and BC is the same as the inverse ratio of DB to BI; that is, the homologue of the time through BA is the height of the other plane, BC, which [height] is BD, and the homologue of the time through BC is BI. It is therefore to be demonstrated that the time through BA is to the time through BC as DB is to BI.

Draw IS parallel to DC; as already demonstrated, the time of descent through BA is to the time of fall through the vertical BE as BA is to BE, while the time through BE is to the time through BD as BE is to BI; and the time through BD is to the time through BC as BD is to BC, or BI to BS. Therefore, by equidistance of ratios, the time through BA will be to the time through BC as BA is to BS, or CB to BS, and also CB is to BS as DB is to BI; therefore the proposition holds.

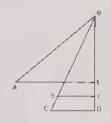
PROPOSITION V. THEOREM V

The ratio of times of descent over planes differing in incline and length, and of unequal heights, is compounded from the ratio of lengths of those planes and from the inverse ratio of the square roots of their heights.³²

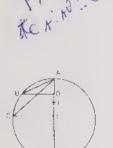
Let planes AB and C be differently inclined, of unequal lengths, and of unequal heights; I say that the ratio of the time of descent through AC to the time through AB is compounded from the ratio of AC to AB and from [the ratio of] the square roots of their heights taken inversely.

Draw the vertical AD, meeting the horizontals BG and CD, and let AL be the mean proportional between heights DA and AG. From point L draw a parallel to the horizontal, meeting

32. Mathematical functions of two variables had been similarly stated by Archimedes, using compound ratios; cf. Introduction, and note 9 to Second Day.



221 me ratio of t position holds.



plane AC at F; then AF will be the mean proportional between CA and AE. And since the time through AC is to the time through AF, as line FA is to AF, and the time through AE is to to the time through AB as AE is to AB, it follows that the time through AC is to the time through AB as AF is to AB. Thus it remains to be proved that the ratio of AF to AB is compounded from the ratio of CA to AB and from the ratio of GA to AL, which { latter } is the ratio of the square roots of heights DA and AG taken inversely. But this is also evident: if CA is taken with respect to FA and AB, the ratio of FA to AC is the same as the ratio of LA to AD, or GA to AL, which is the square root of the ratio of the heights GA and AD; and the ratio of CA to AB is the ratio of the [corresponding] lengths; therefore the pro-

PROPOSITION VI. THEOREM VI

If, from the highest or lowest point of a vertical circle, any inclined planes whatever are drawn to its circumference the times of descent through these will be not be that is, from diament. Let a circle be erect to the horizontal GH, and from its lowest point (that is, from its contact with the horizontal) let the diameter FA be erected. From the highest point, A, draw any inclined planes AB and AC out to the circumference: I say that the times of descent through these are equal.

> Draw BD and CE perpendicular to the diameter, and let AI be the mean proportional between the heights of the planes EA and AD. Since the rectangles FA AE and FA-AD are equal to the squares on AC and AB; and since also as rectangle FA AE is to rectangle FA-AD, so EA is to AD; then as square CA is to square AB, so line EA is to AD. But as line EA is to DA. so square IA is to square AD; hence the squares on lines CA and AB are to each other as the squares on lines IA and AD. Therefore as line CA is to AB, so IA is to AD, Now, it was demonstrated in the preceding [proposition] that the ratio of the time of descent through AC to the time of descent through AB is compounded from the ratios of CA to AB and of DA to Al, which [latter] is the same as the ratio of BA to AC; therefore the ratio of the time of descent through AC to the time of descent through AB is compounded from the ratios of CA to AB and of BA to AC. Therefore the ratio of their times is the ratio of equality33; hence the proposition holds.

^{33.} The "ratio of equality" (x : x) remained a ratio and was not taken to

222

The same is demonstrated another way from mechanics; that in the next diagram the moveable passes through CA and DA in equal times.

Let BA be equal to DA, and draw the verticals BF, and DF. From the elements of mechanics³⁴ it follows that the [static] moment of weight upon the plane elevated along line ABC is to the total moment [of that weight] as BE is to BA; and the similar moment of weight upon the incline AD is to its total moment as DF is to DA, or BA; therefore the moment of the same weight upon the plane inclined as DA, to its moment upon the incline ABC, is as line DF is to BE. Hence the spaces which the same weight passes through in equal times along the inclines CA and DA will be to each other as the lines BE and DF, by Proposition II of Book I.³⁵ It can indeed be demonstrated that as BE is to DF, so AC is to DA; therefore the same moveable passes through CA and DA in equal times.

That CA is to DA as BE is to DF is demonstrated thus: Join C and D, and through D and B, parallel to AF, draw DGL cutting CA at I, and [draw] BH; angle ADI will be equal to angle DCA, since they stand on the equal arcs LA and AD. Angle DAC is common to the similar triangles CAD and DAI; therefore the sides around equal angles in them will be proportional, and as CA is to AD, so DA is to AI; that is, BA is to AI, or HA to AG, which is [as] BE to DF; which was to be proved.

This is also, and more quickly, demonstrated thus: Let there be a vertical circle whose diameter CD is erect to the horizontal AB, and let there be any inclined plane DF from the highest point D to the circumference: I say that descent through plane DF and fall through the diameter DC will be finished [absolvi] in the same time by the same moveable.

Draw FG parallel to the horizontal AB, which will be per-

be a unit or magnitude as we take it to be; no ratio was identified with any single number.

^{34.} The proposition is found in Galileo's treatise On Mechanics, pp. 173-75 (Opere, II, 181-83), then unpublished in Italy (note 28, above). Here he speaks of the result as commonly known; it had been established during the Middle Ages. In the preceding paragraph, the word Mechanicis was capitalized, as if referring to a specific book, presumably Galileo's own, but here the phrase "elements of mechanics" is not capitalized, and no particular text seems to be meant.

^{35.} This rather inconclusive argument "from mechanics" belongs to an early stage of Galileo's work, and is found in very similar form in a manuscript written at Padua probably about 1607. The reference to Prop. II of Bk. I was added for this book; cf. note 5, above.

180

223

pendicular to the diameter DC; and join F and C. Since the time of fall through DC is to the time of fall through DG as the mean proportional between CD and DG is to DG; and since the mean proportional between CD and DG is DF; [and] since angle DFC is a right angle, being in a semicircle, and FG is perpendicular to DC, the time of fall through DC is to the time of fall through DG as line FD is to DG. But it was already demonstrated that the time of descent through DF is to the time of fall through DG as line DF is to DG. Therefore the times of descent through DF and of fall through DC [both] have the same ratio to the time of fall through DG, and hence they are equal. Likewise it may be proved that if from the lowest point C the chord CE is raised, EH being drawn parallel to the horizontal and E joined to D, the time of descent through EC will equal the time of fall through the diameter DC.

COROLLARY I

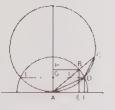
From this it is deduced that the times of descent through all chords drawn from the terminals C and D are equal to one another.

COROLLARY II

It is also deduced that if from the same point there descend a vertical and an inclined plane, over which descents are made in equal times, they are [inscribable] in a semicircle of which the diameter is the vertical.

COROLLARY III

From this it is deduced that the times of movements over inclined planes are equal when the heights of equal parts of those planes are to one another as the lengths of the planes themselves. For it has been shown that, in the penultimate diagram, the times through AC and AD are equal when the height of part AB (which equals AD), or BE, is to height DF as CA is to DA.



224

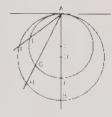
Sagr. Please put off reading what follows for a time, until I have resolved a certain idea that is now turning over in my mind. If it is not a fallacy, then it borders on a sprightly prank, as are all pranks of nature or necessity.

36. This was proved as Proposition III above, and is extended in Proposition X to cases in which fall begins not from rest, but from any attained speed. Further implications of the present theorem are developed in Proposition VIII and used later for minimum-time theorems such as Proposition XXX.

It is manifest that if, from a point marked in a horizontal plane, there were to be extended over that plane infinitely many straight lines, going in all directions, on each of which we imagine a point to move in equable motion, [and assuming that] all these points commence to move at the same instant of time from the designated point and that all their speeds are equal, these movable points would consequently mark out circumferences of ever-widening circles, all concentric around the original designated point. It is in just this way that we see little waves made in still water after a pebble has fallen into it from above, its impact serving to start motion in all directions and remaining as the center of all the circles that come to be made by these wavelets, ever larger and larger. But if we suppose a vertical plane in which some very high point is marked, from which are drawn infinitely many lines inclined in every direction; and upon these, we imagine heavy moveables descending, each with naturally accelerated motion at those speeds that suit the different slopes; then, supposing that these moveables are continually visible, in what sorts of lines would we see them continually arranged? This aroused my wonder when the preceding demonstrations assured me that they would all be seen ever in the same circumference of successively widening circles, in which the moveables would descend successively farther from the high point at which their fall began.

In order to explain myself better, I mark the high point A, from which lines AF and AH descend at whatever inclinations; and the vertical AB, in which points C and D are taken, around which are described circles passing through point A and cutting the inclined lines at points F, H, B, and E, G. I. It is evident from the preceding demonstrations that if moveables leave from terminus A at the same time and descend along these lines, then when one [moveable] is at E, another will be at G, and another at I; continuing to descend thus, they will [later] be found at the same instant of time at F. H, and B. And these, together with infinitely many more, continuing to move along the infinitely many different inclinations, will ever be found successively on the same circumferences, which become greater and greater I infinitum.

Thus from the two species of motion that nature employs, 37



^{37.} That is, the only entirely natural motions are uniform rectilinear motion and uniform acceleration, both of which are here made responsible for the production of circular effects. This passage throws light on Galileo's conception of inertia; cf. note 46, below.

there arises, with wonderfully corresponding diversity, the production of infinitely many circles. The first [generating motion] is situated at the center of infinitely many concentric circles, as its seat and originating principle; the second is located at the upper contact of infinitely many circumferences of circles, all of which are eccentric. The former are born from motions that are all equal and equable; the latter from motions always non-uniform within themselves, and each unequal to any of the rest that are carried out along infinitely many different inclinations.

But there is more. From the two points assigned for these emanations, let us imagine lines not only in two dimensions, horizontal and vertical, but in all directions, so that those which commenced at a single point and went to produce circles, from least to greatest, now commence from a single point and go to produce infinitely many spheres. Or let us say, one sphere might go amplifying itself into infinitely many magnitudes, and in two ways, by placing the origin of such spheres at the center, or else on the circumference.

Salv. The reflection is truly very beautiful, as befits the mind of Sagredo.

Simp. For my part, I can at least grasp this idea of the manner of production of circles and spheres by the two different natural motions, although I [still] do not completely understand some of the results that depend on accelerated motion, and some of its demonstrations. Yet since we can assign as the site of such emanations the lowest center, as well as the highest spherical surface, I believe that some great mystery may perhaps be contained in these true and admirable conclusions.—I mean a mystery that relates to the creation of the universe, which is supposed to be spherical in shape, and perhaps [relates] to the residence of the first cause.³⁸

Salv. I feel no repugnance to that same belief. But such profound contemplations belong to doctrines much higher than ours, and we must be content to remain the less worthy artificers who discover and extract from quarries that marble in which industrious sculptors later cause marvelous figures

^{38.} Simplicio speaks for those philosophers who admire mathematics but cannot quite follow its proofs. After Simplicio has thus deduced the First Cause from Sagredo's geometrical tour de force, Salviati, probably speaking for the physicist Galileo, replies sympathetically but claims no more than to have supplied raw material for those men of higher intelligence who create metaphysics and theology.

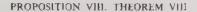
to appear that were lying hidden under those rough and formless exteriors.

Now, with your permission, we shall proceed.

PROPOSITION VII. THEOREM VII

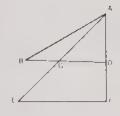
If the heights of two planes have the squared ratio of their lengths, movements along these from rest will be made in equal times.

Let the planes AE and AB be unequal and unequally inclined, having the heights FA and DA; and whatever ratio AE has to AB, let FA to DA have the square of that [ratio]; I say that the times of movements are equal from rest at A along planes AE and AB. Draw horizontal parallels EF and DB to the line of heights [AF]; DB cuts AE at G. Since the ratio of FA to AD is the square of the ratio of EA to AB, and EA is to AG as FA is to AD, the ratio of EA to AG is the square of the ratio of EA to AB. Hence AB is the mean proportional between EA and AG. And since the time of descent through AB is to the time through AG as AB is to AG, and the time of descent through AG is, to the time through AE, as AG is to the mean proportional between AG and AE (which is AB), then by equidistance of ratios the time through AB is to the time through AE as AB is to itself. Therefore the times are equal, which was to be proved.



For planes cut by the same vertical circle, the times of movements in those that terminate at the upper or lower end of the [vertical] diameter are equal to the time of fall in that diameter; and in those [inclined planes] that do not reach the diameter, the times are shorter, while in those that cut the diameter they are longer [than the time through the diameter].

Let AB be the vertical diameter of a circle erect to the horizontal. It has already been shown that the times of movements are equal along planes from terminals A and B to the circumference. That the time of descent is shorter in plane DF, which does not reach the diameter, is shown by drawing plane DB, which will be longer and less [steeply] inclined than DF; therefore the time through DF is shorter than [that] through DB, and hence through AB. But that the time of descent is longer in plane CO, cutting the diameter, follows in the same way; for this is longer and less [steeply] inclined than CB. Therefore the proposition holds.





PROPOSITION IX. THEOREM IX

If any two planes are inclined from a point in a horizontal line, and are cut by a line that makes with them angles alternately equal to their angles with the horizontal, then movements in the parts cut off by the said line are made in equal times.

From point C of horizontal line X let there be any two inclined planes CD and CE. At any point in line CD construct angle CDF equal to angle XCE; line DF cuts plane CE at F so that angles CDF and CFD equal angles XCE and LCD, taken alternately. I say that the times of descent through CD and CF are equal.

It is manifest that angle CFD is also equal to angle DCL, angle CDF having been drawn equal to angle XCE. Take the common angle DCF from the three angles of triangle CDF (equal to two right angles, as are all [three] angles at point C on line LX), and there remain in the triangle two [angles], CDF and CFD, equal to the two langles | XCE and LCD. But also CDF was put equal to XCE; therefore the remainder CFD [equals] the remainder DCL. Construct plane CE equal to plane CD, and drop perpendiculars DA and EB from points D and E to the horizontal XL; and from C to DF draw the perpendicular CG. Since angle CDG is equal to angle ECB, while DGC and CBE are right [angles], triangles CDG and CBE are similar; and as DC is to CG, so CE is to EB; also, DC is equal to CE; therefore CG will be equal to BE. And since in triangles DAC and CGF, angles (A)C[D] and [C]A[D] are [respectively] equal to angles [C]F[G] and [F]G[C], then CD will be to DA as FC is to CG; and by permutation, as DC is to CF, so DA is to CG or BE. Thus the ratio of the heights of the equal planes CD and CE is the same as the ratio of lengths DC and CF. Therefore. by Corollary I to Proposition VI above, the times of descents in these will be equal; which was to be proved.

Another [proof] of the same. Draw FS perpendicular to the horizontal AS. As triangle CSF is similar to triangle DGC, GC will be to CD as SF is to FC; and since triangle CFG is similar to triangle DCA. CD will be to DA as FC is to CG. Hence, by equidistance of ratios, as SF is to CG, so CG is to DA, whence CG is the mean proportional between SF and DA; and as DA is to SF, so the square of DA is to the square of CG. Further, since triangle ACD is similar to triangle CGF. GC will be to CF as DA is to DC; and by permutation, as DA is to CG, so DC is to CF; and as the square of DA is to the square

C B C X

of CG, so is the square of DC to the square of CF. But it has been shown that the square of DA is to the square of CG as line DA is to line FS, whence as the square of DC is to the square of CF, so line DA is to FS. Hence, by Proposition VII above, since the heights DA and FS of planes CD and CF are in the squared ratio of those planes, the times of movements along these will be equal.

PROPOSITION X. THEOREM X

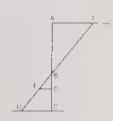
Along planes of different inclines whose heights are equal, the times of movements are to each other as the lengths of those planes, whether [both] the movements start from rest or [both] are preceded by movement from the same height.

Let movements through ABC and ABD to the horizontal DC be made in such a way that movement through AB precedes the movements through BD and through BC; I say that the time of movement through BD is [always] to the time through BC as length BD is to BC.

Draw AF parallel to the horizontal, meeting DB extended at F; let FE be the mean proportional of DF and FB. Draw EO parallel to DC, whence AO will be the mean proportional between CA and AB. Now assuming that the time through AB is represented by [ut] AB, the time through FB will be as FB, and the time through all AC will be as the mean proportional AO, while [the time] through all FD will be [as] FE. Hence the time through the remainder BC will be BO, and [that] through the remainder BD will be BE. But as BE is to BO, so BD is to BC. Therefore the times through BD and BC, after fall through AB and FB (or, what is the same thing, through AB in common). will be to one another as lengths BD and BC. But it has been demonstrated above that the time through BD from rest at B will be to the time through BC as length BD is to BC. Therefore the times of movements through different planes of equal height are to one another as the lengths of the planes, whether motion is made in these from rest or whether another movement from a given height has preceded these movements; which was to be shown.

PROPOSITION XI, THEOREM XI

If a plane in which motion is made from rest be divided in any way, the time of movement through the first part is, to the time of movement through that which follows, as the first part is to the excess by which that part is exceeded



by the mean proportional between the whole plane and its first part.

Let there be movement from rest at A through all AB, divided at any point C, and let AF be the mean proportional between all AB and its first part AC. The excess of the mean proportional FA over the part AC will be CF; I say that the time of movement through AC to the time of the subsequent movement through CB is as AC is to CF. This is clear because the time through AC is to the time through all AB as AC is to the mean proportional AF; therefore, by division [of ratio AF:CF], the time through AC is to the time through the remainder CB as AC is to CF. If then, we assume the time through AC to be [represented by] AC itself, the time through CB will be CF; which is the proposition.

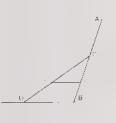
And if motion is made, not continually through ACB, but through the inflection ACD as far as [to] the horizontal BD, to which FE is drawn parallel from F, it is similarly demonstrated that the time through AC is, to the time through the diversion [reflexam] CD, as AC is to CE. For the time through AC is to the time through CB as AC is to CF; but it has been demonstrated that the time through CB after [fall through] AC is, to the time through CD after that same descent through AC, as CB is to CD; that is, as CF is to CE. Therefore, by equidistance of ratios, the time through AC will be to the time through CD as line AC is to CE.

PROPOSITION XII. THEOREM XII

If a vertical and a plane however inclined intersect between given horizontal lines, and mean proportionals are taken between {each of} these and its part contained between the intersection and the upper horizontal, the time of movement in the vertical line will have, to the time of movement made in the upper part of the vertical and then in the lower part of the cutting plane, the same ratio as that which the entire vertical has to the line made up of the mean proportional taken in the vertical and the excess of the entire inclined plane over its mean proportional [of whole to upper part].

Let the horizontals be AF, above, and CD, below; between these, the vertical AC and the inclined plane DF intersect at B. And let AR be the mean proportional between the entire vertical CA and its upper part AB, while FS is the mean proportional between all DF and its upper part BF. I say that the time of fall through the whole vertical AC has, to the time through its upper part AB plus the lower part of the plane, BD, the same ratio

230



ļμ

A N I

that AC has to AR (the mean proportional in the vertical) plus SD, the excess of the whole plane DF over its mean proportional FS.

Join R and S, which [line] will be parallel to the horizontal. Since the time of fall through all AC is to the time through the part AB as CA is to the mean proportional AR, then if we assume AC to be the time of fall through AC, the time of fall through AB will be AR, and RC [will be] that through the remainder BC. But if the time through AC is assumed to be AC itself, as was done, then the time through FD will be FD; and it will likewise be concluded that DS is the time through BD after [fall through] FB, or after AB. Therefore the time through all AC is AR plus RC, while that through the inflection ABD will be AR plus SD; which was to be proved.

The same holds if, in place of the vertical, any other plane is assumed, as for example NO; and the demonstration is the same.

PROPOSITION XIII. PROBLEM 140

Given the vertical, to divert from it a plane having the same height as the given vertical, in which motion after fall in the vertical is made in the same time as [motion] in the given vertical from rest.

Let the given vertical be AB, extended to C [by] an equal distance BC, and draw the horizontals CE and AG; it is required to divert from B a plane reaching to the horizontal CE, in which motion is made after fall from A in the same time as [motion] in AB from rest at A.

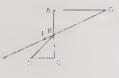
Let CD be equal to CB, and draw BD; let BE be constructed [applicetur] equal to the sum of [utrisque] BD and DC; I say that BE is the required plane.

Extend EB to meet the horizontal AG at G, and let GF be the mean proportional of EG and GB; EF will be to FB as EG is to GF, and the square of EF will be to the square of FB as the square of EG is to the square of GF; that is, as line EG is to GB. But EG is double GB; hence the square of EF is double the square of FB. But also the square of DB is double the square of BC; therefore as line EF is to FB, so DB is to BC. And by composition and permutation, as EB is to the sum of DB and BC, so BF is to BC. But BE is equal to the sum of DB and BC,

231

39. Cf. note 29, above.

^{40.} Problems, as distinguished from theorems, require the construction of an assigned unknown magnitude.



whence BF is equal to BC, or BA. Hence if it is assumed that AB is the time of fall through AB, then GB will be the time through GB, and GF the time through all GE. Therefore BF will be the time through the remainder BE, after fall from G, or from A; which was proposed.

232

PROPOSITION XIV PROBLEM H

Given a vertical and a plane inclined to it, to find the part in the upper vertical which is traversed from rest in a time equal to that in which, after fall in the part found in the vertical, the inclined plane is traversed.

Let the vertical be DB and the plane inclined to it AC; it is required to find a part in the vertical AD which is traversed from rest in a time equal to that in which, after that fall [post

casum in ea], the plane AC is traversed.

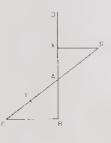
Draw the horizontal CB; and as BA plus double AC is to AC, let CA be to AE, and let EA be to AR as BA is to AC. From R, draw RX perpendicular to DB; I say that X is the point sought. Since BA plus double AS is to AC as CA is to AE, then by division [of these ratios] CE will be to EA as BA plus AC is to AC; and since EA is to AR as BA is to AC, then by composition, as BA plus AC is to AC, so ER is to RA. But as BA plus AC is to AC, so CE is to EA; therefore, as CE is to EA, so ER is to RA, and the combined antecedents [are in this same ratio] to the combined consequents; that is, so CR is to RE. Hence CR, RE, and RA are [continued] proportionals.

Next, since by construction EA is to AR as BA is to AC, and by similarity of triangles, XA is to AR as BA is to AC, then as EA is to AR, so XA is to AR; and thus EA and XA are equal. But if we assume the time through RA to be as RA, the time through RC will be [as] RE, the mean proportional between CR and RA; and AE will be the time through AC after [fall through] RA or XA. But the time through XA is XA when RA is the time through RA, and it was shown that XA and AE are equal; therefore the proposition is evident.

PROPOSITION XV, PROBLEM III

Given a vertical and a plane diverted from it, to find the part in the vertical extended downward which is traversed in the same time as the diverted plane is traversed after fall through [ex] the given vertical.

Let the vertical be AB and the plane diverted therefrom be BC; it is required to find in the vertical, extended below [B], a



part which is traversed after fall from [rest at] A in the same time as is BC after the same fall from A.

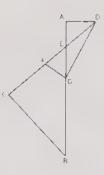
Draw the horizontal AD meeting CB extended at D, and let DE be the mean proportional of CD and DB. Make BF equal to BE; finally, let AG be the third proportional of BA and AF; I say that BG is the space which, after the fall AB, is traversed in the same time as [is] plane BC after the same fall [AB]. For if we assume the time through AB to be as AB, the time [through] DB will be as DB; and since DE is the mean proportional between BD and DC, the time through all DC will be DE, and BE [will be] the time through the remainder BC from rest at D or after fall [through] AB. And it is similarly concluded that BF is the time through BG after the same fall; also, BF is equal to BE; therefore the proposition is evident.

PROPOSITION XVI. THEOREM XIII

Given portions of an inclined plane and of the vertical for which the times of movements from rest are equal; if these meet at the same point, a moveable coming from any higher point will cover the portion of the inclined plane more quickly than the portion of the vertical.

Let the vertical EB and the inclined plane CE meet at the same point E, in which the times of movements from rest at E are equal. Take any higher point in the vertical, A, from which moveables are released; I say that after the fall AE, the inclined plane EC is passed over in a shorter time than [is] the vertical EB.

Join C and B, and draw the horizontal AD; let CE be extended to meet this at D, and let DF be the mean proportional of CD and DE, while AG is the mean proportional of BA and AE: draw FG and DG. Since the times of movements through EC and EB from rest at E are equal, C will be a right angle, by Corollary II of Proposition VI. Also A is a right angle, and the vertex angles at E are equal, whence triangles AED and CEB are similar, and the sides around [their] equal angles are proportional; hence as BE is to EC, so DE is to EA. Therefore the rectangle BE EA is equal to the rectangle CE-ED; and since rectangle CD DE exceeds rectangle CE-ED by the square ED, while rectangle BA-AE exceeds rectangle BE-EA by the square EA, the excess of rectangle CD-DE over rectangle BA-AE (that is, the [excess of] square FD over square AG) will be the same as the excess of square DE over square AE, which excess is the square DA. Therefore



square FD is equal to the two squares GA and AD, to which the square GD is also equal. Hence line DF is equal to DG, and angle DGF is equal to angle DFG, and angle EGF is less than angle EFG, and the opposite side EF is less than side EG. But if we assume the time of fall through AE to be as AE, the time through DE will be as DE; and since AG is the mean proportional between BA and AE, the time through all AB will be AG, and the remainder EG will be the time through the remainder EB from rest at A. And likewise it is concluded that EF is the time through EC after the descent DE, or after fall AE. But it has been shown that EF is less than EG, whence the proposition is evident.

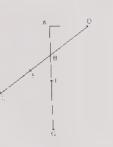
COROLLARY

It also follows from this and the preceding [proposition] that the space traversed in the vertical after fall from on high, during the same time as that in which the inclined plane is traversed, is less than that [space] traversed in that same time in the incline without a preceding fall from on high, though greater than the inclined plane itself.

It has been demonstrated that for moveables coming from the high point A, the time accumulated [conversi] through EC is shorter than the time before [procedentis] through EB; hence it follows that the space traversed through EB in a time equal to the time through EC is less than the whole space EB. Now, that this same vertical space [EB in the previous diagram] is greater than EC is manifest from the diagram used for the preceding proposition, in which the part BG of the vertical is shown to be traversed in the same time as is BC after the fall AB. But that BG is greater than BC is deduced as follows. Since BE and FB are equal, and BA is less than BD. FB has a greater ratio to BA than EB has to BD; and by composition. FA has a greater [ratio] to AB than ED has to DB. Hence as FA is to AB, so GF is to FB (for AF is the mean proportional between BA and AG); likewise as ED is to BD, so CE is to FB; therefore GB has a greater ratio to BF than CB has to BE, and hence GB is greater than BC.

PROPOSITION XVII. PROBLEM IV

Given a vertical and a plane diverted from it, to mark a part in the given plane through which, after fall in the vertical, motion is made in a time equal to that in which the moveable traversed the vertical from rest.



Let AB be the vertical and BE the plane diverted from it; it is required to mark in BE the space through which a moveable, after fall in AB, will be moved in a time equal to that in which it traversed the vertical AB from rest. Let AB be a horizontal line meeting the plane extended at D, and take FB equal to BA; and as BD is to DF, make FD to DE; I say that the time through BE after fall in AB will be equal to the time through AB from rest at A.

If AB is assumed to be the time through AB, the time through DB will be DB; and since FD is to DE as BD is to DF, the time through the whole plane DE will be DF, and BF [will be the time] through the part BE from D. But the time through BE after DB is the same as [that] after AB; therefore the time through BE after AB will be BF; that is, [it will be] equal to the time [through] AB from rest at A; which was the problem.

PROPOSTION XVIII. PROBLEM V

Given in the vertical any space marked from the beginning of movement, and given the time in which this is traversed, and given another smaller time, to find another space in the vertical which is traversed in the given smaller time.

Let the vertical be A[D], in which let the space AB be given, for which the time from the beginning A is AB; and let the horizontal be CBE; and let a time less than AB be given, which is marked in the horizontal as equal to BC. It is required to find in the same vertical a space equal to AB which is traversed in the time BC.

Draw line AC; since BC is less than BA, angle BAC will be less than angle BCA. Draw CAE equal to the latter, and line AE meeting the horizontal at point E; perpendicular to this, draw ED cutting the vertical at D; and mark DF equal to BA. I say that FD is the part in the vertical which, in movement from the beginning of motion at A, is passed over in the given time BC.

Since in the right triangle AED, EB is drawn perpendicular to the side AD opposite the right angle at E, AE will be the mean proportional between DA and AB, and BE the mean proportional between DB and BA, or between FA and AB (for FA is equal to DB). And since AB is assumed to be the time through A[B], the time through all AD will be AE or EC, and EB [will be] the time through AF. Therefore the remainder BC will be the time through the remainder FD; which was the intent.

237

Given any space whatever in the vertical, run through from the beginning of motion, and given the time of fall; to find the time in which another equal space, taken somewhere in the same vertical, will be traversed by the same moveable.

Let any space AC be taken from the beginning of motion at A in the vertical AB, to which is equal another space DB taken anywhere; and given the time of motion through AC, let this be AC; it is required to find the time of movement through DB after fall from A. Describe the semicircle AEB around all AB, and let CE be perpendicular to AB from C; join A and E, which [line] will be longer than EC. Let EF be cut equal to EC; I say that the remainder FA is the time of movement through DB.

For since AE is the mean proportional between BA and AC, and AC is the time of fall through AC, the time of fall through all AB will be AE. And since CE is the mean proportional between DA and AC (for DA is equal to BC), CE (that is, EF) will be the time through AD. Therefore the remainder AF is the time through the remainder DB; which is the proposition.

COROLLARY

From this it is deduced that if any space is assumed, the time through this after some adjoined space will be [as] the excess of the mean proportional between the combined spaces and the original space, over the mean proportional between the original [space] and that added.

Thus, supposing that the time through AB from rest at A is AB, [then] when AS is added, the time through AB after SA will be the excess of the mean proportional between SB and SA over the mean proportional between BA and AS.

238

PROPOSITION XX, PROBLEM VII

Given any space, and a part therein from [post] the beginning of movement, to find another part at [versus] the end which is traversed in the same time as the part first given.

Let there be the space CB, and in this the part CD after the beginning of movement at C; it is required to find another part toward the end, B, which is traversed in the same time as the given [part] CD.

Take the mean proportional between BC and CD, which is

to be put equal to BA, and let CE be the third proportional to BC and CA; I say that EB is the space which, after fall from C, will be traversed in the same time as CD. For if we assume the time through all CB to be as CB, then BA (that is, the mean proportional between BC and CD) will be the time through CD, and since CA is the mean proportional between BC and CE, the time through all CE will be CA; also, BC is the time through all CB. Therefore the remainder BA will be the time through the remainder EB after fall from C. But BA was the time through CD; therefore CD and EB will be traversed in equal times from rest at C;⁴¹ which was to be done.

PROPOSITION XXI. THEOREM XIV

If fall in the vertical occurs from rest, of which a part is taken at the beginning of movement that is run through in a given time, after which there follows motion diverted through a plane however inclined, the space which is traversed in that plane during a time equal to the time of fall already run through in the vertical will be more than double, but less than triple, [that space already run].

Below the horizontal [line] AE let there be the vertical AB, in which let fall take place from the beginning, A, in which there is taken a part, AC; then from C let some plane CG be inclined on which motion continues after fall in AC. I say that the space run through in that motion through CG, in a time equal to the time of fall through AC, is more than double but less than triple that same space AC.

Take CF equal to AC, and extending plane CG to the horizontal at E, make FE to EG as CE is to EF. Then if the time of fall through AC is taken as the line AC, the time through EC will be CE, and CF (or CA) [will be] the time of motion through CG. It is to be shown that space CG is more than double, but less than triple, CA. Now since FE is to EG as CE is to EF, CF will be [in] the same [ratio] to FG; but EC is less than EF, whence CF will be less than FG, and therefore GC will be more than double FC or AC. Further, since FE is less than double EC (for EC is greater than CA or CF). GF will also be less than double FC, and GC [will be] less than triple CF or CA; which was to be demonstrated.⁴²

41. The 1638 text has A for C, an error corrected in Weston's translation.
42. This noteworthy theorem calls attention to the role of the integers
2 and 3 as limits governing speeds naturally conserved or acquired during
the second of two equal times. That Galileo did not insert any dialogue

TC +O +A

194

240

The same can be still more universally stated; for what happens in vertical and inclined planes also happens if, after motion in some inclined plane, there is deflection through a greater incline, as seen in this second diagram; and the demonstration is the same.

PROPOSITION XXII, PROBLEM VIII

Given two unequal times, and given the space traversed in the vertical (from rest) during the shorter of the given times, to divert a plane from the highest point of the vertical out to the horizontal, upon which the moveable descends in a time equal to the longer of the given [times].⁴³

Let A be the greater and B the lesser of the unequal times, and let CD be the space traversed from rest along the vertical in time B; it is required to divert from end C to the horizontal a plane which is traversed in time A.

As B is to A, let CD be to some other line equal to CX, descending from C to the horizontal. It is manifest that the plane CX is that along which the moveable descends in the given time A, for it was demonstrated [in Theorem III] that the time along an inclined plane has to the time along its height the ratio that the length of the plane has to its height. Therefore the time along CX is to the time along CD as CX is to CD; that is, as the time A is to the time B. But time B is that in which the vertical CD is traversed from rest; therefore time A is that in which the plane CX is traversed.

PROPOSITION XXIII. PROBLEM 1X

Given the space run through in any time along the vertical from rest, to divert a plane from the lower end of this space, upon which, after fall in the vertical and in equal time [thereto], a given space is traversed that is more than double but less than triple the space run through in the vertical.

241

discussing this is most surprising if, as some say, he had Platonist leanings. A manuscript copy exists in the hand of Mario Guiducci of a draft probably made in 1618, to which Galileo added this remark: "Note that if motion along the incline CG is accelerated in infinitum, it seems one might demonstrate that along the horizontal, [motion] must extend equably in infinitum; now it is also clear that if equable, it will also be infinite." Thus rectilinear inertia and an infinite universe must stand or fall together; cf. note 46, below.

43. This is one of the problems that Galileo had tried to solve nearly fifty years earlier, before he realized the importance of acceleration in fall;

cf. On Motion, p. 69 (Opere, I, 301).

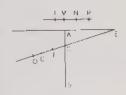
In the vertical AS let space AC be run through in time AC from rest at A, to which [space AC] IR is more than double but less than triple; it is required to divert a plane from terminus C, upon which the moveable shall, in this same time AC, traverse a space equal to IR after fall through space AC.

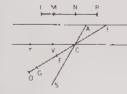
Let RN and NM be equal to AC; and whatever ratio the remainder 1M has to MN, let AC have the same to another line equal to CF, drawn from C to the horizontal AE, Extend this toward O, and let CF, FG, and GO be equal [respectively] to RN, NM, and MI. I say that the time along the diversion CO, after fall AC, is equal to the time [through] AC from rest at A. For since FC is to CE as OG is to GF, then by composition, as OF is to FG or FC, so FE will be to EC, and as one antecedent is to one consequent, so is the sum of [omnia] antecedents to the sum of consequents; hence the whole of OE is to EF as FE is to EC. And thus OE, EF, and FC are continued proportionals; and since it was assumed that the time through AC is as AC, the time through EC will be CE, and EF [will be the time through all EO, and the remainder CF [will be that] through the remainder CO. But CF is equal to CA; therefore what was required has been done. For time CA is the time of fall through AC from rest at A, while CF (which equals CA) is the time through CO after descent through EC, or after fall through AC; which was the thing proposed.

It is to be noted here that the same happens if the preceding motion is made not vertically, but along an inclined plane, as in the next diagram; there the initial [praecedens] motion is made along the inclined plane AS, below the horizontal line AE, and the demonstration is exactly the same.

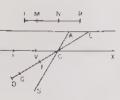
SCHOLIUM

If due attention is paid, it will be manifest that the less the given line IR falls short of triple AC, the closer the diverted plane CO, on which the second motion is made, comes to the vertical, in which ultimately, in a time equal to AC, a space triple AC is run through. For if [cum] IR is almost triple AC, IM will be nearly equal to MN; and since, by construction, AC is made to CE as IM is to MN, it is clear that CE will be found to be little more than CA, and consequently that the point E will be found close to point A, while CO and CS will contain a very acute angle, and will nearly coincide. On the other hand, if IR is the minimum that is greater than double AC, then IM will be a very short line, whence it comes about





196



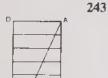
that AC will be very short with respect to CE, which will become very long, and nearly parallel to the horizontal drawn through C. And we may then deduce that if, in the above diagram, after descent through the inclined plane AC, there is diversion along a horizontal line such as CT, the space through which the moveable will next [consequentur] be moved, in a time equal to that of descent through AC, would be exactly double the space AC.

Further, it is seen that this fits with [other] like reasoning. For from the fact that OE is to EF as FE is to EC, it appears that FC determines the time through CO. For if the horizontal part TC, double CA, is bisected at V, its extension toward X will be prolonged indefinitely in seeking to meet with AE produced; and the ratio of an infinite TX to an infinite VX will not be different from the ratio of an infinite VX to an infinite XC.

We may reach the same conclusion by another approach, taking up again an argument like that which we used in the demonstration of Proposition 1.44 For take again the triangle ABC, and by its parallels to the base BC let us represent to ourselves the degrees of speed continually increased according to the increments of time. From those, which are infinitely many (as the points in line AC are infinitely many, and [so are the instants in any [interval of] time), there arises [exurget] the surface of the triangle [ABC]; and if we assume the motion to be continued for another equal time, no longer in accelerated but in equable motion at the maximum degree of speed acquired (which degree is represented by line BC), then from these degrees [of speed] a like parallelogram ABCD will be produced [conflabitur], double the triangle ABC. Hence the space which is traversed in the same time with similar degrees [of speed] will be double the space run through with the degrees of speed represented by triangle ABC.

But motion in the horizontal plane is equable, as there is no cause of acceleration or retardation; therefore it is to be concluded that the space CT.⁴⁵ run through in time equal to the

44. See note 31, above.



^{45.} With the exception of the 1638 original and Weston's translation, all editions erroneously read CD here in place of CT. Galileo's reference is to CT in the previous diagram, here (though not in the original) repeated in part for convenience of reference. The erroneous CD, a plausible editorial emendation made in 1655, has ever since made it seem that Galileo in this one place had had used an area to represent a distance traversed. We do this, but it would be incongruous for a strict Euclidean mathematician. Compare

time AC, is double the space AC. Indeed, the former motion, accelerated, is made from rest according to the parallels of the triangle, while the latter [equable, is made] according to the parallels of the parallelogram, which, being infinitely many, are doubles to the infinitely many parallels of the triangle. It may also be noted that whatever degree of speed is found in the moveable, this is by its nature [suapte natura] indelibly impressed on it when external causes of acceleration or retardation are removed, which occurs only on the horizontal plane; for on declining planes there is cause of more [maioris] acceleration, and on rising planes, of retardation. From this it likewise follows that motion in the horizontal is also eternal, since if it is indeed equable it is not [even] weakened or remitted, much less removed. 46

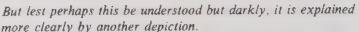
Furthermore, one must consider the existing degree of speed acquired by the moveable in natural descent to be naturally indelible and eternal; but if after descent along a declining plane it is diverted through another upward plane, a cause of retardation presents itself there, for on such a plane the same moveable would naturally descend. Wherefore a certain mixture of contrary influences [affectionum] arises—that of the degree of speed acquired in the preceding descent, which by itself would carry the moveable away uniformly in infinitum, and [that of] a natural propensity to downward motion according to that same ratio of acceleration in which it is always moved. Whence it is seen to be quite reasonable if, in inquiring what events take place when a moveable is diverted through some rise after descent through some inclined plane, we assume that that maximum degree acquired in descent is in itself perpetually - kept [servari] in the ascending plane, but [that] in the ascent there supervenes the natural tendency downward; that is, to a motion from rest accelerated in the ratio always assumed.

nature in

244

Theorem I, above, where a seemingly superfluous line was introduced into Galileo's diagram to represent distances traversed. The area which for us would represent distance was seen by Galileo only as representing an overall speed.

46. Cf. note 42, above. Here, and in the ensuing argument, is to be found everything of significance in Galileo's restricted inertial concept, which he limited to phenomena of heavy bodies near the earth's surface. His remark that interference with uniformity of motion is always present except in supported horizontal motion is a simple statement of fact, as is his subsequent declaration that no truly horizontal plane exists, though there are surfaces on earth on which uniform motion would ideally be conserved. Cf. Dialogue, p. 148 (Opere, VII, 174), and see further, pp. 273-75, below.



Let it be understood, then, that descent is [first] made through the downward plane AB, from which reflected motion is continued unward through BC; and first let these be equal planes. elevated at equal angles to the horizontal GH. It follows that the moveable descending along AB from rest at A acquires speed according to the increase of time itself; the degree at B is the maximum acquired, and this is naturally impressed immutably--any cause of new acceleration or retardation being removed. [There would be a cause] of acceleration, I say, if it were to continue its progress further on the [same] plane extended, and of retardation if diverted to the rising plane BC. But on the horizontal plane GH, it would go in infinitum in equable motion at the degree of speed acquired [in descent] from A to B, and this speed would be such that, in a time equal to the time of descent along AB, it would traverse in the horizontal a space double the space AB.

However, let us suppose the same moveable to be moved equably at the same degree of speed along plane BC, so that also in this [case], in a time equal to the time of descent along AB, it would traverse on BC extended a space double that of AB. Truly, we understand that as soon as the ascent begins. there naturally supervenes that which happens to it from A on the plane AB; namely, a certain descent from rest according to those same degrees of acceleration, by force of which [vi quorum],47 as happened on AB, it descends the same amount in the same time on the diverted plane [BC] that it descended along AB. It is manifest that from this kind of mixture of equable ascending and accelerated descending motion, the moveable is carried to terminus C, along plane BC, at the same degrees of speed, which will be equal [in ascent and descent]. And indeed, we can deduce that assuming any two points D and E, equally distant from angle B, the transit through DB is made in a time equal to the time of reflection through BE. Draw DF parallel to BC; it is evident that the descent through AD will be reflected through DF; now if, after [reaching] D the moveable is carried along the horizontal DE, its impetus at E will be the same as its impetus at D; therefore from E

^{47.} It was unusual for Galileo to introduce acceleration in terms of force, his customary procedures being kinematic rather than dynamic. The essential idea here is that inertial motion is found in bodies supported on planes other than the horizontal, but is cloaked by continual deceleration.

it ascends to C, whence the degree of speed at D is equal to the degree at E.

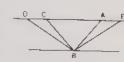
From this we may therefore reasonably assert that if descent is made through some inclined plane, after which there follows reflection through some rising plane, the moveable ascends, by the impetus received, all the way to the same altitude or height from the horizontal. Thus if the descent is along AB, the moveable is carried along the diverted plane BC to the horizontal ACD; and not only if the inclinations of the planes are equal, but also if they are unequal, as is plane BD. For it was assumed earlier that the degrees of speed acquired over unequally inclined planes are equal whenever the planes are of the same height above the horizontal. But if the same inclination exists for planes EB and BD, descent through EB suffices to impel the moveable along plane BD all the way to D, as such an impulse is made on account of the received impetus of speed at point B; and there is the same impetus at B whether the moveable descends through AB or through EB. It follows that the moveable is pushed out likewise along BD after descent along AB or along EB. It happens indeed that the time of ascent through BD will be longer than that through BC, inasmuch as descent through EB also takes a longer time than through AB; and the ratio of these times has already been shown to be the same as that of the lengths of the planes.

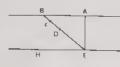
Next we shall inquire into the ratio of the spaces passed in equal times on planes of whatever different inclinations, but of the same heights; that is, those which are included between the same horizontal parallels. And this takes place according to the following ratio.

PROPOSITION XXIV. THEOREM XV

Given a vertical, and a plane elevated from its lower end, lying between given horizontal parallels; the space traversed by a moveable on the inclined plane, after fall through the vertical, in a time equal to its time of [vertical] fall, is greater than in the vertical but less than double that in the vertical.

Between the same horizontal parallels BC and HG let there be the vertical AE and the inclined plane EB; over EB, after fall along the vertical AE, let deflection be made toward B from the point E; I say that the space through which the moveable ascends, in a time equal to the time of descent AE, is greater than AE but less than double AE. Take ED equal to AE, and





200

246

B A C

make DB to BF as EB is to BD; it is to be shown, first, that F marks the point to which the moveable comes, moved by reflection along EB, in a time equal to the time of AE; and next, that EF is greater than EA but less than its double. If we understand that the time of descent along AE is as AE, the time of descent along BE, or of ascent along EB, will be as the line BE; and since DB is the mean proportional between EB and BF, and BE is the time of descent through all BE, BD will be the time of descent through BF, and the remainder DE [will be] the time of descent through the remainder FE. But the time through FE from rest at B is the same as the time of ascent through EF, when the degree of speed at E is that acquired through the descent BE (or AE). Therefore the same time DE will be that in which the moveable arrives at point F after fall from A through AE and reflected motion along EB, But it was assumed that ED is equal to AE; whence the first [part] has been shown.

And since as all EB is to all BD, so the removed part DB is to the removed part BF, [likewise] as all EB is to all BD, so will the remainder ED be to DF; whence EB is greater than BD. Therefore ED is greater than DF, and also EF is less than double DE, or AE; which was to be shown. The same holds if the precedent motion is made not in the vertical, but on an inclined plane; and the proof is the same when the plane of reflection is less steep and hence longer than the declining plane.

PROPOSITION XXV. THEOREM XVI

If, after fall through some inclined plane, there follows motion through the horizontal plane, the time of fall through the inclined plane will be, to the time of motion through any horizontal line, as double the length of the inclined plane is to that horizontal line.

Let CB be the horizontal line and AB the inclined plane; and, after fall through AB, let motion follow through the horizontal, in which any space BD is taken. I say that the time of fall through AB is to the time of motion through BD as double AB is to BD. For take BC double AB, and it follows from what was demonstrated above that the time of fall through AB equals the time of motion through BC; but the time of motion through BC is to the time of motion through DB as line CB is to line BD. Therefore the time of motion through AB is to the time through BD as double AB is to BD; which was to be proved.

D 8

PROPOSITION XXVI. PROBLEM X

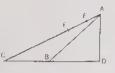
Given a vertical between parallel horizontal lines, and a space greater than that vertical, but less than its double; to raise a plane from the lower terminus of the vertical between the parallels, upon which in reflected motion after descent in the vertical, a moveable will traverse a space equal to that given, in a time equal to the time of descent through the vertical.

Let the vertical be AB, and between the parallels AO and BC, let FE be greater than BA but less than its double; it is required to erect a plane from B, between the horizontals. on which the moveable, after fall from A to B, in reflected motion during a time equal to the time of descent through AB. traverses in ascent a space equal to EF. Make ED equal to AB; the remainder DF will be less [than DE], since all EF is less than double AB. Let DI equal DF, and as EI is to ID, make DF be to FX; and from B reflect BO equal to EX. I say that the plane through BO is that on which, after fall AB, in a time equal to the time of fall through AB, the moveable in rising will pass through a space equal to the given space EF. Put BR and RS equal to ED and DF; then since as EI is to ID, so DF is to FX; and by composition, as ED is to DI, DX will be to XF; that is, as ED is to DF, DX is to XF, and EX is to XD, whence as BO is to OR, RO is to OS. Now if we assume the time through AB to be AB, the time through OB will be OB, and RO will be the time through OS; and the remainder BR will be the time through the remainder SB in descent from O to B. But the time of descent through SB from rest at O is equal to the time of ascent from B to S after the descent AB; therefore BO is the plane, raised from B, upon which, after descent through AB, the space BS, equal to the given space EF, is traversed in the time BR, or BA; which was required to be done.

PROPOSITION XXVII. THEOREM XVII

If a moveable descends on unequal planes of the same height, the space traversed in the lower part of the longer [plane], in a time equal to that in which all the shorter plane is traversed, is equal to the space made up of the shorter plane and that length to which the shorter plane has the same ratio as the longer plane has to the excess by which the longer surpasses the shorter.

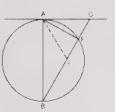
O S R



Let AC be the longer plane and AB the shorter. of which each is of height AD; and in the lower part of AC, take CE equal to AB. Let the ratio of all CA to AE (that is, to the excess of plane CA over AB) be [the ratio] of CE to EF; I say that the space FC is that which is traversed after departure from A in a time equal to the time of descent through AB. For since all CA is to all AE as the part CE is to the part EF, the removed part EA will be to the removed part AF as all CA is to all AE; and thus the three [magnitudes] CA. AE, and AF are in continued proportion. Now, if the time through AB is assumed to be as AB, the time through AC will be as AC; but the time through AF will be as AE, and [that] through the remainder FC, as EC; whence EC is equal to AB; therefore the proposition is evident.

249

PROPOSITION XXVIII. PROBLEM XI



Let the horizontal line AG be tangent to a circle at its diameter AB, and draw any two chords, AE and EB; it is required to find the ratio of the time of fall through AB to the time of descent through both AE and EB [combined].

Extend BE to the tangent at G, and draw AF, bisecting angle BAE; I say that the time through AB is, to the time through AE and EB, as AE is to AE plus EF. Since angle FAB is equal to angle FAE, and angle EAG to angle ABF, all GAF will be equal to the sum of FAB and ABF, to which also angle GFA is equal; therefore line GF is equal to GA. And since the rectangle BG-GE is equal to the square on GA, it is also equal to the square on GF; and the three lines BG, GF, and GE are [continued] proportionals. Now, if AE is assumed to be the time through AE, GE will be the time through GE; GF, the time through all GB; and EF the time through EB after descent from G (or from A through AE); therefore the time through AE (or through AB) is, to the time through AE and EB, as AE is to AE and EF; which was to be found.

Otherwise, more briefly. Make GF equal to GA; it is evident that GF is the mean proportional between BG and GE. The rest as above.

PROPOSITION XXIX. THEOREM XVIII

Given any horizontal distance, from the end of which is erected a perpendicular, in which is taken a part equal to one-half the distance given in the horizontal; a moveable

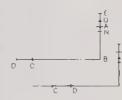
descending from this altitude and being turned to the horizontal will traverse the [given] horizontal space together with the vertical in a shorter time than any other vertical distance together with that same horizontal space.

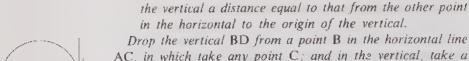
Take any distance BC in the horizontal plane, and from B let there be the vertical in which BA is one-half of BC; I say that the time in which a moveable sent from A will traverse both distances, AB and BC, is the shortest time of all during which the same distance BC is traversed together with any part of the vertical, whether greater or less than the part AB. Let EB be taken as greater [than AB], as in the first diagram, or as less, as in the second. It is to be shown that the time in which distances EB and BC are traversed is longer than the time in which AB and BC are traversed. It is assumed that the time through AB is as AB, and [that this is] also the time of motion in the horizontal BC, since BC is double AB; and through both distances, AB and BC, the time will be double BA. Let BO be the mean proportional between EB and BA; BO will be the time of fall through EB. Further, let the horizontal distance BD be double BE; it follows that the time after fall EB is BO. Make OB to BN as DB is to BC, or as EB is to BA: and since motion in the horizontal is equable, and OB is the time through BD after fall from E, NB will be the time through BC after fall from the same height E. From this it follows that OB plus BN is the time through EB and BC; and since double BA is the time through AB and BC, it remains to be shown that OB plus BN is more than double BA. But since OB is the mean proportional between EB and BA, the ratio of EB to BA is the square of the ratio of OB to BA; and since EB is to BA as OB is to BN, the ratio of OB to BN will also be the square of the ratio of OB to BA. Now, the ratio of OB to BN is compounded from the ratios of OB to BA and of AB to BN; therefore the ratio of AB to BN is the same as the ratio of OB to BA. Hence BO, BA, and BN are three [magnitudes] in continued proportion, and OB plus BN is greater than double BA; from which the proposition is evident.

PROPOSITION XXX. THEOREM XIX

If a vertical is let fall from some point of a horizontal line, and from another point in the same horizontal a plane is drawn that meets the vertical, along which [plane] a moveable will descend in the shortest time [from that point] to the vertical, that plane will be such that it cuts off on

250



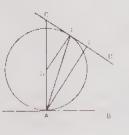


AC, in which take any point C; and in the vertical, take a distance BE equal to the distance BC, drawing CE. I say that of all inclined planes from point C to the vertical [BD], CE is that along which descent will be made to the vertical [BD] in the shortest time of all. For take planes CF and CG, above and below it [CE], and draw IK tangent at C to the radius of the circle BC, which [tangent] will be parallel to the vertical. Draw CF parallel to EK, which extends to the tangent and which cuts the circumference of the circle at L. It is evident that the time of fall through LE is equal to the time of fall through CE; but the time through KE is longer than that through LE; therefore the time through KE is longer than that through CE. But the time through KE equals the time through CF, as these are equal and are drawn at the same inclination; likewise, since CG and EI are equal and at the same inclination, the times of movements through them will be equal. But the time through HE, shorter than IE, is briefer than the time through IE; whence also the time through CE (which is equal to the time through HE) is briefer than the time through IE. Hence the proposition holds.

PROPOSITION XXXI. THEOREM XX

If to a straight line inclined in any way above the horizontal there is drawn to the incline, from any given point in the horizontal, that plane on which descent [from any point on the incline] is made in the shortest time of all, this [plane] will bisect the angle between two perpendiculars from the given point, one [perpendicular] to the horizontal, and the other to the inclined [line].

Let CD be a line inclined in any way above the horizontal AB; and given in the horizontal some point, A, draw from this AC, perpendicular to AB, and AE, perpendicular to CD; bisect the angle CAE by line FA. I say that of all inclined planes from any point on line CD to point A, that incline which is extended through FA is the one in which the time of descent will be briefest of all. Draw FG parallel to AE; the alternate angles GFA and FAE will be equal, and also EAF is equal to FAG; therefore the sides FG and GA of the triangle [FGA] will be equal. Now, if with center G and radius GA a circle is described, it will pass through F and will be tangent to the



horizontal and to the inclined [line] at points A and F [respectively], whence angle GFC is a right angle, since GF is parallel to AE. From this it follows that all lines from point A to the inclined [line] extend beyond the circumference, and consequently, movements through these are passed over in longer times than through FA; which was to be demonstrated.

LEMMA

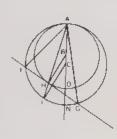
If two circles are internally tangent, and the inner [circle] is tangent to some straight line that cuts the outer {circle}; and if three lines are drawn from the point of tangency of the circles to three points of the tangent line, [one] to its point of tangency with the inner circle, and [the others] to its intersections with the outer [circle]; these [lines] will contain equal angles at their contact with the circles.

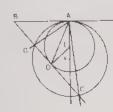
Let two circles be tangent internally at point A, the center of the smaller circle being B, and that of the larger, C; and let the inner circle be tangent at point H to some straight line FG which cuts the larger [circle] at points F and G. Draw lines AF, AH, and AG; I say that angles FAH and GAH contained by these [lines] are equal. Extend AH to the circumference at 1, and from the centers draw BH and CI. Draw BC through the centers, which extended will fall on the point of tangency A and on the circumferences of the circles at O and N. Since angles ICN and HBO are equal, each being double the angle IAN, lines BH and CI will be parallel. And since BH, from center to point of tangency, is perpendicular to FG, CI will also be perpendicular to the same [FG]; and arc FI is equal to arc IG, and consequently angle FAI [is equal] to angle IAG; which was to be shown.

PROPOSITION XXXII. THEOREM XXI

If two points are taken in the horizontal, and from one of them some line is inclined toward the other, from which [in turn] a line is drawn that cuts off on it a part equal to the distance between the two points on the horizontal, then fall is finished more swiftly through this drawn [line] than through any other line extending from the same point to the same incline. Furthermore, in other lines made at equal angles on either side of this line, falls take place in equal times.

Let A and B be two points on the horizontal, and from B let the straight line BC be inclined, in which BD is taken from





B. equal to BA; and A and D are joined. I say that fall is made more swiftly through AD than through any [other] line extending from A to the incline BC.

254

For from points A and D draw AE and DE, intersecting at E and perpendicular [respectively] to BA and BD. Since in the isosceles triangle ABD, angles BAD and BDA are equal, their complements. DAE and EDA, will be equal; hence if a circle is described with center E and radius EA, it will pass through D and will be tangent to lines BA and BD at points A and D. And since A is an end of the vertical AE, fall will be finished more swiftly through AD than through any other [line] from the end A to the line BC extended beyond the circumference of the circle; which was to be shown first.

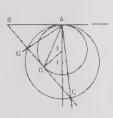
Now if the vertical AE is extended, and some center F is taken for a circle AGC described with radius FA and cutting the tangent line at points G and C, then when AG and AC are drawn, they will be divided into equal angles by the median AD, as previously demonstrated. Hence the times of motions along these [lines] will be equal, since they are bounded by the high point A and the circumference of the circle AGC.

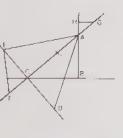
PROPOSITION XXXIII. PROBLEM XII

Given a vertical and a plane inclined to it, of the same height and having the same upper terminus; to find a point, vertically above the common point, from which a moveable, falling and then deflected along the inclined plane, consumes the same time in this plane as [in fall] from rest through the [given] vertical.

Let AB be the vertical and AC the inclined plane having the same height; it is required to find in the vertical, BA, extended in the direction of A, a point from which the descending moveable traverses the space AC in the same time as it traverses the given vertical AB from rest at A.

Draw DCE at right angles to AC, and CD equal to AB. and join A and D; angle ADC will be greater than angle CAD. since CA is greater than AB or CD. Make angle DAE equal to angle ADE, and extend EF perpendicular to AE until it meets the inclined plane at F. Make both AI and AG equal to CF, and draw GH through G parallel to the horizontal, I say that H is the point sought. Let AB be assumed to be the time of fall through the vertical AB, and the time through AC from rest at A will be AC; and since in the right triangle AEF, EC





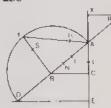
is drawn from the right angle E perpendicular to the base AF, AE will be the mean proportional between FA and AC, while CE is the mean proportional between AC and CF (that is, between CA and AI). And since AC is the time from A through AC, the time through all AF will be AE, and EC [will be] the time through AI. But since in the isosceles triangle AED, the side AE is equal to the side ED, the time through AF will be ED, and CE is the time through AI. Hence CD (that is, AB) will be the time through IF from rest at A, which is the same as to say that AB is the time through AC from G or from H; which was to be done.

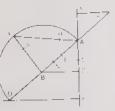
PROPOSITION XXXIV. PROBLEM XIII

Given an inclined plane and a vertical, both with the same high point; to find in the vertical extended upward a higher point from which a moveable that descends and is then deflected into the inclined plane traverses both in the same time as the inclined plane alone [is traversed] from rest at its high point.

Let AB and AC be the inclined plane and the vertical whose [common] terminus is A; it is required to find a higher point in the vertical extended beyond A, from which the moveable falling, and being deflected through the plane AB, traverses that part of the vertical and [all] the plane AB in the same time as AB alone from rest at A.

Let BC be a horizontal line, and draw AN equal to AC; and as AB is to BN, make AL to LC. Draw AI equal to AL, and let CE be the third proportional to AC and BI, marked in the vertical AC extended. I say that CE is the distance sought, such that the vertical being extended above A, and a part AX [being] taken [in it] equal to CE, the moveable from X would traverse both distances XA and AB [combined] in equal time with AB alone from A. Draw the horizontal XR parallel to BC, meeting BA extended at R; then, AB being extended to D, draw ED parallel to CB, and describe a semicircle on AD. From B. perpendicular to DA, draw BF to the circumference. It is evident that FB is the mean proportional between AB and BD, and FA [is that] between DA and AB. Draw BS equal to BI, and FH equal to FB. Since AC is to CE as AB is to BD, and since BF is the mean proportional between AB and BD (as is BI between AC and CE), FB will be to BS as BA is to AC. And since BA is to AC (or to AN) 256





as FB is to BS, then by conversion of ratios BF will be to FS as AB is to BN; that is, as AL is to LC. Hence rectangle FB CL is equal to rectangle AL-SF. But rectangle AL-SF is the excess of rectangle AL FB (or Al-BF) over rectangle AI-BS (or AI-IB), while rectangle FB-LC is the excess of rectangle AC-BF over rectangle AL-BF. And rectangle AC-BF will equal rectangle AB BI, for as BA is to AC, so FB is to BI. Therefore the excess of rectangle AB-BI over rectangle AI-BF (or AI-FH) will equal the excess of rectangle AI-FH over rectangle Al-IB. Hence twice rectangle Al-FH equals the two [rectangles] AB-BI and AI-IB; that is, twice AI-IB plus the square on BI. Make the square on AI common to both, and twice rectangle AI IB plus the squares on AI and 1B (that is, the square of AB itself) will be equal to twice the rectangle Al-FH plus the square on Al. Again, make the square on BF common to both, and the squares of AB and BF (or the square of AF) will equal twice the rectangle AI-FH plus the squares on AI and FB; that is, [the squares on | AI and FH. But the square of AF is equal to twice the rectangle AH-HF plus the squares on AH and HF, whence twice the rectangle AI-FH plus the squares on AI and FH will be equal to twice the rectangle AH-HF plus the squares on AH and HF. Taking away the common square on HF, twice the rectangle AI-FH plus the square on AI will equal twice the rectangle AH-HF plus the square on AH. And since FH is a common side to all the rectangles, line AH will equal line AI; for if it were greater or less, the [double] rectangle FH-HA plus the square on HA would be greater or less than the [double rectangle | FH-IA plus the square on IA, against that which has been demonstrated.

Now assuming the time of fall through AB to be as AB, the time through AC will be as AC; and IB, the mean proportional between AC and CE, will be the time through CE, or through XA from rest at X. And since AF is the mean proportional between DA and AB (or RB and BA), and BF is the mean proportional between AB and BD (that is, RA and AB), and [BF] is equal to FH, then, from the above, the excess AH will be the time through AB from rest at R, or after fall from X; while the time through AB from rest at A is AB. Therefore the time through XA is IB, but through AB after RA or XA it is AI; whence the time through XA and AB will be as AB; that is, the same as through AB alone from rest at A; which was proposed.

258

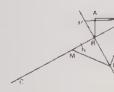
PROPOSITION XXXV, PROBLEM XIV

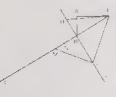
Given a line at an angle [inflexa] to a given vertical, to find a part therein through which alone, from rest, motion is made in the same time as through it and the vertical together.

Let AB be the vertical, and BC be at an angle with it; it is required to find a part in BC through which motion is made from rest in the same time as through that part together with vertical AB. Draw the horizontal AD, which the incline CB extended meets at E, and draw BF equal to BA; with center E and radius EF, describe the circle FIG, extending FE to meet the circumference at G; make BH to HF as GB is to BF. Draw HI tangent to the circle at I; then from B, erect BK perpendicular to FC, meeting line EIL at L; finally, draw LM perpendicular to EL, meeting BC at M. I say that motion in line BM from rest at B will be made in the same time as [motion] from rest at A through both AB and BM. Take EN equal to EL; and since BH is to HF as GB is to BF, then by permutation, as GB is to BH, BF is to FH; and by division. GH is to HB as BH is to HF. Hence rectangle GH-HF equals the square on HB; but the same rectangle also equals the square on HI; therefore BH is equal to HI. And since in the quadrilateral ILBH the sides HB and HI are equal, and angles B and I are right angles, side BL is also equal to [side] LI. Then EI equals EF, whence all LE (or NE) is equal to LB plus EF. Take away the common [part] EF, and the remainder FN will be equal to LB. But FB was assumed equal to BA. whence LB is equal to AB plus BN. Further, if it is assumed that the time through AB is AB itself, the time through EB will be equal to EB; but the time through all EM will be EN, that is, the mean proportional between ME and EB, whence the time of fall through the remainder BM after EB (or AB) will be BN. Now it was assumed that the time through AB is AB; therefore the time of fall through both AB and BM is AB plus BN. But since the time through EB from rest at E is EB, the time through BM from rest at B will be the mean proportional between BE and EM, which is BL. Therefore the time through both AB and BM from rest at A is AB plus BN. while the time through BM alone from rest at B is BL. But it was shown that BL is equal to AB plus BN; whence the proposition holds.

Another, more direct, proof: Let BC be the inclined plane and BA the vertical. Draw a perpendicular through B to EC,

A B

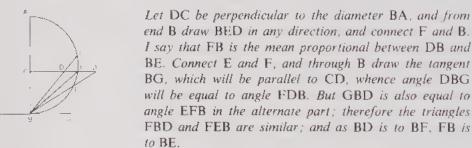




and on its extension mark BH equal to the excess of BE over BA. Draw angle BHE equal to angle HEL, and let EL extended meet BK at L; from L, erect a perpendicular LM to EL, meeting BC at M. I say that BM is the distance sought in the plane BC. For since MLE is a right angle, BL is the mean proportional between MB and BE, as LE is between ME and EB. Make EN equal to EL; the three lines NE, EL, and LH will be equal, and HB will be the excess of NE over BL. But the same HB is also the excess of NE over NB plus BA; therefore NB plus BA is equal to BL. Now if EB is assumed to be the time through EB, the time through BM from rest at B will be BL, and BN will be the time of the same after EB (or AB); and AB will be the time through AB. Therefore the time through AB plus BM is equal to AB plus BN, which is equal to the time through BM alone from rest at B; which was the intent.

260

[FIRST] LEMMA



[SECOND] LEMMA

Let line AC be greater than DF, and let AB have to BC a greater ratio than DF has to EF; I say that AB is greater than DE. For since AB has to BC a greater ratio than DE has to EF, whatever ratio AB has to BC, DE will have [that ratio] to some smaller [magnitude] than EF. Let it have this to EG. Since AB is to BC as DE is to EG, then by composition and conversion of ratios, as CA is to AB, GD will be to DE; but CA is greater than GD; hence BA is greater than DE.

[THIRD] LEMMA

Let ACIB be one quadrant of a circle, and from B draw BE parallel to AC. From some center taken in this [BE], describe the circle BOES, tangent to AB at B and

cutting the arc of the quadrant [ACIB] at I. Join C and B, and extend CI to S; I say that CI is always less than line CO. Draw AI, tangent to circle BOE. Now if DI is drawn, it will be equal to DB, since indeed DB is tangent to the quadrant, and DI is also tangent to it and perpendicular to the diameter AI, for AI is also tangent to circle BOE at I. And since angle AIC is greater than angle ABC, because it stands on a longer arc, angle SIN will also be greater than ABC; whence arc IES is greater than arc BO. And line CS, closer to the center, is greater than CB, so that CO is greater than CI, for SC is to CB as OC is to CI.

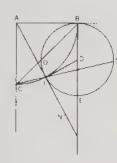
The same would apply even more if, as in the second diagram, BIC were less than a quadrant. For the vertical DB will cut the circle CIB, whence DI also [would cut it], being equal to DB, and angle DIA would be obtuse, and AIN would cut the circumference BIE. And since angle ABC is less than angle AIC, which equals SIN, this [angle] is still less than [that which] SI would form with the tangent at I; hence the arc SEI is much longer than the arc BO; therefore, etc.; which was to be demonstrated.

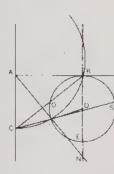
PROPOSITION XXXVI. THEOREM XXII

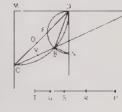
From the lowest point of a vertical circle, let an inclined plane be raised, subtending an arc no greater than one quadrant, from the ends of which two other planes are inclined, meeting at any point on the arc; descent in both these planes will be finished in a shorter time than [descent] in the first inclined plane alone, or in only the lower of these planes.

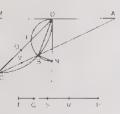
Let circumference CBD be no more than one quadrant of the vertical circle with its lowest point at C, to which is raised the plane CD; and let two planes be deflected from the ends D and C to some point B taken on the circumference; I say that the time of descent through both the planes DB and BC is briefer than the time of descent through DC alone, or through BC alone from rest at B. Draw the horizontal MDA through D, meeting CB extended at A; make DN and MC perpendicular to MD, and BN [perpendicular] to BD. Around the right triangle DBN describe the semicircle DFBN, cutting DC at F; DO is the mean proportional of CD and DF, while AV is the same of CA and AB. Let PS be the time of running through all DC, or BC (it is evident that these times of traversal

26









263

are equal) and let the time SP have to the time PR the ratio that CD has to DO; PR will be the time in which a moveable from D runs through DF, and RS [will be] that in which the remainder FC [is passed]. Since PS is also the time in which a moveable from B runs through BC, if SP is made to PT as BC is to CD, then PT will be the time of fall from A to C, since DC is the mean proportional between AC and CB, as shown above. Finally, make TP to PG as CA is to AV; PG will be the time in which a moveable from A comes to B, and GT the time of the remaining motion BC after motion from A to B. Now, since DN (the diameter of circle DFN) is vertical, lines DF and DB are run through in equal times, so if it is proved that the moveable goes more swiftly through BC after fall DB than [through] FC after running through DF, we have our goal.

But the moveable coming from D through DB will traverse BC with the same swiftness of time as if it came from A through AB, since in either fall (DB or AB) it would receive equal momenta of speed; therefore it will be demonstrated that it runs through BC after AB in shorter time than [through] FC after DF. But it has further been made clear that GT is the time in which BC is run through after AB, while RS is the time [through] FC after DF; and thus it is to be shown that RS is greater than GT. This is shown thus: since CD is to DO as SP is to PR, then by conversion of ratios and inverting. as RS is to SP, OC is to CD; but as SP is to PT, so DC is to CA; and since CA is to AV as TP is to PG, then by conversion of ratios, AC will be to CV as PT is to TG. Therefore, by equidistance of ratios, as RS is to GT, so OC is to CV; but OC is greater than CV, as is presently to be shown. Therefore time RS is greater than time GT, which was to be demonstrated.

But since CF is greater than CB and FD is less than BA, the ratio of CD to DF is greater than the ratio of CA to AB; but as CD is to DF, so the square on CO is to the square on OF, because CD, DO, and DF are [continued] proportionals. And as CA is to AB, so the square on CV is to the square on VB; therefore CO has to OF a greater ratio than CV has to VB. Hence, by the foregoing lemmas, CO is greater than CV, Moreover it is evident that the time through DC is to the time through DB-BC as D-O. C is to DO plus CV.

SCHOLIUM

From the things demonstrated, it appears that one can deduce that the swiftest movement of all from one terminus to the

other is not through the shortest line of all, which is the straight line [AC], but through the circular arc.48 For in the quadrant BAEC, of which side BC is the vertical, are AC [may be] divided into any equal parts AD, DE, EF, FG, and GC, and straight lines [may be] drawn from C to points A, D, E, F, and G, as well as straight lines AD, DE, EF, FG, and GC; and it is manifest that movement through the two [lines] AD-DC is finished more quickly than through AC alone, or [through] DC from rest at D. But from rest at A, DC is finished more quickly than the two AD-DC. Yet it seems true that from rest at A, descent is finished more quickly through the two DE-EC than through CD only; therefore descent through the three AD-DE-EC is finished more quickly than through the two AD-DC. It is likewise true that with prior descent through AD-DE, movement is made more quickly through the two EF-FC than through EC alone; hence motion is swifter through the four AD-DE-EF-FC than through the three AD-DE EC. And ultimately, after prior descent through A-D-E-F, movement is finished more quickly through the two FG-GC than through FC alone. Therefore descent is made in still shorter time through the five AD-DE-EF-FG-GC than through the four AD DE EF FC. Hence motion between two selected points, A and C, is finished the more quickly, the more closely we approach the circumference through inscribed polygons.

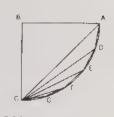
What has been explained for the quadrant happens also in arcs less than the quadrant; and the reasoning is the same.

PROPOSITION XXXVII. PROBLEM XV

Given a vertical and an inclined plane of the same height, to find a part in the incline that is equal [in length] to the vertical and is traversed in the same time as this vertical [always starting from rest at the intersection].

Let AB be the vertical and AC the inclined plane; it is required to find a part in AC, equal to the vertical AB, which is traversed from rest at A in the same time as that in which the vertical is traversed.

Take AD equal to AB, and bisect the remainder DC at I; as AC is to CI, make CI to some other [line] AE, put [in turn] equal to DG. It is evident that EG equals AD and AB. I say, moreover, that EG is that [part] which is traversed by a



^{48.} All that could properly be deduced was that the shortest descent is along some kind of curve. The curve is in fact only approximately circular, and was later shown to be cycloidal; cf. note 21, above.

214

265

C C C

moveable coming from rest at A in a time equal to the time in which the moveable falls through AB. For since CI is to AE. or ID to DG, as AC is to CI, then by inversion of ratios, as CA is to AI, so DI is to IG; and since as all CA is to all AI, so the removed part CI is to the removed part IG, the remainder 1A will be to the remainder AG as all CA is to all A1. Thus AI is the mean proportional between CA and AG, as is CI between CA and AE. Thus if we put the time through AB to be as AB, the time through AC will be AC, and CI (or ID) will be the time through AE. And since AI is the mean proportional between CA and AG, and CA is the time through all AC, the time through AG will be AI, and the remainder IC [will be the time] through the remainder GC. But DI was the time through AE, so DI and IC are the times through both AE and CG. Therefore the remainder DA will be the time through EG, equal to the time through AB; which was to be done.

COROLLARY

From this it is evident that the required distance lies between those upper and lower parts [of the inclined plane] which are traversed in equal times.

PROPOSITION XXXVIII. PROBLEM XVI

Given two horizontal planes cut by a vertical; to find a point on high in the vertical from which falling moveables, deflected into horizontal planes, will, in times equal to their times of [vertical] fall, traverse distances in these horizontals (that is, in both upper and lower) that have to one another any given ratio of lesser to greater.⁴⁹

Let the horizontal planes CD and BE be cut by the vertical ACB, and let the given ratio of lesser to greater be N to FG. It is required to find a high point in the vertical AB from which a moveable, falling and deflected into plane AC, will, in a time equal to its time of fall, traverse a distance which, compared with the distance traversed by a second moveable coming from the same high point [and moving] through plane BE [for] a time equal to the time of its fall, shall have the same ratio as the given N to FG.

266

Make GH equal to N, and make BC to CL as FH is to HG; I say that L is the required high point. For assume that CM is double CL and draw LM meeting plane BE at O; BO will

49. Cf. Fourth Day, pp. 283-85, below.

be double BL. And since BC is to CL as FH is to HG, then by composition and conversion, as HG (that is, N) is to GF, CL will be to LB; that is, CM [will be] to BO. But since CM is double LC, it follows that the distance CM is that which will be traversed in plane CD by a moveable coming from L after fall LC; and for the same reason, BO is that which is traversed after fall LB, in a time equal to the time of fall through LB, since BO is double BL; whence the proposition is evident.

Sagr. It appears to me that we may grant that our Academician was not boasting when, at the beginning of this treatise, he credited himself with bringing to us a new science concerning a most ancient subject. When I see with what ease and clarity, from a single simple postulate, he deduces the demonstrations of so many propositions, I marvel not a little that this kind of material was left untouched by Archimedes, Apollonius, Euclid, and so many other illustrious mathematicians and philosophers; especially seeing that many and thick volumes have been written on motion.

Salv. There is a little fragment of Euclid concerning motion, 50 but in it one finds no indication that he went on to investigate the ratio of acceleration, and of its diversities along different slopes. Thus one may truly say that only now has the door been opened to a new contemplation, full of admirable conclusions, infinite in number, which in time to come will be able to put other minds to work.

Sagr. Truly, I believe that just as those few properties of the circle (I mean this by way of example) demonstrated by Euclid in the third book of his *Elements* are the gateway to innumerable others, more recondite, so these [of motion] which have been produced and demonstrated in this brief treatise, when they have passed into the hands of others of a speculative turn of mind, will become the path to many others, still more marvelous. This is likely to be the case because of the preëminence of this subject above all the rest of physics.

This has been a long and laborious day, in which I have enjoyed the bare propositions more than their demonstrations, many of which I believe are such that it would take me more than an hour to understand a single one of them. That study

^{50.} The fragment, of very doubtful authenticity, was known in the Middle Ages and was printed with Euclid's works in many editions beginning in 1537.

I reserve to carry out in quiet, if you will leave the book in my hands after we have seen this part that remains, which concerns the motion of projectiles. This will be done tomorrow, if that suits you.

Salv. I shall not fail to be with you.

The Third Day Ends

Fourth Day

Salv. Simplicio is just arriving now, so let us begin on motion without delay. Here is our Author's text:

On the Motion of Projectiles

We have considered properties existing in equable motion, and those in naturally accelerated motion over inclined planes of whatever slope. In the studies on which I now enter, I shall try to present certain leading essentials, and to establish them by firm demonstrations, bearing on a moveable when its motion is compounded from two movements; that is, when it is moved equably and is also naturally accelerated. Of this kind appear to be those which we speak of as projections, the origin of which I lay down as follows.

I mentally conceive of some moveable projected on a horizontal plane, all impediments being put aside. Now it is evident from what has been said elsewhere at greater length that equable motion on this plane would be perpetual if the plane were of infinite extent; but if we assume it to be ended, and [situated] on high, the moveable (which I conceive of as being endowed with heaviness), driven to the end of this plane and going on further, adds on to its previous equable and indelible motion that downward tendency which it has from its own heaviness. Thus there emerges a certain motion, compounded from equable horizontal and from naturally accelerated downward [motion], which I call "projection." We shall demonstrate some of its properties [accidentia], of which the first is this:

PROPOSITION 1. THEOREM I

269

When a projectile is carried in motion compounded from equable horizontal and from naturally accelerated downward [motions], it describes a semiparabolic line in its movement.

Sagr. As a favor to me, Salviati, and I believe also to Simplicio, it is necessary to pause here for a moment. I did not go so deeply into geometry as to make a study of

Apollonius,² beyond my knowing that he deals with these parabolas and other conic sections. Without my knowing about these and their properties, I do not believe that the demonstrations of further propositions pertaining to them can be understood. And since already in this very first proposition proposed to us by the Author, it must be demonstrated that the line described by a projectile is parabolic, then even if we need not deal with lines other than those, I suppose it is absolutely necessary to have a complete understanding, if not of all the properties of such figures demonstrated by Apollonius, at least of those that are required for the present science.

Salv. You are too humble, wishing thus to make something new of things [cognizioni] that you assumed not long ago as well known. I refer to the matter of resistances, for when we there needed knowledge of a certain proposition of Apollonius, you made no difficulty concerning it.³

Sagr. I may have happened to know that one, or may have assumed it for the moment because it was required of me throughout that treatment. But here, where I suppose that all the demonstrations I am about to hear concern such lines, there is no point in my gulping them down, as people say, throwing away time and effort.

Simp. And for my part, I believe that although Sagredo

is well enough supplied for his needs, these very first terms already begin to strike me as novel. For although our philosophers have treated this matter of projectile motion, I don't recall that they felt themselves obliged to define the lines described thereby, other than in very general terms that these are curved lines, except for things thrown vertically upward. And unless that little that I have learned of geometry from Euclid, after our other discussions a long time ago, will be sufficient to render me capable of what is required for understanding the demonstrations to come. I shall have to content myself with merely believing the propositions without comprehending them.

Salv. But I want you to know them through the Author of the treatise himself. Now, when he allowed me to see this work of his, neither had I at that time mastered the books of Apollonius; but he took the trouble to demonstrate to me

^{2.} Apollonius of Perga (262 190 B.C.) was the author of the most complete ancient treatise on conic sections.

^{3.} See Second Day, Prop. [XII] (p. 177)

two principal properties of the parabola without [assuming] any previous knowledge [on my part]. Those are all we will need in the present treatise. They are indeed also proved by Apollonius, after many preliminaries that it would take a long time to see. My wish is that we much shorten the journey, deducing the first [proposition] immediately from the pure and simple generation of the parabola, from which in turn immediately [follows] the demonstration of the second.

Taking up the first, then, imagine a right cone whose base is the circle IBKC and whose vertex is the point L. When cut by a plane parallel to the side LK, this yields the section BAC, called a parabola, whose base cuts at right angles the diameter IK of circle IBKC. The axis AD of the parabola is parallel to the side LK. Taking any point F in line BFA, draw the straight line FE parallel to BD. Now I say that:

[FIRST LEMMA]

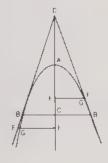
The square of BD has to the square of FE the same ratio that the axis DA has to the part AE.

Suppose a plane parallel to the circle IBKC and passing through point E; this makes a circular section in the cone, of which the diameter will be the line GEH. Since BD is perpendicular to the diameter IK of circle IBK, the square of BD will be equal to the rectangle of sides ID and DK. Likewise in the upper circle, assumed to pass through points G, F, and H, the square of line FE is equal to the rectangle of sides GE-EH. Therefore the square of BD has to the square of FE the same ratio that rectangle ID-DK has to rectangle GE-EH. And since line ED is parallel to HK, EH will be equal to DK (these being) also parallel; whence rectangle ID-DK will have to rectangle GE-EH the same ratio that ID has to GE, that is, that which DA has to AE. Hence rectangle ID-DK has to rectangle GE-EH (that is, the square BD has to the square FE) the same ratio that the axis DA has to the part AE; which was to be proved.

The other proposition necessary to the present treatise we shall make manifest thus.

[SECOND LEMMA]

Draw a parabola with its axis CA extended to D, and take any point B [on the parabola], drawing through this the line BC parallel to the base of this parabola. Take DA equal to the part CA of the axis, and draw a



272

straight line from D to B. I say that line DB does not fall within the parabola, but touches it on the outside only, at point B,

For if possible, let it [DB] fall within and cut [the parabola] above [B], or below when extended. Take in it [extended] some point G, through which draw the line FGE. Since the square of FE is greater than the square of GE, the square of FE will have a greater ratio to the square of BC than the square of GE has to [that of] BC. And since by what preceded, the square of FE is to the square of BC as line EA is to AC. then EA has a greater ratio to AC than the square of GE has to the square of BC (that is, than the square of ED has to the square of DC), seeing that in triangle DGE, ED is to DC as GE is to the parallel BC. But line EA has to AC (that is, to AD) the same ratio that four rectangles EA-AD have squares on AD—or to the square of CD, which is equal to four squares on AD. Then four rectangles EA-AD would have a greater ratio to the square square of ED has to the square of DC; and four rectangles EA AD would be greater than the square of ED. But this is false; these four (rectangles) are less, inasmuch as parts EA and AD of line ED are not equal. Hence line DB touches the parabola at B and does not cut it; which was to be demonstrated.

Simp. You proceed too grandly in your demonstrations: it seems to me that you always assume that all Euclid's propositions are as familiar and ready at hand for me as his very first axioms. That is not the case. You have just now tossed it at me, over your shoulder, that four rectangles EA-AD are less than the square of DE because the parts EA and AD of line ED are unequal. This does not satisfy me, but leaves me up in the air.

Salv. Well, all mathematicians worthy of the name take it for granted that the reader has ready at hand at least the Elements of Euclid. Here, to supply your need, it will suffice to remind you of a proposition in the second [book]. 4 where it is proved that when a line is cut into equal and unequal parts, the rectangle of unequal parts is less than the rectangle of equal parts-that is, [less] than the square of the halff-line] -by as much as the square of the line comprised between the points of section. Hence it is manifest that the square of the whole [line], which contains four squares of the half]-line], is greater than four rectangles of the unequal parts.

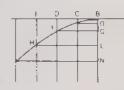
Now, we must keep in mind these two propositions just demonstrated, taken from the elements of conics, in order to understand the things to follow in the present treatise; for the Author makes use of these, and no more. So let us take up his text again, and see how he demonstrates his first proposition, in which his purpose is to prove to us that:

[THEOREM I, restated]

The line described by a heavy moveable, when it descends with a motion compounded from equable horizontal and natural falling [motion], is a semiparabola.⁵

Imagine a horizontal line or plane AB situated on high, upon which the moveable is carried from A to B in equable motion, but at B lacks support from the plane, whereupon there supervenes in the same moveable, from its own heaviness, a natural motion downward along the vertical BN. Beyond the plane AB imagine the line BE, lying straight on, as if it were the flow or measure of time, on which there are noted any equal parts of time BC, CD, DE; and from points B, C, D, and E imagine lines drawn parallel to the vertical BN. In the first of these, take some part CI; in the next, its quadruple DF; then its nonuple EH, and so on for the rest according to the rule of squares of CB, DB, and EB; or let us say, in the duplicate ratio of those lines.

If now to the moveable in equable movement beyond B toward C, we imagine to be added a motion of vertical descent according to the quantity CI, the moveable will be found after time BC to be situated at the point I. Proceeding onwards, after time DB (that is, double BC), the distance of descent will be quadruple the first distance. CI; for it was demonstrated in the earlier treatise that the spaces run through by heavy things in naturally accelerated motion are in the squared ratio of the times. And likewise the next space, EH, run through in time BE, will be as nine times [CI]; so that it manifestly

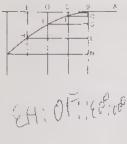


273

6. The text reads primo, but the proposition meant is Theorem II in the

second Latin treatise of the Third Day.

^{5.} This was discovered by Galileo late in 1608 in connection with a very precise experimental test of his belief that horizontal motion would remain uniform in the absence of resistance. The test required observations like those described in the ensuing paragraph. Cf. note 30 to First Day.



appears that spaces EH, DF, and CI are to one another as the squares of lines EB, DB, and CB. Now, from points I, F, and H, draw straight lines 10, FG, and HL parallel to EB; line by line, HL, FG, and IO will be equal to EB, DB, and CB respectively, and BO, BG, and BL will be equal to CI, DF, and EH. And the square of HL will be to the square of FG as line LB is to BG, while the square of FG [will be] to the square of IO as GB is to BO; therefore points I, F, and H lie in one and the same parabolic line.

And it is similarly demonstrated, assuming any equal parts of time, of any size whatever, that the places of moveables carried in like compound motion will be found at those times in the same parabolic line. Therefore the proposition is evident.

Salv. This conclusion is deduced from the converse of the first of the two lemmas given above. For if the parabola is described through points B and H, for example, and if either of the two [points], F or I, were not in the parabolic line described, then it would lie either inside or outside, and consequently line FG would be either less or greater than that which would go to terminate in the parabolic line. Whence the ratio that line LB has to BG, the square of HL would have, not to the square of FG, but to [the square of] some other [line] greater or less [than FG]. But it [the square of HL] does have [that ratio] to the square of FG. Therefore point F is on the parabola; and so on for all the others, etc.

Sagr. It cannot be denied that the reasoning is novel. ingenious, and conclusive, being argued ex suppositione; that is, by assuming that the transverse motion is kept always equable, and that the natural downward [motion] likewise maintains its tenor of always accelerating according to the squared ratio of the times; also that such motions, or their speeds, in mixing together do not alter, disturb, or impede one another. In this way, the line of the projectile, continuing its motion, will not finally degenerate into some other kind [of curve]. But this seems to me impossible; for the axis of our parabola is vertical, just as we assume the natural motion of heavy bodies to be, and it goes to end at the center of the earth. Yet the parabolic line goes ever widening from its axis, so that no projectile would ever end at the center [of the earth], or if it did, as it seems it must, then the path of

7. In general it would not reach the center, but would take an elliptical path around it. In the ensuing discussion, Galileo wishes to distinguish

the projectile would become transformed into some other line, quite different from the parabolic.

Simp. To these difficulties I add some more. One is that we assume the [initial] plane to be horizontal, which would be neither rising nor falling, and to be a straight line—as if every part of such a line could be at the same distance from the center, which is not true. For as we move away from its midpoint towards its extremities, this [line] departs ever farther from the center [of the earth], and hence it is always rising. One consequence of this is that it is impossible that the motion is perpetuated, or even remains equable through any distance; rather, it would be always growing weaker. Besides, in my opinion it is impossible to remove the impediment of the medium so that this will not destroy the equability of the transverse motion and the rule of acceleration for falling heavy things.8 All these difficulties make it highly improbable that anything demonstrated from such fickle assumptions can ever be verified in actual experiments.

Salv. All the difficulties and objections you advance are so well founded that I deem it impossible to remove them. For my part, I grant them all, as I believe our Author would also concede them. I admit that the conclusions demonstrated in the abstract are altered in the concrete, and are so falsified that horizontal [motion] is not equable; nor does natural acceleration occur [exactly] in the ratio assumed; nor is the line of the projectile parabolic, and so on. But on the other hand, I ask you not to reject in our Author what other very great men have assumed, despite its falsity. The authority of Archimedes alone should satisfy everyone; in his book On Plane Equilibrium [Mecaniche], as in the first book of his Quadrature of the Parabola, he takes it as a true principle that the arm of a balance or steelyard lies in a straight line equidistant at all points from the common center of heavy things, and that the cords to which [balance-]weights are attached hang parallel to one another. These liberties are pardoned to him by some for the reason that in using our instruments, the distances we employ are so small in comparison with the great distance to the center of our terrestrial

sharply between purely speculative results and actual phenomena near the surface of the earth.

^{8.} Note that while Sagredo had objected to a theoretical implication of Salviati's assumption, Simplicio rejects that assumption as departing from actual conditions realizable in practice.

globe that we could treat one minute of a degree at the equator as if it were a straight line, and two verticals hanging from its extremities as if they were parallel. Indeed, if such minutiae had to be taken into account in practical operations, we should have to commence by reprehending architects, who imagine that with plumb-lines they erect the highest towers in parallel lines.

Here I add that we may say that Archimedes and others imagined themselves, in their theorizing, to be situated at infinite distance from the center. In that case their said assumptions would not be false, and hence their conclusions were drawn with absolute proof.9 Then if we wish later to put to use, for a finite distance [from the center], these conclusions proved by supposing immense remoteness [therefrom], we must remove from the demonstrated truth whatever is significant in [the fact that] our distance from the center is not really infinite, though it is such that it can be called immense in comparison with the smallness of the devices employed by us. The greatest among these will be the shooting of projectiles, and in particular, artillery shots; and [even] these, though great, do not exceed four miles, in comparison with about that many thousand miles for our distance from the center. And these shots coming to end on the surface of the terrestrial globe may alter in parabolic shape only insensibly, whereas that shape is conceded to be enormously transformed in going on to end at the center.

Next, a more considerable disturbance arises from the impediment of the medium; by reason of its multiple varieties, this [disturbance] is incapable of being subjected to firm rules, understood, and made into science. Considering merely the impediment that the air makes to the motions in question here, it will be found to disturb them all in an infinitude of ways, according to the infinitely many ways that the shapes of the moveables vary, and their heaviness, and their speeds. As to speed, the greater this is, the greater will be the opposition made to it by the air, which will also impede bodies the more, the less heavy they are. Thus the falling heavy thing ought to go on accelerating in the squared ratio of the duration of its motion; yet, however heavy the moveable may be, when it falls through very great heights the impediment of the air will take away the power of increasing

^{9.} Cf. note 8, above; Salviati stresses the validity of an argument independently of the truth of the assumptions behind it.

its speed further, and will reduce it to uniform and equable motion. And this equilibration will occur more quickly and at lesser heights as the moveable shall be less heavy.

Also that motion in the horizontal plane, all obstacles being removed, ought to be equable and perpetual; but it will be altered by the air, and finally stopped; and this again happens the more quickly to the extent that the moveable is lighter.

No firm science can be given of such events of heaviness, speed, and shape, which are variable in infinitely many ways. Hence to deal with such matters scientifically, it is necessary to abstract from them. We must find and demonstrate conclusions abstracted from the impediments, in order to make use of them in practice under those limitations that experience will teach us. And it will be of no little utility that materials and their shapes shall be selected which are least subject to impediments from the medium, as are things that are very heavy, and rounded. Distances and speeds will for the most part not be so exorbitant that they cannot be reduced to management by good accounting [tara]. Indeed, in projectiles that we find practicable, which are those of heavy material and spherical shape, and even in fothers] of less heavy material, and cylindrical shape, as are arrows, launched [respectively] by slings or bows, the deviations from exact parabolic paths will be quite insensible. 10

Indeed I shall boldly say that the smallness of devices usable by us renders external and accidental impediments scarcely noticeable. Among them that of the medium is the most considerable, as I can make evident by two experiences. I shall consider movements made through air, since it is principally of these that we shall be speaking. The air exercises its force against them in two ways: one is by impeding less heavy moveables more than [it does] the heaviest ones; the other is by opposing a greater speed more than a lesser speed in the same body.

As to the first, experience shows us that two balls of equal size, one of which weighs ten or twelve times as much as the other (for example, one of lead and the other of oak), both descending from a height of 150 or 200 braccia, arrive at the earth with very little difference in speed. This assures us that the [role of] the air in impeding and retarding both

^{10.} Circumstances in which even this is not true are discussed later on; see p. 279.

277

is small; for if the lead ball, leaving from a height at the same moment as the wooden ball, were but little retarded, and the other a great deal, then over any great distance the lead ball should arrive at the ground leaving the wooden ball far behind, being ten times as heavy. But this does not happen at all; indeed, its victory will not be by even one percent of the entire height; and between a lead ball and a stone ball that weighs one-third or one-half as much, the difference in time of arrival at the ground will hardly be observable. Now the impetus that a lead ball acquires in falling from a height of 200 braccia is so great that, continuing in equable motion, it would run 400 braccia in as much time as it spent in falling, a very considerable speed with respect to that which we confer on our projectiles with bows or other devices (except for impetus depending on firing). Hence we can conclude without much error, by treating as absolutely true those propositions that are to be demonstrated without taking into account the effect of the medium.

As to the other point, we must show that the impediment received from the air by the same moveable when moved with great speed is not very much more than that which the air opposes to it in slow motion. The following experiment gives firm assurance of this. Suspend two equal lead balls from two equal threads four or five braccia long. The threads being attached above, remove both balls from the vertical. one of them by 80 degrees or more, and the other by no more than four or five degrees, and set them free. The former descends, and passing the vertical describes very large [total] arcs of 160°, 150°, 140°, etc., which gradually diminish. The other, swinging freely, passes through small arcs of 10°, 8°, 6°, etc., these also diminishing bit by bit. I say, first, that in the time that the one passes its 180°, 160°, etc., the other will pass its 10°, 8°, etc. 11 From this it is evident that the [overall] speed of the first ball will be 16 or 18 times as great as the [overall] speed of the second; and if the greater speed were to be impeded by the air more than the lesser, the oscillations in arcs of 180°, 160°, etc. should be less frequent

^{11.} That is, total time of accumulated swings through many of these successively diminishing arcs will be the same for the two pendulums, one started through 90° and one through 5°. The statement is modified at the end of the paragraph.

than those in the small arcs of 10° , 8° , 4° , and even 2° or one degree. But experiment contradicts this, for if two friends shall set themselves to count the oscillations, one counting the wide ones and the other the narrow ones, they will see that they may count not just tens, but even hundreds, without disagreeing by even one; or rather, by one single count. ¹²

This observation assures us of both [the above] propositions at once; that is, that the greatest and least oscillations all are made, swing by swing, in equal times, and that the impediment and retardation of the air does no more in the swiftest [of these] motions than in the slowest, contrary to what all of us previously believed.

Sagr. Yet since it cannot be denied that the air does impede both, because both [motions] go weakening and finally stop, we must say that the retardations are made in the same ratio in both cases. But how? How can the air make greater resistance at one time than another? Can this happen except by its being assailed at one time with greater impetus and speed, and at another with less? Now if that is the case, the amount of speed of the moveable is itself both the cause and the measure of the amount of resistance. Thus all motions, slow or fast, are retarded and impeded in the same ratio [to their speeds], which seems to me an idea not to be scorned.

Salv. Hence we can conclude, in this second case, that the [practical] fallacies in conclusions that are to be demonstrated by abstracting from external accidents, matter little respecting motions of great speed in devices which we usually deal with, or over distances that are small in relation to the radius of the earth. 13

Simp. I should like to hear your reason for sequestering things projected by the impetus of firing [fuoco], which I take it is the force of gunpowder, from other projections as by slings, bows, or catapults, [treating these] as not subject in the same way to alteration and impediment by the air.

^{12.} A disagreement of one beat after about the first thirty occurs with pendulums of the length and amplitudes here described as isochronous. It is a remarkable fact, observable in the experiment described, that this difference of one single count remains the same thereafter; the arcs are then so small as to be isochronous.

^{13.} Literally, "in relation to the magnitude of the semidiameter of great circles of the terrestrial globe."

279

Salv. Here I am influenced by the excessive, or I might say supernatural, ¹⁴ violence [furia] with which these projectiles are shot. It seems to me no exaggeration to say that the speed with which the ball is shot from musket or cannon may be called "supernatural," for in natural fall through air from some immense height, the speed of the ball—thanks to opposition from the air—will not go on increasing forever. Rather, what will happen is seen in bodies of very little weight falling through no great distance; I mean, a reduction to equable motion, which will occur also in a lead or iron ball after the descent of some thousands of braccia. This bounded terminal speed may be called the maximum that such a heavy body can naturally attain through air, and I deem this speed to be much smaller than that which can be impressed on the same ball by exploding powder.

A very suitable [acconcia] experiment can assure us of this. From a height of one hundred braccia or more, fire a lead bullet from an arquebus vertically downward on a stone pavement.15 Then shoot with the same [gun] against a like stone from a distance of one or two braccia, and see which of the two bullets is more badly smashed. If the one which came from on high is found to be less flattened than the other, it will be a sign that the air impeded the first [bullet] and diminished the speed conferred on it at the beginning of its motion by the firing, and that consequently the air does not permit this [second] speed ever to be gained by a bullet coming from as great a height as you please. For if the speed impressed on it by firing did not exceed that which it could acquire by itself in falling naturally, its thrust [botta] downward ought to be more effective, rather than less so. I have not made such an experiment, but I am inclined to believe that the ball from an arquebus or a cannon, coming from any height whatever, will not strike the blow that it makes against a wall a few braccia distant; that is, when so close that the short penetration, or we might say "cut," to be made in the air is insufficient to take away the excess of the supernatural violence impressed on it by firing.

^{14.} The word "supernatural" does not mean miraculous, but simply "not natural"; that is, incapable of being acquired in natural acceleration (free fall) through a given medium, from any height whatever. Thus the muzzle velocity of a cannonball may be greater than the speed it gains in any fall through air, where a terminal velocity is ultimately reached.

15. See note 65 to First Day.

This excessive impetus of violent shots can cause some deformation in the path of a projectile, making the beginning of the parabola less tilted and curved than its end. But this will prejudice our Author little or nothing in practicable operations, his main result being the compilation of a table of what is called the "range" of shots, containing the distances at which balls fired at [extremely] different elevations will fall. Since such shots are made with mortars charged with but little powder, the impetus is not supernatural in these, and the [mortar] shots trace out their paths quite precisely. ¹⁶

Meanwhile we have got ahead of the treatise, where the Author [next] wants to introduce to us the contemplation and investigation of the impetus of a moveable when it moves with one motion compounded from two; and first, of the composition of two equable [motions], one horizontal and the other vertical.¹⁷

PROPOSITION II. THEOREM II.

If some moveable is equably moved in double motion, that is, horizontal and vertical, then the impetus or momentum of the movement compounded from both will be equal in the square¹⁸ to both momenta of the original motions.

Let some moveable be equably moved in double motion, the vertical displacements [mutationi] corresponding to space AB, and let the horizontal movement traversed in the same time correspond to BC. Since spaces AB and BC are traversed in the same time, in equable motions, the momenta of those motions will be to one another as AB is to BC, and the moveable that is moved according to these displacements will describe the diagonal AC, while its momentum of speed will be as AC.

16. It had long been known that artillery shots descend more sharply near the end to their flight; cf. Tartaglia's diagrams (1537), *Mechanics in Italy*, pp. 78-94 passim. Galileo here restricts his later tables (pp. 304, 307) to low-speed mortar shots on the grounds that long-range artillery is never fired at great elevations.

17. The composition of velocities of this type had been noted in antiquity, at least so far as the direction of the resultant motion was concerned; see *Questions of Mechanics*, 1 (Loeb ed., pp. 337-39). But strict Aristotelians clung to the idea that only one motion could act on a body at one time, whence disparate motions must impede one another (*Physica* 202a.34). A moving body was thought to obey the motion that was the more powerful at a given instant; cf. *Mechanics in Italy*, p. 80, and Galileo's counter arguments, *Dialogue*, pp. 176-79 (*Opere*, VII, 203-5).

18. See Glossary. The terminology is antiquated, but the idea is that of vector addition. See further, pp. 288-89.

and the second s

281

Truly AC is equal in the square to AB and BC; therefore the momentum compounded from both momenta of AB and BC is equal in the square to both of them taken together; which was to be shown.

Simp. You must remove a little doubt that is aroused in me. It seems to me that what has just been concluded contradicts another proposition, in the foregoing treatise, where it was affirmed that the impetus of the moveable coming from A to B is equal to that [of a moveable] coming from A to C. But now it is concluded that the impetus at C is greater than that at B.

Salv. Both propositions are true, Simplicio, but quite different from one another. Here, a single moveable is spoken of, moved by a single motion compounded from two, both equable; whereas there, two moveables were concerned, moved by naturally accelerated motions, one through the vertical AB and the other through the inclined plane AC. Besides, there the times were not assumed to be equal, but the time through the incline AC was greater than the time through the vertical AB. In the motion of which we are now speaking, all motions through AB, BC, and AC are meant to be equable and to be made in the same time.

Simp. Excuse me, and go on, for I am satisfied.

Salv. The Author next undertakes to lead us to understand what happens with the impetus of a moveable moved by one motion compounded from two, one horizontal and equable, and the other vertical and naturally accelerated; from which finally are compounded the motion of the projectile, and the parabolic line is described. It is sought to demonstrate the magnitude of the impetus of the projectile at every point in this [curve]. For an understanding of this, the Author shows us the way, or let us say gives us the method, of finding a rule for and measuring that impetus along the line in which a falling heavy body descends with naturally accelerated motion starting from rest. He says:

PROPOSITION III. THEOREM III

Let motion take place from rest at A through line AB,

^{19.} Simplicio refers to the Postulate, Third Day (pp. 205, 218).

^{20.} An earlier attempt to analyze the impetus of a projectile (as distinguished from its path) was made by Tartaglia; cf. *Mechanics in Italy*, pp. 81, 91-93.

and take therein some point C. Assume AC to be the time, or measure of the time, of fall through space AC, as well as the measure of the impetus or momentum at point C acquired from descent AC. And take in the same line AB some other point such as B, at which is to be determined the impetus acquired by the moveable from descent AB, as a ratio to the impetus obtained at C, of which the measure was assumed to be AC. Let AS be the mean proportional between BA and AC; we shall demonstrate that the impetus at B is to the impetus at C as line SA is to AC.

Draw the horizontal lines CD (double AC) and BE (double BA); it follows from what has been demonstrated that [a moveable] falling through AC, turned into the horizontal CD and carried in equable motion according to the impetus acquired at C, traverses space CD in a time equal to that in which AC was traversed in accelerated motion, Similarly, BE is traversed in the same time as AB. But the time of fall AB is AS; therefore the horizontal BE is traversed in time AS. Make EB to BL as time SA is to time AC. Since motion through BE is equable, space BL will be run through in time AC with the momentum of swiftness [acquired] at B. But in the same time, AC, the space CD is traversed with the momentum of swiftness [acquired] at C; and the momenta of swiftness are to each other as the spaces traversed in the same time with these momenta. Therefore the momentum of swiftness at C is to the momentum of swiftness at B as DC is to BL. Now, as DC is to BE, so are their halves, that is, so CA is to AB, while as EB is to BL, so BA is to AS. Hence, by equidistance of ratios, as DC is to BL, so CA is to AS; that is, as the momentum of swiftness at C is to the momentum of swiftness at B, so CA is to AS; that is, as the time through CA is to the time through AB.

This makes evident the rule for measuring the impetus or momentum of swiftness over the line in which motion of descent takes place, which impetus is assumed to increase in the ratio of the times. But here, before we proceed, it is first to be noted that we are going to speak of motion compounded from equable horizontal and naturally accelerated downward [motions]. From such a mixture is produced [conflatur] the path of projectiles; that is, the parabola is traced; and we must define some common standard according to which we may measure the speed, impetus, or momentum of both motions. Now, there

are innumerable degrees of speed for equable motions, and one of these is to be taken, not at random from the indefinitely many, but rather one [is to be selected] that is compatible and connected with a degree of speed acquired through naturally accelerated motion.

I can think of no easier way to select and determine this than by taking some motion of that same kind. To explain myself more clearly; I imagine the vertical AC and the horizontal CB. AC being the altitude and BC the amplitude of the semiparabola described by the compounding of two motions, one of which is that of a moveable descending through AC in naturally accelerated motion from rest at A, and the other is that of equable transverse motion through the horizontal AD. The impetus acquired at C by descent through AC is determined by the quantity of height AC; for the impetus of a moveable falling from the same height is ever one and the same. But innumerable degrees of speed may be assigned to equable motion in the horizontal, not just one. From that multitude I may select one and segregate it from the rest, as if pointing a finger at it, by extending upward the altitude CA, in which, whenever necessary, I shall fix the "sublimity" AE.21

Now if I mentally conceive something falling from rest at E, it is evident that the impetus it acquires at terminus A is identical with that with which I conceive the same moveable to be carried when [it is] turned through the horizontal AD. This is that degree of swiftness with which, in the time of fall through EA, it would traverse double that distance EA in the horizontal. This prefatory remark I consider necessary.

It is further to be noted that I call the horizontal [line] CB the "amplitude" of semiparabola AB; [I call] the axis of this parabola, AC, its "altitude"; and the line EA, from descent through which the horizontal impetus is determined, I call the "sublimity" [of the parabola].

These things explained and defined. I now go on to the things to be demonstrated.

Sagr. Pause, I pray you, because it seems to me proper to adorn the Author's thought here with its conformity to a conception of Plato's regarding the determination of the various speeds of equable motion in the celestial motions of

^{21.} Galileo's "sublimity" is equivalent to the distance from apex to the point of intersection of axis and directrix of a vertical parabola.

revolution. Perhaps entertaining the idea that a moveable cannot pass from rest to any determinate degree of speed, in which it must then equably perpetuate itself, except by passing through all the other lesser degrees of speed (or let us say of greater slowness) that come between the assigned degree and the highest [degree] of slowness, which is rest, he said that God, after having created the movable celestial bodies, in order to assign to them those speeds with which they must be moved perpetually in equable circular motion. made them depart from rest and move through determinate spaces in that natural straight motion in which we sensibly see our moveables to be moved from the state of rest, successively accelerating. And he added that these having been made to gain that degree [of speed] which it pleased God that they should maintain forever. He turned their straight motion into circulation, the only kind [of motion] that is suitable to be conserved equably, turning always without retreat from or approach toward any pre-established goal desired by them. The conception is truly worthy of Plato, and is to be the more esteemed to the extent that its foundations, of which Plato remained silent, but which were discovered by our Author in removing their poetical mask or semblance, show it in the guise of a true story.

And since, through very competent astronomical doctrines, we have data about the sizes of the planetary orbs and the distances from the center about which they turn, as well as about their speeds, it seems very credible to me that our Author, from whom the Platonic concept did not remain hidden, may at some time have had the curiosity to try whether he could assign a determinate sublimity from which the bodies of the planets left from a state of rest, and were moved through certain distances in straight and naturally accelerated motion, and were then turned at the acquired speeds into equable motions. This might be found to correspond with the sizes of their orbits and the times of their revolutions.

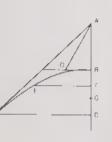
Salv. Indeed, I seem to remember that he told me he had once made the computation, and also that he found it to answer very closely to the observations.²² But he did not

^{22.} See Dialogue, pp. 20-21, 29-30 (Opere, VII, 44-45, 53-54). Galileo's cosmogonical speculation could not be reconciled with astronomical data, as shown by Marin Mersenne (Harmonie Universelle, Paris, 1636-37, Bk. 2, pp. 103 ff.). The passage in Plato behind which Galileo

want to talk about it, judging that he had discovered too many novelties that have provoked the anger of many, and others might kindle still more sparks. But if anyone should have a similar wish, he may satisfy his taste for himself through the teachings of the present treatise. So let us get on with our material, which is to demonstrate:

PROPOSITION IV. PROBLEM I

How to determine the impetus at any given point [punctis singulis] in a given parabola described by a projectile. Let BEC be the semiparahola whose amplitude is CD and whose altitude is DB, which [latter] extended upward meets the tangent CA to the parabola at A. Draw the horizontal BI through the vertex B and parallel to CD. Now if the amplitude CD is equal to the whole altitude DA, then BI will equal BA and BD; and if the time of fall through AB and the momentum of speed acquired at B through descent AB from rest at A are [both] assumed to be measured by this same AB, then DC, double BI, will be the space traversed in the same time when [the moveable is] turned through the horizontal with impetus AB. But in the same time, falling through BD from rest at B, it traverses the altitude BD: therefore the moveable falling from rest at A through AB, and turned through the horizontal with impetus AB, traverses a space equal to DC. Fall through BD supervening, the altitude BD is traversed and the parabola BC is traced, in which the impetus at terminus C is made up of the equable transverse [motion] whose momentum is as AB, and the other momentum acquired in descent BD at terminus D (or C), which momenta are equal. Hence if we assume AB to be the measure of either of these, say of the equable transverse [momentum], while B1 (which is equal to BD) is the measure of the impetus acquired at D (or C), then the subtended [line] IA will be the quantity of the momentum compounded from both. This will therefore be



285

claimed to have found his mathematical rule was probably *Timaeus*, 38-39, beginning: "Now, when all the stars . . ." There seems to be a contradiction in the discussion here. The higher speed of the inner planets, if acquired in this way, ought to give them larger orbits than the outer planets, even allowing that the Divine will converted Galileo's parabolas into circles. Probably what Galileo had noted was that the planetary speeds are inversely as the square roots of their distances from the sun, a relation strikingly like the law of free fall. But the inverse proportionality is not made a direct one by reversing the direction of fall.

the quantity or measure of the combined [integri] momenta with which impetus is made at C by the projectile coming through parabola BC.

Keeping this in mind, take in the parabola any point E at which the impetus of the projectile is to be determined. Draw the horizontal EF, and take BG as the mean proportional between BD and BF; since it was assumed that AB (or BD) is the measure of the time and of the momentum of speed in fall BD from rest at B, then BG will be the time, or measure of time and impetus, at F, coming from B. If, therefore, BO is taken equal to BG, the added diagonal AO will be the quantity of impetus at point E; for AB is assumed to determine the time and impetus at B, which [impetus] turned through the horizontal continues always the same, while BO determines the impetus at F (or E) through fall from rest at B through altitude BF. But AO is equal in the square to both AB and BO together; what was sought is therefore evident.

Sagr. The theory of compounding these different impetuses and of the quantity of impetus that results from such mixing is so new to me as to leave no little confusion in my mind. I speak not of the mixing of two equable movements, one along the horizontal line and the other along the vertical, even though unequal to one another; for as to this, I quite understand that a motion results which is equal in the square to both components of it. But I am confused by the mixture of equable horizontal and naturally accelerated vertical [motion]. So I should appreciate it if we were to digest this matter a bit more thoroughly.

Simp. I am even more in need of that, since I am still not entirely satisfied in my own mind, as is necessary, about these propositions which are to be the essential foundations of others to follow. What I mean is that even as to the mixing of two equable motions, horizontal and vertical, I need to understand better that "power" [that "in the square"] of their compounding. You, Salviati, surely understand our need and our wishes.

Salv. The wish is very reasonable, and since I have had a longer time than you to think it over, I shall try to ease your understanding if I can. But you must bear with me, and excuse me if in the discussion of it I repeat a good deal of what was already set forth by the Author.

We can reason definitively about movements and their

speeds or impetuses (whether these are equable or naturally accelerated) only if we first determine some standard [misura] that we can use to measure such speeds, as also some measure of time. As to the measure of time, we already have universal agreement on hours, minutes, seconds, etc.; and just as the measure of time is for us that one in common use, accepted by everybody, so it is necessary to assign some measure for speeds to be commonly understood and accepted by all; that is, one that will be the same for everyone.

As explained previously, the Author deemed suitable for such a purpose the [accelerated] speed of naturally falling heavy bodies, of which the growing speeds keep the same tenor everywhere in the world.23 Thus, for example, the speed acquired by a one-pound lead ball starting from rest and falling from a height of one pikestaff [picca] is always and everywhere the same, and for that reason it is very well suited to stand for [explicar] the impetus deriving from natural descent. It now remains to find the method of determining also the quantity of impetus in an equable motion, in such a way that everyone who reasons about this may form the same conception of its magnitude and speed. In this way, one man will not imagine it faster and another slower, with the result that in conjoining and mixing this [motion], originally conceived as equable, with the established [statuito] accelerated motion, different men shall not form different ideas involving divergent magnitudes of [compound] impetuses.

To determine and represent this unique [particolare] impetus and speed, our Author has found no better means than to make use of the impetus acquired by the moveable in [a specified] naturally accelerated motion. Any acquired momentum, turned to equable motion, retains its limited speed precisely, and it is such that in another time equal to that of the descent, it will pass through exactly twice the distance of the height from which fall took place. Since this is a principal point in the matter we are discussing, it is good to make it completely understood by means of some particular example.

Consider again, therefore, the speed and the impetus acquired by a heavy body falling from a height of one

^{23.} Galileo had no reason to suspect that altitude and latitude affect the acceleration of free fall. He was certainly the first to propose a worldwide standard of measure based on a universally familiar phenomenon.

pikestaff; we wish to make use of this speed as a measure of other speeds and impetuses on other occasions. Assume, for example, that the time of such a fall is four seconds.24 Now, in order to find, by this measure, the impetus of the body falling from any other height, greater or smaller, we must not argue from the ratio of this new height to the height of one pikestaff, and deduce the amount of impetus acquired through the second height by thinking, for example, that in falling from a quadruple height the body would acquire four times the speed, because that is false.25 For the speed of naturally accelerated motion increases or diminishes not in the ratio of the distances, but in that of the times; and the ratio of distances is greater than this in a squared ratio, as was already demonstrated. Thus when we have taken one part in a straight line for the measure of speed, and also for the time and for the space passed in that time-since, for the sake of brevity, all three of these magnitudes are often represented on the same line-then, in order to find the quantity of time and the degree of speed that the same moveable will have acquired at some other distance, we do not obtain this immediately from that second distance, but from the line that is the mean proportional between the two distances.

I can explain myself better by an example. In the vertical line AC, the part AB is assumed to be the space passed by a heavy body falling naturally in accelerated motion. I can represent the time of that passage by any fine I please, and to be brief I wish to represent this to be as much as the line AB. Likewise, for a measure of the impetus and of the speed acquired through such motion, I still take the line AB, so that the measure of all the spaces to be considered in the course of the reasoning is this segment AB. Having established these three measures at pleasure, under a single magnitude AB, [these being measures] of such diverse quantities as spaces, times, and impetuses, let it be proposed to determine the assigned distance and height AC, the amount of time of fall from A to C, and the amount of impetus found to be acquired at the terminus C, [all] in relation to the time and

288

La

^{24.} The picca being about 12 feet, and free fall covering 16 feet in the first second, Galileo's assumption is clearly arbitary and intended only for the purpose of illustration, as was his earlier assumption of fall through 100 braccia in 5 seconds (Dialogue, p. 233 (Opere, VII, 250); cf. Opere, XVIII, 77.

^{25.} Cf. note 10 to Third Day.

impetus measured by AB. Both questions will be determined by taking the mean proportional AD of the two lines AC and AB, affirming that the time of fall through the whole distance AC is as much as the time AD in relation to the [unit] time AB, which was assumed at the outset to be the quantity of time in the fall AB. Likewise, we shall say that the impetus, or degree of speed, that the falling body will attain at the terminus C, in relation to the impetus that it had at B, is this same line AD in relation to AB, seeing that the speed increases in the same ratio as does the time. This conclusion was taken as a postulate; yet the Author wanted to explain its application above, in Proposition III.

This point being well understood and established, we come to the consideration of the impetus deriving from two motions compounded, one [instance] of which shall be [motion] compounded of horizontal and always equable [motion] together with a vertical [motion] when this is also always equable. The other [instance] will be [motion] compounded from the horizontal, still always equable, and the vertical naturally accelerated [motion].

When both are equable, it has already been seen that the resultant impetus from a compounding of both is equal in the square to both [components]. This, for clear understanding, we shall exemplify thus: It is assumed that the moveable falling through the vertical AB has, for example, three degrees of equable impetus, while carried along BC [text: AB] toward C its speed and impetus are four degrees. so that in the time that in falling it would pass three braccia, for example, in the vertical, it would pass four in the horizontal. But in the compounding of both speeds, it comes in the same time from point A to terminus C, traveling always in the diagonal AC. This is not of length 7, as would be the compound of the two, AB, 3, and BC, 4; but it is [of length 5, which 5 is equal in the square to the two. 3 and 4; for if the squares of 3 and 4 are taken, which are 9 and 16. and they are added together, they make 25 as the square of AC, and this is equal to the two squares of AB and BC: whence AC will be as much as the side, or let us call it the root, of the square 25, which is 5.

For a firm and secure rule, then, when one must designate the quantity of impetus resulting from two given impetuses, one horizontal and the other vertical, both being equable, one must take the squares of both, add these together, and

^

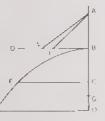
+ D

extract the square root of their combination; this will give us the quantity of the impetus compounded from both. And thus in the example given, the moveable that in virtue of its vertical motion would have struck on the horizontal with three degrees of force, and with its horizontal motion alone would have struck at C with four degrees, in striking then with both impetuses combined, the blow will be that of a striker moved with five degrees of speed and force. And such a stroke would be of the same value at any point of the diagonal AC, the impetuses compounded being always the same and never increased or diminished.

Now let us see what happens in compounding equable horizontal motion with a vertical motion, starting from rest, and naturally accelerating. It is already manifest that the diagonal which is the line of the motion compounded from these two is not a straight line, but a semiparabola, as has been shown, in which the impetus goes always growing, thanks to the continual growth of speed in the vertical motion. Hence in order to determine the impetus at an assigned point of this parabolic diagonal, it is first necessary to assign the quantity of uniform horizontal impetus, and then to investigate the impetus due to falling at the assigned point, which cannot be determined without consideration of the time elapsed from the beginning of the compounding of the two motions. This consideration of time is not required in the compounding of equable motions, the speeds and impetuses of which are always the same. But here, where there enters a mixing of motion that starts from the greatest slowness and increases its speed in accordance with the continuation of time, it is necessary that the quantity of time shall manifest to us the quantity of the degree of speed at the given point. As for the rest, the impetus compounded from these two is (as in uniform motions) equal in the square to both components.

Here again it is best that I explain by an example. In the vertical AC take any part AB, which I imagine to serve as a measure of the space of natural motion in this vertical, and likewise as a measure of the time, and also of the degree of speed, or let us say of the impetus. Now first, it is evident that if the impetus at B of the [body] falling from rest at A shall be turned upon BD parallel to the horizontal, in equable motion, then the quantity of its speed will be such that in the time AB it will pass a distance twice the distance AB; and so much is the line BD. Next, taking BC equal to BA, draw CE parallel

290 D



and equal to BD, marking the parabolic line BEI through points B and E. Since the horizontal BD (or CE), double AB, is passed in time AB with impetus AB, and in equal time the vertical BC is passed with the impetus acquired at C, equal to that same horizontal [BD], the moveable will be found to have come in a time equal to AB through the parabola BE from B to E, with a single impetus compounded from two, each equal to impetus AB. And since one of these is horizontal and the other is vertical, the impetus compounded from them will be equal in the square to both of them; that is, [its square will be] twice the square of either one. Whence BF being taken equal to BA, and the diagonal AF being drawn, the impetus and blow at E will be greater than the blow at E [dealt] by a body falling from height E, or than the blow of the horizontal impetus through E, in the ratio of E to E.

But, always keeping BA as the measure of the distance of fall to B from rest at A, and as a measure of the time and of the impetus of the falling [body] acquired at B, if the height BO is not equal to, but is greater than, BA, then take the mean proportional BG between AB and BO as the measure of time and impetus acquired at O by fall through height BO. The distance through the horizontal, passed with impetus AB in time AB, will be double AB; but during the time BG it will be greater [than AB] in proportion as BG is greater than BA. Next, taking LB equal to BG, draw the diagonal AL, from which we shall have the compounded quantity of the two impetuses, horizontal and vertical, by which the parabola is described; of these, the horizontal [impetus] is equable and is acquired at B by the fall AB, while the other is that acquired at O, or let us say at I, by the fall BO in time BG, which [latter] is also the quantity of its momentum. By similar reasoning we may investigate the impetus at the extreme end of the parabola when its altitude is less than the sublimity AB, taking the mean proportional between the two. Setting this along the horizontal in place of BF, and drawing the diagonal AF, we shall have from this the quantity of the impetus at the extreme end of the parabola.

To that which has been said up to this point about these impetuses, blows, or let us say impacts of projectiles, we should add one other very necessary consideration. This is that it is not sufficient to have in mind just the speed of the projectile, in order to determine fully the force and energy of its impact, but it is further necessary to specify separately the

state and condition of that which receives the impact, in the effectiveness of which this [condition] has a great share and contribution in several respects. First, everyone understands that the thing struck suffers violence thereby from the speed of the thing striking [only] to the extent that it opposes this and entirely or partly restrains [frena] its motion. For if a blow arrives on that which yields to the speed of the striker without any resistance at all, there will be no blow. And he who runs to strike an enemy with his lance, if it happens that as he overtakes him the enemy moves in flight with like speed, will effect no blow, and the action will be a simple touching without wounding. If an impact is received in an object that does not yield to the striker entirely, but only partly, the impact will [do] damage, not with all its impetus, but only with the excess of speed of the striker over the speed of retirement and yielding of the thing struck. For example, if the striker arrives with ten degrees of speed upon the thing struck, which, by yielding partly, retires with four degrees, then the impetus and impact will be as of six degrees. And finally, the impact on the part of the striker will be entire and maximal when the struck does not yield at all, but entirely opposes itself and stops all the motion of the striker, if indeed this can happen. 26

I said [impact] "on the part of the striker," because if the struck moves with contrary motion against the striker, the blow and the encounter will be made so much the more strongly, as the two contrary speeds united are greater than that of the striker alone. Moreover, it must also be noticed that to yield more, or less, may derive not only from the quality of the material, harder or less hard, as of iron, or lead, or wool, etc., but also from the placement of the body that receives the impact. If this placement is such that the motion of the striker comes against it at right angles, the impetus of the impact will be maximal; but if the motion comes obliquely, and gives a slanting blow as we say, the blow will be weaker, and the more so according to the greater obliquity. For any object obliquely situated, though of very solid material, does not remove and stop all the impetus and motion of the striker, which escapes and passes on beyond, continuing (at least in part) to be moved over the surface of the opposed resistent.

^{26.} A perspicuous question which later was to become central in the development of conservation laws in physics. That Galileo rejected the possibility of impact without effect is evident in the Added Day; see p. 337.

If therefore the magnitude of the impetus of the projectile at the extremity of its parabolic line is determined as above, it must be understood as being the impact received on a line at right angles to the parabolic [line], or rather to its tangent at the said point; for although the motion is compounded of a horizontal and a vertical [motion], the impetus is not maximal either upon the horizontal or upon the vertical, being received obliquely on both.

Sagr. Your bringing up of these blows and impacts has awakened in my mind a problem, or call it a question, of mechanics; one to which I have not found the answer in any writer, nor anything that lessens my marvel at it, or even partially satisfies my mind. This doubt and puzzlement resides in my inability to understand the origin and principle of the immense energy and force that is seen to exist in impact, when, with a simple blow of a hammer that weighs no more than eight or ten pounds, we see resistances overcome that would not yield to the weight of a body exerting its impetus on it without impact, by merely weighing down on and pressing it. though this heaviness may amount to many hundreds of pounds. I should still like to find a way of measuring this force of impact, which I do not believe to be infinite, but rather think that it has its limit of equalization with, and finally of control by, other forces—pressure, heaviness, levers, screws, and other mechanical instruments, the multiplication of force by which I quite understand.

Salv. You are by no means alone in marveling at the effect of such puzzling events, and at the obscurity of their cause. I thought about these things for some time in vain, my confusion merely growing, until finally, meeting with our Academician, I received double consolation from him-first, by hearing that he, too, had long remained in the same shadows, and second. by his telling me that after he had spent thousands of hours during his life in theorizing and philosophizing about this, he had arrived at some ideas very distant from our first conceptions, and hence novel, and admirable for their novelty. And, since I now know that your curiosity will make you glad to hear those thoughts - which are far from easy to believe- 1 shall not await your request, but shall tell you of them. As soon as we have read this treatise on projectiles, I shall explain to you all those fantasies, or let us say extravagancies, that stick in my memory from the reasonings of the Academician. Meanwhile let us go on with the Author's propositions.

PROPOSITION V. PROBLEM [II]

In the axis of a given parabola extended [upward], to find a high point from which a falling body describes this same parabola [when deflected horizontally at its vertex].

Let there be a parabola AB whose amplitude is HB and whose axis extended is HE. We seek the sublimity from which a falling body, being turned horizontally with the impetus agained at A. describes the said parabola. Draw the horizontal AG parallel to BH, and putting AF equal to AH, draw the straight line FB tangent to the parabola at B, which intersects the horizontal line AG at G. Take AE, the third proportional to FA and AG; I say that E is the high point sought, from which a body falling from rest at E, and turned into the horizontal with the impetus acquired at A, where there supervenes the impetus of fall to H [as if] from rest at A, will describe the parabola AB. If we assume EA to be the measure of time of fall from E to A and of the impetus acquired at A, then AG, (that is, the mean proportional between EA and AF) will be the time and impetus of fall from F to A or from A to H. And since [the moveable] coming from E in time EA with the impetus acquired at A will traverse twice EA in equable horizontal movement [in time EA]. movement at that same impetus would also traverse twice GA in time AG, one-half of BH (for the spaces traversed in equable motion are to one another as their times of motion); and in vertical motion from rest, during the same time GA, it would traverse AH. Therefore the amplitude HB and the altitude AH would be traversed by the moveable in the same time. Thus the parabola AB is described by fall from sublimity E; which was to be found.

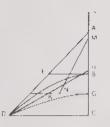
COROLLARY

From this it follows that one-half the base, or amplitude, of a semiparabola (which is one-quarter the amplitude of the whole parabola) is a mean proportional between its altitude and the sublimity from which a falling [body] would describe it.

PROPOSITION VI. PROBLEM [III]

Given the sublimity and the altitude of a semiparabola, to find its amplitude.

Let DC be a horizontal line and AC a vertical to it, in which are given the altitude CB and the sublimity BA; it is required to find in the horizontal CD the amplitude of the semiparabola



295

which is determined by the sublimity BA and the altitude BC. The mean proportional between CB and BA is to be taken, of which the double is put as CD; I say that CD is the required amplitude. This is manifest from the preceding [corollary].

PROPOSITION VII. THEOREM [IV]

In projectiles by which semiparabolas of the same amplitude are described, less impetus is required for the describing of one whose amplitude is double its altitude than for any other.

Let semiparabola BD be one whose amplitude CD is double its altitude CB; and in the axis extended upward, take BA equal to the altitude BC. Draw AD, which will be tangent to the semiparabola at D and will intersect the horizontal BE at E, while BE will be equal to BC (or BA). It follows that this [curve] will be described by a projectile whose equable horizontal impetus is that of fall from rest at A to B, and whose natural downward impetus is that of fall to C from rest at B. From this it is evident that the impetus compounded from these and impinging on point D, is as the diagonal AE, equal in the square to both [CD and DB].

Now let some other semiparabola GD be taken, whose amplitude is the same CD, but whose altitude CG is less (or greater) than the altitude BC. Let HD be tangent to this. intersecting the horizontal through G at point K. Make KG to GL as HG is to GK; the sublimity [altitudo] GL, as previously demonstrated, will be that from which a falling [body] describes parabola GD. Let GM be the mean proportional between AB and GL; then GM will be the time and the momentum or impetus at G [after] fall from L.; for it is assumed that AB is the measure of time and impetus. Let GN be the mean proportional between BC and CG; this will be the measure of the time and impetus of fall from G to C. Therefore, joining MN, this will be the measure of impetus of a projectile through the parabola DG. striking at D. This impetus, I say, is greater than the impetus of a projectile through parabola BD, of which the quantity was as AE. For since GN was taken as the mean proportional between BC and CG, and BC is equal to BE or KG (for each is one-half DC). NG is to GK as CG is to GN; and as CG (or HG) is to GK, so the square of NG is to the square of GK. But as HG is to GK, so. by construction, is KG to GL; therefore as NG is to the square of GK, so KG is to GL. But as KG is to GL, so the square of KG is to the square of GM, since GM is the mean proportional between KG and GL. Thus the three squares of NG, KG, and

GM are in continued proportion, and the [product of the] two extremes NG and GM (that is, the square of MN) is greater than twice the square of KG, of which the square is twice AE. Hence the square of MN is greater than the square of AE, and line MN is greater than line EA; which was to be demonstrated.

COROLLARY

296

From this it is clear that in reverse [direction] through the semiparabola DB, the projectile from point D requires less impetus that through any other [semiparabola] having greater or smaller elevation than semiparabola BD, which [elevation] is according to the tangent AD and contains one-half a right angle with the horizontal. Hence it follows that if projections are made with the same impetus from point D, but according to different elevations, the maximum projection, or amplitude of semiparabola (or whole parabola) will be that corresponding to the elevation of half a right angle. The others, made according to larger or smaller angles, will be shorter [in range].

Sagr. The force of necessary demonstrations is full of marvel and delight; and such are mathematical [demonstrations] alone. I already knew, by trusting to the accounts of many bombardiers, that the maximum of all ranges of shots, for artillery pieces or mortars—that is, that shot which takes the ball farthest—is the one made at elevation of half a right angle, which they call "at the sixth point of the [gunner's] square." But to understand the reason for this phenomenon infinitely surpasses the simple idea obtained from the statements of others, or even from experience many times repeated.

Salv. You say well. The knowledge of one single effect acquired through its causes opens the mind to the understanding and certainty of other effects without need of recourse to experiments. That is exactly what happens in the present instance; for having gained by demonstrative reasoning the certainty that the maximum of all ranges of shots is that of elevation at half a right angle, the Author demonstrates to us something that has perhaps not been observed through

^{27.} An instrument devised by Tartaglia for measuring the elevation of a cannon; see *Mechanics in Italy*, p. 64. It consisted of a rigid right angle having a plumb line suspended from the inside corner, and was read along a quadrant graduated into twelve equal arcs of $7\frac{1}{2}$ degrees each, called "points." A horizontal shot was accordingly called "point blank."

297

experiment; and this is that of the other shots, those are equal [in range] to one another whose elevations exceed or fall short of half a right angle by equal angles. Thus two balls shot, one at an elevation of $52\frac{1}{2}$ [7 punti] from the horizon, and the other at $37\frac{1}{2}$ [5 punti], strike the ground at equal distances; as do those shot at 60° and 30° , or at $67\frac{1}{2}$ and $22\frac{1}{2}$ °, and so on. Now let us hear the proof.

PROPOSITION VIII. THEOREM [V]

The amplitudes of parabolas described by projectiles sent forth with the same impetus, according to elevations having angles equidistant above and below half a right angle, are equal to one another.

In triangle MCB, around its right angle C, let the horizontal BC and the vertical CM be equal; angle MBC will then be half a right angle. Extend CM to D and form at B two equal angles? MBC and MBD, above and below the diagonal MB. It is to be demonstrated that the amplitudes of the parabolas of projectiles sent forth from point B with the same impetus, according to elevations at angles EBC and DBC, are equal. Indeed, the external angle BMC is equal to the [sum of the] internal angles MDB and DBM, and angle MBC will also be equal to these; for if we put angle MBE in place of [angle] DBM, angle MBC will equal the two [angles] MBE and BDC. And subtracting the common [angle] MBE, the remainder BDC will equal the remainder EBC. Hence triangles DCB and BCE are similar. Bisect line DC at H, and EC at F; and draw HI and FG parallel to the horizontal CB. As DH is to HI, so IH is to HL; and triangle 1HL will be similar to triangle IHD, to which EGF is also similar. And as IH and GF are equal (that is, are half of BC), FE (that is, FC) will be equal to HL. Adding FH in common, CH will be equal to FL. Through H and B describe a semiparabola of altitude HC and sublimity HL; its amplitude will be CB, which is twice HI, the mean proportional between DH (or CH) and HL; and DB will be tangent to it, since CH is equal to HD. If we further describe the parabola through FB with sublimity FL and altitude FC, between which FG is the mean proportional, then the horizontal CB being twice this, CB will likewise be its amplitude, and EB [will be] tangent to it.



^{28.} Tartaglia had implied a knowledge of this, however, when he declared the maximum range to be attained at elevation of 45°; see *Mechanics in Italy*, pp. 85-86, 91-94.

since EF and FC are equal. But angles DBC and EBC, which are the elevations, are equidistant from half a right angle; therefore the proposition is evident.

PROPOSITION IX. THEOREM [VI]

The amplitudes of parabolas are equal when their altitudes and sublimities are inversely proportional.

Let the altitude GF of parabola FH have to altitude CB of parabola BD the same ratio that the sublimity BA [of the latter] has to the sublimity FE [of the former]; I say that amplitudes HG and DC are equal. For since the first, GF, has to the second, CB, the same ratio that the third, BA, has to the fourth, FE, the rectangle GF-FE of the first and fourth will be equal to the rectangle CB-BA of the second and third. Therefore the squares to which these rectangles are [respectively] equal are equal to each other. But rectangle GF-FE is equal to the square of one-half GH, and rectangle CB-BA is equal to the square of one-half CD; hence these squares, and their sides, and the doubles of their sides, are [respectively] equal. But those [last named] are the amplitudes GH and CD; therefore the proposition is evident.

LEMMA FOR THE NEXT [THEOREM]

If a straight line is cut anywhere, the squares of the mean proportionals between the whole and the parts are equal [in sum] to the square of the whole.

Let AB be cut anywhere at C; I say that the squares of the mean proportional lines between the whole AB and its parts AC and CB, taken together, are equal to the square of the whole AB. This is evident; for describe a semicircle on the whole of AB, and and from C erect the perpendicular CD. Join DA and DB. Then DA is the mean proportional between BA and AC, and DB is the mean proportional between AB and BC; and the squares of lines DA and DB taken together are equal to the square of all AB, angle ADB being a right angle inscribed in a semicircle; whence the proposition is evident.

PROPOSITION X. THEOREM [VII]

The impetus or momentum of [fall through] any semiparabola is equal to the momentum of natural vertical fall to the horizontal through the combined sublimity and altitude of the semiparabola.

Let there be the semiparabola AB with sublimity DA and

altitude AC, which [together] make up the vertical DC; I say that the impetus of the semiparabola at B is equal to the momentum of natural fall from D to C.

Take DC as the measure of the time and impetus [of the said fall], and assume CF to be the mean proportional between CD and DA; let CE be the mean proportional between DC and CA; then CF will be the measure of the time and of the momentum of that which descends through DA from rest at D, while CE will be the time and momentum of that which descends through AC from rest at A; and the diagonal EF will be the momentum at B (compounded from these) of [fall through] the semiparabola. Since DC was cut anywhere at A, while CF and CE are mean proportionals between all CD and its parts DA and AC, the squares of these, taken together, will equal the square of the whole, by the foregoing lemma. But the same squares are also equal to the square of EF; hence line EF is equal to DC. From this it is evident that the momenta through DC at C, and through the semiparabola AB at B, are equal; which was required.

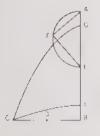
COROLLARY

From this it is evident that for all semiparabolas whose combined altitudes and sublimities are matched, the [related] impetuses [of fall] are also equal.

PROPOSITION XI. PROBLEM [IV]

Given the impetus and the amplitude of a semiparabola, to find its altitude.

Let the given impetus be defined by the vertical AB, and let the amplitude be BC in the horizontal; it is required to find the sublimity of the semiparabola whose impetus is AB and whose sublimity is BC. It is evident from what has been demonstrated that one-half the amplitude BC will be the mean proportional between the altitude and the sublimity of the semiparabola. the impetus of which (from the preceding) is the same as that of fall from rest at A through all AB. For that reason, cut BA so that the rectangle contained by the parts shall be equal to the square of one-half BC, which is BD. From this it is clearly necessary that DB cannot exceed one-half of BA; for the maximum rectangle contained by parts [of a line] is [obtained] when the line is bisected. Bisect BA at E. Now, if BD is equal to BE, the work is finished, [and] the altitude of the semiparabola will be BE and its sublimity EA. The amplitude of such a parabola, of elevation one-half a right angle, is the maximum of



all those that are described with the same impetus, as demonstrated above.

But let BD be less than one-half BA, which is so cut that the rectangle of its parts is equal to the square of BD. Describe a semicircle on EA, take AF equal to BD, and connect FE equal to one part cut. EG. The rectangle BG GA plus the square of EG now equals the square EA, which also equals square AF plus [square] FE. Subtracting the equal squares GE and EF, there remains the rectangle BG-GA equal to the square of AF (that is, of BD); and line BD is the mean proportional between BG and GA. It follows that the semiparabola whose amplitude is BC, and whose impetus [of fall] is AB, has the altitude BG and the sublimity GA. Now if B1, equal to GA, is taken below, [then] BI will be the altitude and IA the sublimity of semiparabola IC.

From what has been demonstrated, we can now:

PROPOSITION XII. PROBLEM [V]

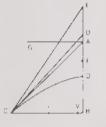
Calculate and compile tables of all amplitudes of semiparabolas described by projectiles sent forth with the same impetus.

It follows from what has been demonstrated that when parabolas are described by projectiles having the same [initial] impetus, the sublimities and altitudes [thereof], added together, comprise equal verticals; whence those verticals must be included between the same horizontal parallels. Thus take the horizontal CB, equal to the vertical BA, and draw the diagonal AC; angle ACB will be half a right angle, or 45°, Bisect the vertical BA at D; the semiparabola DC will be that which is determined by the sublimity AD plus the altitude DB, and its impetus at C will be as much as that of a moveable at B coming from rest at A through line AB. If AG is drawn parallel to BC, the combined altitudes and sublimities of all the rest of the semiparabolas whose impetus is the same as that just described must lie between the parallels AG and BC. Furthermore, as already demonstrated, the semiparabolas of which the tangents [at the base] are equidistant above and below the elevation of half a right angle are equal in amplitude, so that the calculation listed for the greater [of such matched] elevations will serve also for the smaller.

Let us select ten thousand (10000) for the number of parts in the maximum amplitude of projection for a parabola of elevation 45, and assume that line BA and amplitude BC of the semiparabola are of that many parts. (We chose the number 10000 because in our calculations we use a table of tangents in which

that number corresponds to the tangent of 45°). Now, commencing the task, draw CE at angle ECB, greater than ACB though still acute; and, tangent to EC, let a semiparabola be drawn whose sublimity and altitude together equal BA. From our table of tangents, for the given angle BCE, we find the tangent BE; bisect this at F, and then find the third proportional to BF and B1 (one-half BC), which will necessarily be greater than FA. Let it be FO. Then, for the semiparabola inscribed in triangle ECB and tangent to CE, of which the amplitude is CB, we find the altitude BF and the sublimity FO.

302



But the whole line BO goes above the parallels AG and CB, whereas we require [a line] confined between them; for only in that way will both this [line] and the semiparabola DC be traced out by projectiles sent forth from C with the same impetus. Hence another, similar to this, is to be found among the innumerable [semiparabolas], larger and smaller, that can be designed within angle BCE, whose combined sublimity and altitude (homologous, that is, with BC) are equal to BA. Therefore let amplitude BC be to CR as OB is to BA, and CR will be found to be the amplitude of the semiparabola having elevation at angle BCE, while its combined sublimity and altitude are comprised within and are equal to the space between the parallels GA and CB; which is what was sought. The operation is as follows.

Take the tangent of the given angle BCE; to one-half of this, add the third proportional to this [half] and one-half BC, which [third proportional] is FO. Then, as OB is to BA, make BC to some other [line] CR, and this is the amplitude sought.

Let us do an example. Let angle ECB be 50; its tangent is 11918, of which one-half (or BF) is 5959; one-half BC is 5000. To these [two] halves, the third proportional is 4195, which added to BF gives 10154 for BO. Next, as OB is to BA (that is, as 10154 is to 10000), make BC, or 10000 (for both [BA and BC] are [equal to] the tangent of 45°), to some other [magnitude], and we shall find the required amplitude, RC, to be 9848, the maximum amplitude (BC) being 10000. The amplitudes of the whole parabolas are the doubles of these; that is, 19696 and 20000. This [calculation] also gives the amplitude of the parabola of elevation 40°, which is at the same distance from 45°.

303

Sagr. For complete understanding of this demonstration, I still lack knowledge of why the Author says it is true that the third proportional to BF and BI must be greater than FA.

[TABLE 1]

[TABLE 2]

speed.

Amplitudes of semiparabolas Altitudes of semiparabolas described with described with the same initial the same initial speed.

Angle of		Angle of	Angle of		Angle of	
Elevation		Elevation	Elevation			
45°	10000		1°	3	46°	5173
46	9994	44°	2	13	47	5346
47	9976	43	3	28	48	5523
48	9945	42	4	50	49	5698
49	9902	41	5	76	50	5868
50	9848	40	6	108	51	6038
51	9782	39	7	150	52	6207
52	9704	38	8	194	53	6379
53	9612	37	9	245	54	6546
54	9511	36	10	302	55	6710
55	9396	35	11	365	56	6873
56	9272	34	12	432	57	7033
57	9136	33	13	506	58	7190
58	8989	32	14	585	59	7348
59	8829	31	15	670	60	7502
60	8659	30	16	760	61	7649
61	8481	29	17	855	62	7796
62	8290	28	18	955	63	7939
63	8090	27	19	1060	64	8078
64	7880	26	20	1170	65	8214
65	7660	25	21	1285	66	8346
66	7431	24	22	1402	67	8474
67	7191	23	23	1527	68	8597
68	6944	22	24	1685	69	8715
69	6692	21	25	1786	70	8830
70	6428	20	26	1922	71	8940
71	6157	19	27	2061	72	9045
72	5878	18	28	2204	73	9144
73	5592	17	29	2351	74	9240
74	5300	16	30	2499	75	9330
75	5000	15	31	2653	76	9415
76	4694	14	32	2810	77	9493
77	4383	13	33	2967	78	9567
78	4067	12	34	3128	79	9636
79	3746	11	35	3289	80	9698
80	3420	10	36	3456	81	9755
81	3090	9	37	3621	82	9806
82	2756	8	38	3793	83	9851
83	2419	7	39	3962	84	9890
84	2079	6	40	4132	85	9924
85	1736	5	41	4302	86	9951
86	1391	4	42	4477	87	9972
87	1044	3	43	4654	88	9987
88	698	2	44	4827	89	9998
89	349	1	45	5000	90	10000

Salv. I think that consequence may be deduced in this manner. The square of the mean of three proportional lines is equal to the rectangle of the extremes, whence the square of BI (or of its equal, BD) must be equal to the rectangle of the first, FB, and the third, to be found; and this third must necessarily be greater than FA, because the rectangle BF FA is less than the square of BD, the deficiency being the square of DF, as Euclid proves in a proposition of his second [book].²⁹

You must also note that point F, which bisects the tangent EB, will as often fall above point A [as beneath it], and also, once, at A itself; in the former cases, it is self-evident that the third proportional to the half-tangent and BI, which gives the sublimity, is entirely above A. But the Author has taken the case in which it was not manifest that the said third proportional is always greater than FA, and hence passes beyond the parallel AG when added above point F. But now let us go on.

It will be useful, with the help of this tabulation, to complete another in which are compiled the altitudes of the same semiparabolas of projectiles sent forth with the same impetus. The construction of this [other table] follows.

PROPOSITION XIII. PROBLEM [VI]

From the amplitudes of the semiparabolas gathered in the previous table, and preserving the common impetus with which each is described, to obtain the respective altitudes of individual semiparabolas.

Let the given amplitude be BC, and the measure of impetus (assumed to be always the same), OB; that is, the sum of [each] altitude and [the associated] sublimity; it is required to find and distinguish the altitude itself. This will be done when BO is so divided that the rectangle of its parts shall be equal to the square of one-half the amplitude BC. Let this division fall at F, and bisect both OB and BC, at D and I. Then the square of IB is equal to the rectangle BF·FO, and the square of DO is equal to the same rectangle plus the square of FD; if therefore from the square of DO there is taken the square of BI (equal to rectangle BF-FO), the square of FD will remain. The side of this, DF, added to line BD, will give the required altitude, BF. This is arranged from the things given, as follows:

From the square of one-half BO, take the square of BI, also

known; extract the square root of the remainder, and add BD, [which is] known, and you will have the required altitude, BF.

EXAMPLE

To be found is the altitude of the semiparabola described at elevation 55. The amplitude, from the preceding tabulation, is 9396; half of this is 4698, of which the square is 22071204. Subtract this from the square of half BO, which is 25000000 (and is always the same); the remainder is 2928796, of which the square root is approximately 1710. This, added to half BO (that is, 5000), gives 6710, which is the altitude BF.

306

It will be useful to give a third table, containing the altitudes and sublimities of semiparabolas of which the amplitude will be be the same.

Sagr. I shall be happy to see this, since by it I may come to know the difference of the impetuses and forces required in shooting the projectile to the same distance, using what are called "ranging shots." I believe that this difference is very great for the various elevations, so that, for instance, if we wished to use an elevation of three or four degrees, or of 87° or 88°, and [still] make the ball fall where it went when shot at an elevation of 45°, which has been shown to require the minimum impetus, then I believe that an immense excess of force would be required.

Salv. You are quite right, and you will see that in order to carry out the entire operation, for all elevations, one is rapidly driven toward infinite impetus. Now let us look at the construction of the [ensuing] table.

PROPOSITION XIV. PROBLEM [VII]

308

To find the altitudes and sublimities of semiparabolas of which the amplitudes shall be equal, for individual degrees of elevation.

We shall obtain all this by means of an easy procedure. Let the amplitude of the semiparabolas be always 10000 parts; then one-half the tangent, for any degree of elevation, gives the altitude. For example, let the elevation of the semiparabola be 30°, and its amplitude, as assumed, 10000 parts; its altitude will be 2887, for that is approximately one-half the tangent [of 30°]. And the altitude having been found, we get the sublimity as follows. As has been demonstrated, half the amplitude of a semiparabola is the mean proportional between the altitude

307

[TABLE 3]

Giving the altitudes and sublimities of parabolas of constant amplitude, namely 10000, computed for each degree of elevation.

Angle of			Angle of		
Elevation	Altitude	Sublimity	Elevation	Altitude	Sublimity
14	87	286533	46°	5177	4828
2	175	142450	47	5363	4662
3	262	95802	48	5553	4502
4	349	71531	49	5752	4345
5	437	57142	50	5959	4196
6	525	47573	51	6174	4048
7	614	40716	52	6399	3906
8	702	35587	53	6635	3765
9	792	31565	54	6882	3632
10	881	28367	55	7141	3500
ii	972	25720	56	7413	3372
12	1063	23518	57	7699	3247
13	1154	21701	58	8002	3123
14	1246	20056	59	8332	3004
15	1339	18663	60	8600	2887
16	1434	17405	61	9020	2771
17	1529	16355	62	9403	2658
18	1624	15389	63	9813	2547
19	1722	14522	64	10251	2438
20	1820	13736	65	10722	2331
21	1919	13024	66	11230	2226
22	2020	12376	67	11779	2122
23	2123	11778	68	12375	2020
24	2226	11230	69	13025	1919
25	2332	10722	70	13237	1819
26	2439	10253	71	14521	1721
27	2547	9814	72	15388	1624
28	2658	9404	73	16354	1528
29	2772	9020	74	17437	1433
30	2887	8659	75	18660	1339
31	3008	8336	76	20054	1246
32	3124	8001	77	21657	1154
33	3247	7699	78	23523	1062
34	3373	7413	79	25723	972
35	3501	7141	80	28356	881
36	3633	6882	81	31569	792
37	3768	6635	82	35577	702
38	3906	6395	83	40222	613
39	4049	6174	84	47572	525
40	4196	5959	85	57150	437
41	4346	5752	86	71503	349
42	4502	5553	87	95405	262
43	4662	5362	88	143181	174
44	4828	5177	89	286499	87
45	5000	5000	90	infinity	[zero]

and the sublimity. Hence, the altitude having been already found, and half the amplitude being always the same (that is, 5000 parts), then if the square of this is divided by the given altitude, the required sublimity results.

As in our example above, the altitude was 2887; the square of 5000 parts is 25000000; divided by 2887, this gives approximately 8659 for the sublimity sought.

Salv. Here we see, first of all, how true is that conception mentioned earlier; that in different elevations, the farther we depart from the middle one, whether [by going] higher or lower, the greater is the impetus and violence required for shooting the projectile to the same distance. For the impetus consists of the mixture of two motions, an equable horizontal motion and a vertical, naturally accelerated; and this impetus, coming to be measured by the sum of the altitude and the sublimity, you see from the table that this sum is a minimum at the elevation of 45°, where the altitude and sublimity are equal, each being 5000 and their sum being 10000. For if we look at some other, greater, altitude, say for example [at elevation) of 50°, we shall find this altitude to be 5959, and the sublimity 4196, which added together make 10155. And that much, likewise, we shall find to be the impetus for [an elevation of 40°, the two elevations being equally distant from the middle [elevation of 45°].

In the second place we should note that it is true that equal impetuses are required for elevations equally distant, two by two, from the middle; and with this pleasing additional alternation, that the altitudes and sublimities of the upper elevations are inverse to the sublimities and altitudes of the lower. Thus in the example given, for an elevation of 50° the altitude is 5959 and the sublimity 4196, while for an elevation of 40°, it turns out the other way; the altitude is 4196, and the sublimity 5959. The same happens with all the rest, without any difference except where, in order to escape the tedium of calculation, we leave fractions out of account; in sums so great, these are of no moment or prejudice whatever.

Sagr. I observe that with regard to the two impetuses, horizontal and vertical, as the projectile is made higher, less is required of the horizontal, but much of the vertical. On the other hand, in shots of low elevation there is need of great force in the horizontal impetus, since the projectile is shot to so small a height. But if I understand correctly, at full elevation

of 90°, all the force in the world would not suffice to shoot the projectile one single inch out of the vertical, and it must necessarily fall back at the same place from which it was shot. Yet I dare not affirm with equal certainty that a projectile, even at zero elevation, which is to say in the horizontal line, could not be shot to some [little] distance by some [great] force, or that infinite force would be required -as if, for example, not even a culverin had the power to shoot an iron ball horizontally, or "point blank" as they say (that is, at no point [on the gunner's square]), where there is zero elevation. I say that in this case there remains some ambiguity, and that I am unable to deny resolutely either fact, for the reason that another event seems no less strange, though I have a logically conclusive demonstration of it. This is the impossibility of stretching a rope so [tightly] that it shall be pulled straight, and [held] parallel to the horizontal; for it always sags and bends, nor is there any force that will suffice to hold it straight.

Salv. Well, Sagredo, in this matter of the rope, you may cease to marvel at the strangeness of the effect, since you have a proof of it; and if we consider well, perhaps we shall find some relation between this event of the rope and that of the projectile [fired horizontally].

The curvature of the line of the horizontal projectile seems to

derive from two forces, of which one (that of the projector) drives it horizontally, while the other (that of its own heaviness) draws it straight down. In drawing the rope, there is [likewise] the force of that which pulls it horizontally, and also that of the weight of the rope itself, which naturally inclines it downward. So these two kinds of events are very similar. Now, if you give to the weight of the rope such power and energy as to be able to oppose and overcome any immense force that wants to stretch it straight, why do you want to deny this lower! to the

weight of the ball?

But I wish to cause you wonder and delight together by telling you that the cord thus hung, whether much or little stretched, bends in a line that is very close to parabolic. The similarity is so great that if you draw a parabolic line in a vertical plane surface but upside down—that is, with the vertex down and the base parallel to the horizontal—and then hang a little chain from the extremities of the base of the parabola thus drawn, you will see by slackening the little chain now more and now less, that it curves and adapts itself to the parabola; and the agreement will be the closer, the less curved

and the more extended the parabola drawn shall be. In parabolas described with an elevation of less than 45°, the chain will go almost exactly along the parabola.³⁰

Sagr. Then with a chain wrought very fine, one might speedily mark out many parabolic lines on a plane surface.

Salv. That can be done, and with no little utility, as I am about to tell you.

Simp. But before you go on, I also wish at least some assurance about that proposition of which you said that there is a necessarily conclusive demonstration—I mean of the impossibility, by any immense force, of making a rope stay stretched straight and parallel to the horizon.

Sagr. Let me see if I remember the demonstration. To understand it, Simplicio, it is necessary that you assume as true something which is verified in all mechanical instruments, and not only by experience, but by demonstration as well. This is that the speed of the moving thing, though it be [one] of very weak force, can overcome the resistance, though great, of something that can be moved only slowly, provided only that the speed of the moving thing have a greater ratio to the slowness of the resistent than the resistance of that which is to be moved has to the force of the moving thing.

Simp. This is well known to me, and is demonstrated by Aristotle in his Questions of Mechanics, 31 and it is plainly seen in the lever. Again, in the steelyard, the counterweight that weighs no more than four pounds will lift a weight of 400, when the distance of the counterweight from the center on which the steelyard turns is more than one hundred times the distance from that center to the point from which the great weight hangs. This happens because the counterweight, in its descent, goes more than one hundred times the distance through which the great weight rises in the same time. 32 This is the same as saying that the little counterweight moves with more than one hundred times the speed of the great weight.

^{30.} The ensuing discussion more or less duplicates that toward the end of the Second Day, suggesting that this section of the final dialogue may have been originally intended to conclude the discussion of strength of materials; cf. note 42 to Second Day.

^{31.} Questions of Mechanics, 20 (Loeb ed., pp. 375-77).

^{32.} It was this emphasis on operation "in the same time" that separated Galileo's approach on the one hand from medieval statics and on the other hand from the mechanics of Descartes, who considered displacements alone to be truly relevant in mechanical theory and who ridiculed those who, like Galileo, considered the role of speeds essential in the theory of simple machines; cf. p. 329.

258

Sagr. You reason very well, and doubtless you will grant that however small the force of the mover, it will overcome any resistance, however great, whenever the mover exceeds the resistance in speed by more than it falls short of it in vigor and in heaviness.

312

Now we come to the case of the rope, drawing a diagram. Assume that this line AB, passing over the two fixed and stable points A and B, has hanging at its ends, as you see, two immense weights, C and D. These, drawing it with very great force, really do make it stay stretched straight if this [AB] is a simple line without any heaviness. But here something needs to be added. I say that if from point E, at the center of this [line AB], you suspend some small weight such as H here, line AB will yield and will tend toward point F. Being thus lengthened [without stretching], it will constrain the two very heavy weights, C and D, to rise. I demonstrate this as follows.

Around the two points, A and B, as centers, describe two quadrants, EIG and ELM; since the two radii, AI and BL, are equal to AE and EB, the advances FI and IL will be the quantity of lengthening of the parts AF and FB beyond AE and EB. Hence these determine the rises of the weights C and D, provided that weight H shall have had the ability to go down in [the direction E[F]. This could happen if line EF, which is the quantity of descent of weight H, had a greater ratio to line FI (which determines the rise of the two weights C and D) than the heaviness of these weights has to the heaviness of weight H. But that will necessarily be the case, no matter how great the heaviness of weights C and D, or how small that of H. For the excess of weights C and D over weight H is not so great that the excess of tangent EF over secant FI is not in greater ratio.33 We prove this as follows.

Let there be the circle whose diameter is GAI; and whatever the ratio of the heaviness of weights C and D to the heaviness of H, let line BO have this [ratio] to some other line, C. Let D be less than C, so that BO will have a greater ratio to D than to C. Now take BE as the third proportional to OB and D, and as OE is to EB, make the diameter GI to IF (prolonging GI). From end F, draw the tangent FN. Now since, by construction. GI is to IF as OE is to EB, then, by composition, as OB is to BE.

^{33.} The germinal idea here resembles that of the later concept of infinitesimals of higher order. Galileo had used this notion before, in a different connection; cf. Dialogue, pp. 199-202 (Opere, VII, 225-29).

so GF is to FI. But D is the mean proportional between OB and BE, and NF is that between GF and FI. Therefore NF has to FI the same ratio that OB has to D, which ratio is greater than that of the weights C and D to weight H. The descent or speed of weight H having therefore a greater ratio to the rise or speed of the weights C and D, than the heaviness of these weights C and D has to the heaviness of weight H, it is clear that weight H will descend; that is, the line AB will depart from horizontal straightness.

And what happens to the straight line AB, devoid of heaviness, when there is attached at E any minimal weight H, happens also to the rope AB made of weighty material, without the addition of any further heavy object, since on it is suspended the weight of the material of the rope AB itself.

Simp. I am fully satisfied. And now Salviati, in agreement with his promise, shall explain to us the utility that may be drawn from the little chain, and afterward give us those speculations made by our Author about the force of impact.

Salv. Sufficient to this day is our having occupied ourselves in the contemplations now finished. The time is rather late, and will not, by a large margin, allow us to explain the matters you mention; so let us defer that meeting to another and more suitable time.

Sagr. I concur with you opinion. From what I have heard in my various discussions with close friends of our Academician, this matter of the force of impact is very obscure, nor have its recesses been penetrated by anyone who has treated of it. It is filled with shadows, and is completely alien to men's first impressions [prime immaginazioni]. Among the conclusions I have heard offered, a very extravagant one sticks in my mind, which is that the force of impact is unbounded, not to say infinite. We shall therefore await Salviati's convenience. But meanwhile, tell me; what are those things I see written there after the treatise on projectiles?

Salv. These are some propositions pertaining to the center of gravity of solids which our Academician discovered in his youth, when it appeared to him that there were still some defects in what had been left written on the subject by Federico Commandino.³⁴ He thought that these propositions which

^{34.} Federico Commandino (1509-75), Liber de centro gravitatis solidorum (Bologna, 1565), a work in the strict Archimedean tradition, written to supplement the ancient treatise On Plane Equilibrium. Commandino had been the teacher of Galileo's patron, Guidobaldo del Monte.

you see written here might supply that which Commandino's book left to be desired, and he applied himself to this study at the instance of the illustrious Marquis Guidobaldo del Monte, a very great mathematician of his time as shown by his various published works. Our Author gave a copy of these to that gentleman, intending to pursue the subject for other solids not touched on by Commandino. But some time later, he ran across the book of Luca Valerio, a prince of geometers, and saw that this resolved the entire subject without omitting anything; hence he went no further, though his own advances were made along quite a different road from that taken by Valerio. 35

Sagr. It will be good, then, in the time between our meetings just concluded and those in the future, for you to leave this book in my hands. Thus I may look at in the meantime, and study one by one the propositions written there.

Salv. Very gladly do I yield to your request, and hope that you will take pleasure in these propositions.

[The Fourth Day Ends]

In which are contained theorems and related demonstrations concerning the center of gravity of solids, written earlier by the Author

Opere, 1

187

POSTULATE

We assume that, of equal weights similarly arranged on different balances, if the center of gravity of one composite [of weights] divides its balance in a certain ratio, then the center of gravity of the other composite also divides its balance in the same ratio.

LEMMA

Let line AB be bisected at C, and the half AC be divided at E so that the ratio of BE to EA is that of AE to EC. I say that BE is double EA.

Indeed, since EA is to EC as BE is to EA, we shall have, by composition and permutation [of ratios], AE to EC as BA is to AC; but as AE is to EC (that is, as BA is to AC), BE is to EA; whence BE is double EA.

These things granted, it is to be demonstrated [that]:

[PROPOSITION 1]

If any number of magnitudes equally exceed one another, the

1. These theorems date, in part at least, from the period 1585-87. The last proposition and its lemma appear to have been written first, having been submitted by Galileo with an application for a position at the University of Bologna in 1587. Early in the next year he corresponded with Christopher Clavius and Guidobaldo del Monte about the first proposition. The others may have been done in response to encouragement from the latter and from Michael Coignet (1544-1623) at that time. A plan to publish this work in 1613 was postponed; cf. note 37 to Second Day. In the original printing the lemmas, theorems, and corollaries were not numbered, and they were not always clearly distinguished typographically; both have been done here for ease of reference.

excesses being equal to the least of them, and they are so arranged on a balance as to hang at equal distances, the center of gravity of all these divides the balance so that the part on the side of the smaller [magnitudes] is double the other part.

Thus, on balance AB, let hang at equal distances any number of magnitudes F, G, H, K, N, such as described above, of which the least is N; let the points of suspension be A, C, D, E, B, and let X be the center of gravity of all the magnitudes thus arranged. It is to be shown that the part of the balance BX, on the side of the lesser magnitudes, is double XA, the other part.

Bisect the balance at point D, which lies either at some point of suspension, or necessarily falls midway between two suspension points. The remaining distances between suspension [points], A and [C, C] and [D], are to be bisected at points M and I, and all the magnitudes are to be divided into parts equal to N. Then the number of parts of F will be equal to the number of magnitudes that hang from the balance, while the parts of G will be one fewer, and so on for the rest. Thus the parts of F are N, O, R, S, T; those of G [are] N, O, R, S; those of G [are] G, G, G, and finally the parts of G are G, and G, all the parts marked G are then equal to [those in] G; all the parts marked G will be equal to G; those marked G will be equal to G; and finally the magnitude G is equal to G.

Since all the magnitudes marked N are equal to one another, their point of balance will be at D, which bisects the balance AB. For the same reason, the point of balance for all the magnitudes marked O is at I; of those marked R, it is at C; those marked S have their point of balance at M, while finally T is hung at A. Thus along the balance AD, [considered as separated from DB], there are hung, at the equal distances D, I, C, M, A, magnitudes that equally exceed one another and whose excess is equal to the least thereof. But [of these] the greatest [magnitude], composed of all the N's, hangs [as if] from D, while the least (that is, T) hangs from A, and the others are all arranged in order.

And again, there is the other balance AB on which corresponding magnitudes are arranged in the same order [though reversed], equal in number and sizes to the foregoing. Wherefore we see the balances AB and AD divided in the same ratio by the centers [of gravity] of all the magnitudes

A M C X I D E B

compounded. But the center of gravity of the said magnitudes [so arranged] is X; therefore X divides the balances BA and AD in the same ratio, in such a way that as BX is to XA, so XA is to XD. Therefore BX is double XA, by the above lemma. Q.E.D.

[PROPOSITION 2]

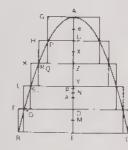
If to a parabolic conoid one figure is inscribed and another is circumscribed, [both] of cylinders having equal height, and the axis of the conoid is divided in such a way that the part toward the apex is double the part toward the base, the center of gravity of the inscribed figure will be closer to the base of the section than [will] the said division point, while the center of gravity of the circumscribed figure will be farther than that same point from the base of the conoid; and the distance from that point of each of the two centers will be equal to the line that is one-sixth the height of one of the cylinders of which the figures are constructed.

Let there be a parabolic conoid and the said figures, one inscribed and the other circumscribed; let the axis of the conoid be AE, divided at N so that AN is double NE. It is to be shown that the center of gravity of the inscribed figure lies in line NE, while that of the circumscribed figure lies in AN.

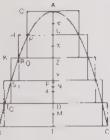
Let the figures thus arranged be cut by a plane through the axis, and let the parabola BAC be cut, the [inter]section of the cutting plane with the base of the conoid being line BC; the sections of the cylinders are rectangular figures, as appears in the diagram.

The first inscribed cylinder, of which the axis is DE, has to the cylinder of which the axis is DY the same ratio that the square [on] TD has to the square [on] SY, which is [in turn] as DA is to AY.³ The cylinder of which the axis is DY is, moreover, to the cylinder YZ as the square on SY is to the square on RZ, which is as YA to AZ; and for the same reason the cylinder of which the axis is ZY, to that of which the axis is ZV, is as ZA is to AU. Thus the said cylinders are to one

3. It was a well known property of the parabola that the squares on the abscissae are in the ratio of the ordinates, but cf. note 4, below.



^{2.} Both Clavius and Guidobaldo (note 1, above) believed this assumption to beg the question. The latter was satisfied by Galileo's explanation, sent to him in 1588 with a redrawn diagram showing all the weights as touching horizontally; cf. p. 198.



c 190 another as the lines DA, AY, ZA, AU; but these [lines] equally exceed one another, and the excess is equal to the least of them; hence AZ is the double of AU, AY is its triple, and DA its quadruple. Therefore the said cylinders are magnitudes equally exceeding one another, whose excess is equal to the least of them. Moreover, line XM is that along which these are hung at equal distances (indeed, each cylinder has its center of gravity at the midpoint of its own axis); whence, by the things previously demonstrated, the center of gravity of the magnitude composed of all [these] magnitudes divides the line XM so that the part toward X is double the remainder. Let it be divided thus, and let Xa be double aM; then point a is the center of gravity of the inscribed figure.

Let AU be bisected at point e; eX will be double ME; but Xa is double aM, whence eE will be triple Ea. Further, AE is triple EN; thus it is clear that EN is greater than Ea, and for that reason point a, which is the center of the inscribed figure, more nearly approaches to the base of the conoid than [does] N. And since as AE is to EN, so the removed part eE is to the removed part Ea, the remainder will be to the remainder (that is, Ae [will be] to Na) as AE is to EN. Therefore aN is one-third of Ae, and one-sixth of AU.

Further, the cylinders of the circumscribed figure will be shown in the same way to exceed one another equally, the excess being equal to the least of them, and to have their centers of gravity equidistant along line eM. Hence if eM is divided at p so that ep is double the remainder pM, then p will be the center of gravity of the whole circumscribed magnitude; and since ep is double pM, and Ae is less than double EM (for these are equal), all AE is less than triple Ep; whence Ep will be greater than EN. And since eM is triple Mp, and ME plus double eA is likewise triple ME, all AE plus Ae will be triple Ep. But E is triple E, so the remainder E will be triple the remainder E the proved. And from this it is manifest that:

[COROLLARY]

To a parabolic conoid, one figure may be inscribed and another circumscribed so that their centers of gravity may be made less distant from N than any assigned length.

In fact, if a line is taken six times the assigned length,

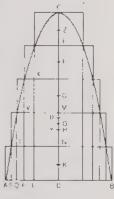
and the axes of the cylinders composing those figures are made less than the said line, then the distances between the [respective] centers of gravity of these [two] figures and the point N will [both] be less than the assigned line.

The same [proposition], otherwise [demonstrated]:

Let CD be the axis of a conoid, so divided at O that CO is double OD. It must be shown that the center of gravity of the inscribed figure lies in OD, while the center of the circumscribed [figure] lies in CO.

As above, the figures are intersected by a plane through the axes and through C. Now, cylinders SN, TM, VI, and XE are to one another as the squares on lines SD, TN, VM, and XI; and these are to one another as are lines NC, CM, CI, and CE, which moreover exceed one another equally, and this excess is equal to the least [of them], which is CE; and cylinder TM equals cylinder ON, while cylinder VI equals cylinder PN, and cylinder XE equals cylinder LN; therefore cylinders SN, QN, PN, and LN exceed one another equally and the excess is equal to the least of these, that is, to cylinder LN. But the excess of cylinder SN over cylinder QN is a ring of height OT (or ND) and of breadth SO; the excess of cylinder QN over cylinder PN is a ring of breadth QP; and finally the excess of cylinder PN over cylinder LN is a ring of breadth PL. Hence the said rings SQ, QP, PL are equal [in volume] to one another and to cylinder LN. Ring ST is therefore equal to cylinder XE; ring QV, double ring ST, is equal to cylinder VI, which is likewise double the cylinder XE; and for the same reason, ring PX will be equal to cylinder TM, and cylinder LE [equal] to cylinder SN.

Therefore along the balance KF, which joins the midpoints of lines EI and DN and is cut into equal parts by points H and G, there are magnitudes (that is, cylinders SN, TM, VI, and XE) of which the centers of gravity are respectively K, H, G, and F. Further, we have another balance, MK, which is one-half FK, and which is divided into as many equal parts by as many points, that is, [lines] MH, HN, and NK; and on this there are other magnitudes equal in number and size to those found on the balance FK, having their centers of gravity at points M, H, N, K, and being arranged in the same order. In fact, cylinder LE has its center of gravity at M and is equal to cylinder SN, which has its center of gravity at K; ring PX has its center of gravity at H and is equal to the cylinder TM, of which the center of gravity is



191

at H^1 ring OV, having its center of gravity at N, is equal to cylinder VL of which the center is G; finally, ring ST, having its center of gravity at K, equals cylinder XE of which the center is at F. Therefore the center of gravity of [each of] the said magnitudes divides the [respective] balance in the same ratio. But their center [of gravity] is unique, and is therefore at some point common to both balances; let this be Y. Hence FY will be to YK as KY is to YM: therefore FY is double YK; and, CE being bisected at Z, ZF will be double KD, and consequently ZD will be triple DY. But CD is triple DO; therefore line DO is greater than DY, and hence the center of gravity Y of the inscribed figure is closer to the base than is the point O. And since as CD is to DO. so the removed part ZD is to the removed part DY, then the remainder CZ will also be to the remainder YO, as CD is to DO; that is, YO will be one-third of CZ, or one-sixth of CE.

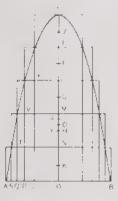
By the same procedure we may show, on the other hand, that the cylinders of the circumscribed figure exceed one another equally, that their excesses are equal to the minimum cylinder, and that their centers of gravity are situated at equal distances along balance KZ; and likewise the rings equal to the cylinders are disposed in a like manner along the balance KG, which is one-half of balance KZ, and that hence the center of gravity R of the circumscribed figure divides the balance so that ZR is to RK as KR is to RG. Therefore ZR will be double RK; but CZ will be equal to line KD. and not its double; hence all CD will be less than triple DR. and so line DR is greater than DO; or the center of gravity of the circumscribed figure is farther from the base than is the point O. And since ZK is triple KR, and KD plus double ZC is triple KD, all CD plus CZ will be triple DR. But CD is triple DO; hence the remainder CZ will be triple the other remainder RO: that is, OR is one-sixth of EC. Which was the proposition.

These things first demonstrated, it will be proved that:

[PROPOSITION 3]

The center of gravity of a parabolic conoid divides its axis so that the part toward the vertex is double the part toward the base.

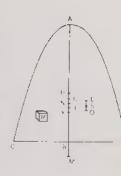
The parabolic conoidal [figure] whose axis is AB is divided at N so that AN is double NB. It is to be shown that the center

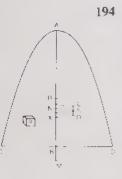


of gravity of the conoid is point N. If, indeed, it is not N, it is below this [point] or above it. First let it be below, at X, and draw LO equal to NX; and let LO be divided anywhere at S; and whatever ratio BX plus OS has to OS, let the [volume of the] conoid have to the solid R.

Inscribe in the conoid a figure made up of cylinders of equal height in such a way that between its center of gravity and the point N, [a distance] less than LS shall be intercepted: and let the excess by which the conoid exceeds it be less than the solid R. It is manifest that this can be done. Thus let the inscribed [figure] be that of which the center of gravity is I; now IX will be greater than SO; and since as XB plus SO is to SO, so the conoidal [figure] is to R; and further, R is greater than the excess by which the conoid exceeds it: the ratio of the conoid to the said excess will be greater than BX plus OS to SO; and by division, the inscribed figure will have a greater ratio to the said excess than BX has to SO. But BX has to XI a smaller ratio than to SO: therefore the inscribed figure will have to the remaining parts a much greater ratio than BX [has] to XI. Therefore the ratio of the inscribed figure to the remaining parts will be that of some other line to XI, which [line] must be greater than BX. Let it be MX. Thus we have X, the center of gravity of the conoid; but the center of gravity of the inscribed figure is I. Therefore the center of gravity of the remaining portions, by which the conoid exceeds the inscribed figure, will be in the line XM, and at that point wherein it terminates so that the ratio of the inscribed figure to the excess by which the conoid surpasses it is the same as [the ratio of] this [line] to XI. But it has been shown that this ratio is that of MX to XI; therefore M will be the center of gravity of the portions by which the conoid exceeds the inscribed figure. But that certainly cannot be; for if a plane is drawn through M, parallel to the base of the conoid, all the said [excessive] parts will lie on the same side of it and will not be divided by it. Therefore the center of gravity of the conoid is not below point N.

But neither is it above. Indeed, if this is possible, let it be [at] H; and as above, draw LO equal to HN and divide this anywhere at S; and whatever ratio BN plus SO has to SL, let the conoid have to R. Circumscribe about the conoid a figure [composed] of cylinders, as before, exceeding the conoid by a quantity less than the solid R, and let the line between the center of gravity of the circumscribed figure and point N be less than SO. The remainder UH will be





greater than LS; and since as BN plus OS is to SL, so the conoid is to R (R being greater than the excess by which the circumscribed figure exceeds the conoid), then BN plus SO has a smaller ratio to SL than the conoid has to the said excess. But BU is less than BN plus SO, while HU is greater than SL, whence the conoid has a much greater ratio to the said portions [of excess] than BU has to UH. Therefore whatever ratio the conoid has to the said portions, some line greater than BU has to UH. Let this be MU; and since the center of gravity of the circumscribed figure is U, while the center of the conoid is H, and as the conoid is to the remaining portions, so MU is to UH, then M will be the center of gravity of the remaining portions, which likewise is impossible. Therefore the center of gravity of the conoid is not above the point N. But it was demonstrated not to be below it; therefore it necessarily lies at N. And by the same reasoning this may be proved for a conoid cut by a plane that is not at right angles to its axis.

The same is shown in another way, as is clear from the following:

[PROPOSITION 4]

The center of gravity of a parabolic conoid falls between the center of the circumscribed figure [of cylinders] and the center of the [similar] inscribed figure.

Let there be a conoid with axis AB; the center [of gravity] of the circumscribed figure is C, while that of the inscribed figure is O. I say that the center [of gravity] of the conoid lies between points C and O. Indeed, if it does not, it lies either above, or below, or at one of these [points]. Let it be below, as for example at R; then since R is the center of gravity of the whole conoid and O is the center of gravity of the inscribed figure, the center of gravity of all the other portions by which the inscribed figure is exceeded by the conoid will lie on the extension of line OR beyond R, and precisely at that point which terminates it in such a way that whatever ratio the said portions have to the inscribed [figure], that is also the ratio of line OR to the line intercepted between R and that point. Let this ratio be that of OR to RX: then X will either fall outside the conoid, or inside it, or in its base. That it should fall outside, or in the base, is clearly absurd. Falling inside, since XR is to RO as the inscribed figure is to the excess by which this is surpassed by the conoid, then we assume that whatever the ratio of BR to RO, such also is that of the inscribed figure to the solid K, which must necessarily be less than that excess.

Next, inscribe another figure which shall be exceeded by the conoid by an excess less than K; its center of gravity will lie between O and C. Let this be U; since the first figure is to K as BR is to RO, and since on the other hand the second figure, of which the center is U, is greater than the first, and is exceeded by the conoid with an excess less than K, we shall have that whatever the ratio of the second figure to the excess by which it is surpassed by the conoid, such also is the ratio of some line greater than BR to line RU. But the center of gravity of the conoid is R, while that of the inscribed figure is U; therefore the center of gravity of the remaining portions will lie outside the conoid, below R, which is impossible.

By the same procedure it will be shown that the center of gravity of this same conoid does not lie on line CA. Then, that it is neither of the points C or O is manifest. In fact if we suppose this, and describe other figures such that the inscribed is greater than the figure whose center [of gravity] is O, and that which is circumscribed is less than the figure whose center is C, the center of gravity of the conoid will fall outside the centers of gravity of these figures, which is impossible, as we have just concluded. It follows, then, that it lies between the center of the circumscribed figure and that of the inscribed figure. Being thus, it must necessarily lie in that point that divides the axis in such a way that the part toward the vertex is double the remainder, since indeed figures can be inscribed and circumscribed such that the lines lying between their centers of gravity and the said point may be less than any given line. Thus anyone who declared the contrary [of the above] would be led to the absurdity that the center [of gravity] of the conoid would not lie between the centers of gravity of the inscribed and circumscribed figures.

[LEMMA]

If there are three lines in [continued] proportion, and the ratio of the least to the excess by which the greatest exceeds the least is the same as that of some given line to two-thirds of the excess by which the greatest exceeds the middle [line];

and again if the ratio of the greatest plus double the middle [line] to triple the greatest plus triple that middle is the same as the ratio of some [other] given line to the excess of the greatest over the smallest; then the sum of those two given lines is one-third of the greatest of the three proportional lines.

V 5 Ν

Let there be three lines, AB, BC, BF, in [continued] proportion, and let the ratio of BF to AF be that of MS to two-thirds of CA; also let the ratio of AB plus 2BC to 3AB plus 3BC be that of another [line] SN to AC. It is to be demonstrated that MN is one-third of AB.

Since AB, BC, and BF are in continued proportion, AC and CF are also in that same ratio; therefore, as AB to BC, so AC is to CF, and as 3AB is to 3BC, so AC is to CF. Whatever ratio 3AB plus 3BC has to 3CB, AC has to some smaller line than CF; let this be CO. Then by composition and inversion of ratios, OA has to AC the same ratio that 3AB plus 6BC has to 3AB plus 3BC; further, AC has to SN the same ratio as 3AB plus 3BC to AB plus 2BC; by equidistance of ratios, therefore, OA has to NS the same ratio as 3AB plus 6BC to AB plus 2BC. But the ratio of 3AB plus 6BC to AB plus 2BC is 3(AB plus 2BC); therefore AO is triple SN.

196

Next, since OC is to CA as 3CB is to 3AB plus 3CB, while as CA is to CF, so 3AB is to 3BC, then by equidistance of ratios in perturbed proportion, as OC is to CF, so 3AB will be to 3AB plus 3BC; and by inversion of ratios, as OF is to FC, so 3BC is to 3AB plus 3BC. Also, as CF is to FB. so AC is to CB, and 3AC is to 3BC; therefore, by equidistance of ratios in perturbed proportion, as OF is to FB, so 3AC is to 3(AB plus BC). Hence all OB will be to BF as 6AB is to 3(AB plus BC); and since FC has the same ratio to CA that CB has to BA, then as FC is to CA, so BC will be to BA; and by composition, as FA is to AC, so is the sum of BA plus AC to BA, as likewise [are] their triples. Therefore, as FA is to AC, so 3BA plus 3BC is to 3AB; whence as FA is to two-thirds AC, so 3BA plus 3BC is to two-thirds of 3BA, which is 2BA. But as FA is to two-thirds AC, so FBis to MS; therefore as FB is to MS, so 3BA plus 3BC is to 2BA. But as OB is to FB, so 6AB was to 3(AB plus BC). Therefore, by equidistance of ratios, OB has to MS the same ratio as 6AB to 2BA, whence MS is one-third OB. And it was shown that SN is one-third AO; hence it is clear that MN is likewise one-third AB. O.E.D.

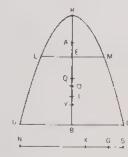
[PROPOSITION 5]

The center of gravity of any frustum cut from a parabolic conoid lies in the straight line that is the axis of this frustum; this being divided into three equal parts, the [said] center of gravity lies in the middle [part] and so divides this [part] that the portion toward the smaller base has, to the portion toward the larger base, the same ratio as that of the larger base to the smaller.

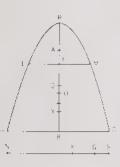
From a conoid whose axis is RB, cut a solid with axis BE, the cutting plane being parallel to the base. Let it be cut also by another plane, perpendicular to the base, this section giving the parabola URC, the sections of the cutting plane and of the base being the straight lines LM and UC. The diameter of ratios, or parallel diameter, will be RB, while LM and UC will be ordinately applied.⁴

Let the line EB be divided into three equal parts, of which the middle one is QY; this is further divided at I so that whatever ratio the base of diameter UC has to the base of diameter LM (that is, [the ratio] of the square of UC to the square of LM), QI has also to IY. It is to be demonstrated that the center of gravity of the frustum ULMC is I.

Draw NS equal to BR, and let SX be equal to ER; and to NS and SX take the third proportional SG; and as NG is to GS, let BO be to IO. It does not matter whether point O falls above or below LM. And since in section URC the lines LM and UC are ordinately applied, as the square of UC is to the square of LM, so line BR will be to RE; and further as the square of UC to the square of LM, so is QI to IY; and as BR is to RE, so is NS to SX; therefore OI is to IY as NS is to SX. Whence as QY is to YI, so will NS plus SXbe to SX; and as EB is to YI, so is triple NS plus triple SXto SX. Further, as EB is to BY, so triple the sum of NS and SX is to the sum of NS and SX; therefore as EB is to BI, so is triple NS plus triple SX to NS plus double SX. Therefore the three lines NS, SX, and GS are in continued proportion, and whatever the ratio of SG to GN, the same will be that of some assigned line OI to two-thirds of EB (that is, of NX); and whatever ratio NS plus double SX has to triple NS plus triple SX, the same will be that of some assigned line



^{4.} Galileo's "diameter of ratios" in the diagram would now be called the axis of ordinates, while his "ordinates" are our abscissae.



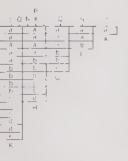
198

IB to BE (that is, to NX). Therefore, by what was demonstrated above, these [assigned] lines taken together will be one-third of NS (that is, of RB). Therefore RB is triple BO, whence BO will be the center of gravity of the conoid URC.

Now let A be the center of gravity of the conoid LRM; then the center of gravity of the frustum ULMC lies in line OB, and at the point where this terminates so that whatever ratio the frustum ULMC has to the portion LRM, the line AO has that same ratio to the intercept between O and the said point [of termination]. Since RO is two-thirds of RB, RA is two-thirds of RE, and the remainder AO will be two-thirds the remainder EB. And since as the frustum ULMC is to the portion LRM, so NG is to GS, and as NG is to GS, so is two-thirds EB to OI, and two-thirds EB is equal to line AO; then as the frustum ULMC is to the portion LRM, so AO is to OI. Therefore it is clear that the center of gravity of the frustum ULMC is point I, and the axis is so divided [by it] that the part toward the smaller base is to the part toward the larger base as double the larger base plus the smaller is to double the smaller plus the larger. Which is the proposition, but more elegantly expressed.

[LEMMA]

If any number of magnitudes are so arranged that the second adds to the first double the first, and the third adds to the second triple the first, while the fourth adds to the third quadruple the first, and so every following magnitude exceeds the preceding one by a multiple of the first magnitude according to its number in order; if, I say, such magnitudes are arranged on a balance and suspended at equal distances, then the center of equilibrium of the whole composite divides that balance so that the part toward the smaller magnitudes is triple the remainder.



indeed, let the magnitude in the remainder of F, which is b, be equal to a; and in G take 2b, in H, 3b, etc.; and let these be the magnitudes containing b's. And in the same way take those containing c's, d's, and e. Then all those in which a is marked are equal to [all in] K; the composite of all b's will equal H; that of the c's, G; that composed of all d's will be equal to F, and e [will equal] A itself. And since TI is double LI, I will be the point of equilibrium of magnitudes made up of all the a's; likewise, since SP is double PL, P will be the point of equilibrium of the composite of all the b's; and for the same cause, N will be the point of equilibrium of the composite of all c's, O [will be that] of the composite of d's, and D, of D itself.

There is thus a certain balance TL on which at equal distances there hang certain magnitudes K, H, G, F, A; and further, there is another balance LI on which at equal distances hang a like number of magnitudes, equal to and in the same order as those described. Indeed, there is a composite of all a's that hangs from I, equal to K hanging from L; and a composite of all b's that hangs from P, equal to H hanging from P; and likewise a composite of c's that hangs from N, equal to G, and a composite of d's that hangs from O, equal to F; and e, hanging from L, is equal to A. Whence the balances are divided in the same ratio by the center of [equilibrium of] the composites of magnitudes. But there is [only] one center of the composites of the said magnitudes, and it will be a common point of the line TL and the line LI. Let this be X. And thus as TX is to XL, so LX will be to XI, and all TL to LI. But TL is triple LI, whence TX is triple XL.

[LEMMA]

If any number of magnitudes are taken, and the second adds above the first, triple the first, while the third exceeds the second by five times the first, and the fourth exceeds the third by seven times the first, and so on, each addition over the preceding being a multiple of the first according to the successive odd numbers (as the squares of lines that equally exceed one another and of which the excess is equal to the first thereof), and if these be hung at equal distances along a balance, then the center of equilibrium of all combined will divide the balance so that the part toward the lesser magnitudes is more than triple the remainder; but one distance being removed, it will be less than triple.

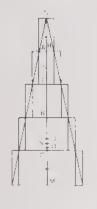
Let there be on the balance BE magnitudes such as those described, from which let then be removed some magnitudes arranged among themselves as in the preceding [lemma]; let [for example] all the a's [in the present diagram be taken away]. The remainder will be the c's, [still] arranged in the same order [as was the whole], but wanting the greatest [magnitude]. Let ED be triple DB, and GF triple FB; D will be the center of equilibrium of everything composed of the a's, while F will be that of the c's; hence the center of the compound of [both] a's and c's falls between D and F. And thus it is manifest that EO is more than triple OB, while GO is less than triple OB. Which was to be proved.

[PROPOSITION 6]

If any cone or portion of a cone has one figure of cylinders of equal height inscribed to it, and another circumscribed, and if its axis is divided so that the part intercepted between the point of division and the vertex is triple the remainder, then the center of gravity of the inscribed figure will be closer to the base of the cone than [will] the point of division, but the center of gravity of the circumscribed [figure] will be closer to the vertex than [will] that same point.

Let there be a cone with axis NM, divided at S so that NS is triple the remainder SM. I say that any figure as described that is inscribed in the cone has its center of gravity in the axis NM, and that it approaches more nearly the base of the cone than does the point S, while the center of gravity of one circumscribed is likewise in the axis NM, but closer to the vertex than is S.

Assume an inscribed figure of cylinders whose axes MC, CB, BE, EA are equal. Thus this first cylinder, of which the axis is MC, has, to the cylinder with axis CB, the same ratio as [that of] its base to the base of the other (since their altitudes are equal); and this ratio is the same as that which the square of CN has to the square of NB. It is likewise shown that the cylinder with axis CB has to the cylinder with axis BE the same ratio as that of the square of BN to the square of NE; while the cylinder around axis BE has to the cylinder around axis EA the ratio of the square of EN to the square of EN Moreover, the lines EN, EN, EN, EN, EN equally exceed one another, and their excess is equal to the least, namely EN. There are therefore magnitudes (i.e. the inscribed cylinders)



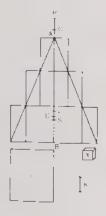
which have successively to one another the ratio of squared lines equally exceeding one another, of which the excess is equal to the least. Thus these are arranged on the balance TI, with the single centers of gravity therein, and at equal distances. Hence by those things demonstrated above, it is evident that the center of gravity of all these compounded in the balance TI so divides it that the part toward T is more than triple the remainder. Let this center be O; then TO is more than triple OI. But TN is triple IM; therefore all MO will be less than one-quarter of all MN, of which MS was assumed to be one-quarter. It is therefore evident that point O comes nearer the base of the cone than does S.

Now let the circumscribed figure consist of cylinders whose axes MC, CB, BE, EA, AN are equal to one another. As with the inscribed [figure], these are shown to be to one another as the squares of lines MN, NC, BN, NE, AN, which equally exceed one another and whose excesses equal the least, AN. Whence, from what went before, the center of gravity of all the cylinders thus arranged (and let this be U) so divides the balance RI that the part toward R (that is, RU) is more than triple the remainder UI, while TU will be less than triple the same. But NT is triple IM; therefore all UM is greater than one-quarter of all MN, of which MS was assumed to be one-quarter. And thus point U is closer to the vertex than is point S. O.E.D.

[PROPOSITION 7]

Given a cone, a figure can be inscribed and another circumscribed to it, made up of cylinders having equal heights, so that the line intercepted between the center of gravity of the circumscribed [figure] and that of the inscribed [figure] is less than any assigned line.

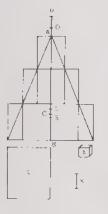
Given a cone with axis AB, and given further a straight line K; I say, let the cylinder L be drawn equal to that [which may be] inscribed in the cone, having an altitude of one-half the axis AB. Divide AB at C so that AC is triple CB; and whatever ratio AC has to K, let this cylinder L have to some solid, K. Circumscribe about the cone a figure of cylinders having equal altitudes, and inscribe another one, so that the circumscribed exceeds the inscribed by a quantity less than



5. Because T1 omits one distance, NA.

the solid X. Let the center of gravity of the circumscribed [figure] be E, which falls above C, while the center of the inscribed one is S, falling below C. I now say that line ES is less than K.

202



For if it is not, put CA equal to EO; then since OE has to K the same ratio as that of L to X, the inscribed figure is not less than cylinder L, and the excess by which the circumscribed figure surpasses it is less than solid X; therefore the inscribed figure has to the said excess a greater ratio than OE will have to K. But the ratio of OE to K is not less than that of OE to ES, since ES cannot be assumed less than K; therefore the inscribed figure has a greater ratio to the excess by which the circumscribed [figure] surpasses it than OE has to ES. Hence whatever ratio the inscribed [figure] has to the said excess, some line greater than EO will have this to the line ES. Let this [line] be ER. Now, the center of gravity of the inscribed figure is S, while that of the circumscribed is E; hence it is evident that the remaining portions by which the circumscribed exceeds the inscribed [figure] have their center of gravity in line RE, and at that point where it is terminated so that whatever ratio the inscribed [figure] has to those portions, the line intercepted between E and that point has to line ES. But RE has this ratio to ES; hence the center of gravity of the remaining portions by which the circumscribed figure exceeds the inscribed will be R; which is impossible, since indeed the plane through R [drawn] parallel to the base of the cone does not cut these portions. Therefore it is false that line ES is not less than K, and hence it will be less.

Moreover, in a way not dissimilar, this may be demonstrated to hold for pyramids.

From this it is manifest that:

[COROLLARY]

About a given cone, a figure can be circumscribed, and [within it] another inscribed, of cylinders having equal altitudes, such that the lines between their centers of gravity and the point which divides the axis of the cone so that the part toward the vertex is triple the remainder are less than any given line.

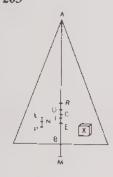
For indeed, as was demonstrated, the said point dividing the axis in the said way is always found between the centers of gravity of the circumscribed and inscribed [figures]; and it is possible for the line between those same centers to be less than any assigned line; so that which is intercepted between either of the two centers and the point that thus divides the axis must be much less than this assigned line.

[PROPOSITION 8]

The center of gravity of any cone or pyramid so divides the axis that the part toward the vertex is triple the remainder toward the base.

Given the cone with axis AB, divided so that AC is triple the remainder CB, it is to be shown that C is the center of gravity of the cone. For if it is not, the center of the cone will be either above or below point C. First let it be below, at E, and draw line LP equal to CE, and divide this anywhere at N; and whatever ratio BE plus PN shall have to PN, let this cone have to some solid, X. Inscribe in the cone a solid figure made up of cylinders of equal height; the center of gravity of this shall be less distant from point C than [the length of] line LN, and the excess by which the cone exceeds [this figure] will be less than solid X. It is clear from what has been demonstrated that these things can be done. Let this solid figure which we assume have its center of gravity at I. Then line IE will be greater than NP, since LP is equal to CE; and IC [is] less than LN; and since BE plus NP is to NP as the cone is to X, and moreover the excess by which the cone exceeds the inscribed figure is less than solid X, the cone will have a greater ratio to the said excess than that of BE plus NP to NP; and by division, the inscribed figure has a greater ratio to the excess by which the cone exceeds it than BE has to NP. Moreover, BE has to EI a still smaller ratio than it has to NP, since IE is greater than NP, whence the inscribed figure has a much greater ratio to the excess by which the cone surpasses it than BE has to EL.

Therefore whatever ratio the inscribed [figure] has to the said excess, some greater line BE has to line EI. Let this be ME; since ME is to EI as the inscribed figure is to the excess by which the cone surpasses it, and [if] E is the center of gravity of the cone, while I is the center of gravity of the [figure] inscribed, then M will be the center of gravity of the remaining portions by which the cone exceeds the inscribed figure in it; which is impossible. Therefore the center of gravity of the cone is not below point C.





But neither is it above. For, if possible, let it be R; again take the line LP, cut anywhere at N. Whatever ratio BC plus NP has to NL, let the cone have to X, and likewise circumscribe about the cone a figure that exceeds it by a lesser quantity than the solid X; the line intercepted between its center of gravity and C shall be less than NP. Now let there be circumscribed [a figure] having center of gravity O; the remainder OR will be greater than NL. And since as BC plus PN is to NL, so the cone is to X, but the excess by which the circumscribed [figure] surpasses the cone is less than X_i and BO is less than BC plus PN, while OR is greater than LN, the cone will have a greater ratio to the remaining portions by which it is exceeded by the circumscribed figure than BO has to OR. Let MO have that ratio to OR; then MO will be greater than BC, and M will be the center of gravity of the portions by which the cone is exceeded by the circumscribed figure; which is contradictory. Therefore the center of gravity of this cone is not above the point C, but neither is it below, as was shown; therefore it is C itself. And the same may be demonstrated in the above way for any pyramid.

[LEMMA]6

If there are four lines in [continued] proportion, and whatever ratio the least of these has to the excess by which the greatest exceeds the least, that same [ratio] is had by some [assumed] line to 3/4 of the excess by which the greatest exceeds the second [line]; and whatever ratio a line equal to the greatest plus double the second plus triple the third has to a line equal to four times the sum of the greatest, the second, and the third together, that same ratio is had by [another] assumed line to the excess by which the greatest exceeds the second; and these two [assumed] lines taken together will be one-quarter of the greatest of the original lines.



205

Let there be four lines in continued proportion, AB, BC, BD, BE; and whatever ratio BE has to EA, let FG have to three-quarters of AC; and further, whatever ratio a line equal to AB plus 2BC plus 3BD has to a line equal to four times the sum of AB, BC, and BD, let HG have to AC. It is to be shown that HF is one-quarter of AB.

^{6.} A manuscript copy submitted in 1587 (note 1, above) exhibits some variants from the printed text, but none of a substantial character.

Since AB, BC, BD, and BE are proportional, then AC, CD, and DE will be in that same ratio; and as four times the sum of AB, BC, and BD is to AB plus 2BC plus 3BD, so the quadruple of AC plus CD plus DE (that is, 4AE) is to AC plus 2CD plus 3DE; and thus is AC to HG. Therefore as 3AE is to AC plus 2CD plus 3DE, so is three-quarters of AC to HG. Moreover, as 3AE is to 3EB, so is three-quarters of AC to GF. Hence, by the converse of [Euclid] V, 24, as 3AE is to AC plus 2CD plus 3DB, so is three-quarters of AC to HF; and as 4AE is to AC plus 2CD plus 3DB (that is, to AB plus CB plus BD), so AC is to AF. And permuting, as AF is to AF, so AF plus AF is to AF plus AF is to AF plus AF plus AF plus AF plus AF is one-quarter of AF.

[PROPOSITION 9]

Any frustum of a pyramid or cone cut by a plane parallel to its base has its center of gravity in the axis, and this so divides it that the part toward the smaller base is to the remainder as three times the greater base plus double the mean proportional between the greater and smaller bases plus the smaller base is to triple the smaller base plus the said double of the mean proportional distance plus the greater base.

From a cone or pyramid with axis AD, cut a frustum by a plane parallel to the base having axis UD; and whatever ratio triple the larger base, plus double the mean proportional [of both bases] plus the smaller [base], has to triple the smaller, plus double the [above] mean proportional plus the greatest, let UO have to OD. It is to be shown that O is the center of gravity of the frustum.

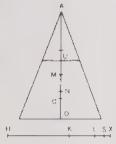
Let UM be one-quarter of UD. Draw line HK equal to AD, and let KX equal AU; let XL be the third proportional to HX and KX, while XS is the fourth proportional. Whatever ratio HS has to SX, let MD have to a line from O in the direction of A, and let this be ON. Now since the larger base is to the mean proportional between the larger and the smaller as DA is to AU (that is, as HX is to XK), and the said mean proportional is to the smaller as KX is to XL, then the larger, the mean proportional, and the smaller base will be in the ratio of lines HX, XK, and XL.

Thus as triple the larger base plus double the mean pro-

A 0 0 ; (

207

208



portional plus the smaller is to triple the smaller plus double the mean proportional plus the larger (that is, as UO is to OD), so is triple HX plus double XK plus XL to triple XL plus double XK plus XH. And, by composition and inverting, OD will be to DU as HX plus double XK plus triple XL is to four times the sum of HX, XK, and XL. Therefore there are four lines in continued proportion, HX, XK, XL, and XS; and whatever ratio XS has to SH, some assumed line NO has to three-quarters of DU (that is, to three-quarters of HK). Further, whatever ratio HX plus double XK plus triple XL has to four times the sum of HX, XK, and XL, some assumed line OD has to DU (that is, to HK). Hence, by what was demonstrated, DN will be one-quarter of HX (that is, of AD), whence point N will be the center of gravity of the cone or pyramid having axis AD.

Let I be the center of gravity of the pyramid or cone having axis AU. It is then clear that the center of gravity of the frustum lies in line IN extended beyond N, and at that point of it which. with point N, intercepts a line to which IN has the ratio that the frustum cut off has to the pyramid or cone having axis AU. Thus it remains to be shown that IN has to NO the same ratio that the frustum has to the cone whose axis is AU. But as the cone with axis DA is to the cone with axis AU, so is the cube of DA to the cube of AU, that is, as the cube of HX to the cube of XK; and this is the ratio of HX to XS. Whence, dividing, as HS is to SX, so the frustum having axis DU will be to the cone or pyramid having axis UA. And as HS is to SX. so also MD is to ON; whence the frustum is to the pyramid having axis AU as MD is to NO. And since AN is three-quarters of AD, and AI is three-quarters of AU, the remainder IN will be three-quarters of the remainder UD, wherefore IN will be equal to MD. It was demonstrated that MD is to NO as the frustum is to the cone AU; therefore it is clear that IN has also this same ratio to NO. Whence the proposition is clear.

Finis7

^{7.} The end of the original printed edition.

Added Day

On the Force of Percussion

Interlocutors: Salviati, Sagredo and Aproino Opere, VIII

[319]

321

Sagr. Your absence during this past fortnight, Salviati, has given me an opportunity to look at the propositions concerning centers of gravity in solids, as well as to read carefully the demonstrations of those many new propositions on natural and violent motions; and since there are among these not a few that are difficult to apprehend, it has been a great help to me to confer with this gentleman whom you see here.

Salv. I was about to ask you concerning the gentleman's presence, and about the absence of our good Simplicio.

Sagr. I imagine indeed, I think it certain—that the reason for Simplicio's absence is the obscurity to him of some demonstrations of various problems relating to motion, and still more, that of those about centers of gravity. I speak of those [demonstrations] which, through their long chains of assorted propositions of [Euclid's] Elements of Geometry, become incomprehensible to people who do not have those elements thoroughly in hand.

The gentleman you see is Signor Paolo Aproino, a nobleman of Treviso, who was a pupil of our Academician when he taught at Padua; and not only his pupil, but his very close friend, with whom he held long and continual conversations, together with others [of like interests]. Outstanding among

^{1.} Although the word percussio is literally translated in the title above, it is rendered by "impact" in the text as the more usual English term. Galileo first wrote on these problems in 1594 as a brief appendix to his Mechanics. The composition of this dialogue probably began about March, 1635, shortly after his old pupil, Aproino, saw at Venice the manuscript of the First Day.

these was the most noble Signor Daniello Antonini2 of 322 Udine, a man of surpassing intellect and superhuman worth who died gloriously in defence of his country and its serene ruler, receiving honors worthy of his merit from the great Venetian Republic. [With him, Aproino] took part in a large number of experiments that were made at the house of our Academician, concerning a variety of problems. Now, about ten days ago this gentleman came to Venice, and he visited me, as is his custom; and learning that I had here these treatises by our friend, he wanted to look them over with me. Hearing about our appointment to meet and talk over the mysterious problem of impact, he told me that he had discussed this many times with the Academician, though always questioningly and inconclusively, and he told me that he was present at the performance of divers experiments relating to various problems, of which some were made with regard to the force of impact and its explanation. He was just now on the point of mentioning, among others, one which he says is most ingenious and subtle.

Salv. I consider it my great good fortune to meet Signor Aproino and to know him personally, as I already knew him by reputation and the many reports of our Academician. It will be a great pleasure for me to be able to hear at least a part of these various experiments made at our friend's house on different propositions, and in the presence of minds as acute as those of Aproino and Antonini, gentlemen of whom I have heard our friend speak on many occasions with praise and admiration. Now since we are here to reason specifically about impact, you, my dear Aproino, may tell us what was drawn from the experiments, in this matter; promising, however, to speak on some other occasion about others made concerning other problems. For I know that such are not lacking to you, from our Academician's assurance that you were always no less curious than careful as an experimentalist [sperimentatore].

Apr. If I were to try with proper gratitude to repay the debt to which your excellency's courtesy obliges me, I should have to spend so many words that little or no time would be left in this day to speak of the matter here undertaken.

^{2.} Antonini (1588-1616) became a correspondent of Galileo's after studying with him at Padua about 1608-10. This coupling of his name with that of Aproino suggests that the experiments described belonged to that period, as do the most precise experiments of which Galileo left any manuscript records.

Sagr. No, no, Aproino; let us start right in with learned discussion, leaving ceremonious compliments to the courtiers. For what it is worth, I shall stand pledge between you two that mutual satisfaction will be given by words that are few, but candid and sincere.

323

Apr. I hardly expect to say anything not already known to Salviati, so the entire burden of discourse ought to be borne on his shoulders. Yet to give him a start at least, if for no other reason, I shall mention the first steps and the first experiment that our friend essayed in order to get to the heart of this admirable problem of impact.

What is sought is the means of finding and measuring its great force, and if possible simultaneously of resolving the essence [of impact] into its principles and prime causes: for this effect seems, in acquiring its great power, to proceed very differently from the manner in which multiplication of force proceeds in all other mechanical machines; I say "mechanical" to exclude the immense force of gunpowder [fuoco, fire].3 In machines, it is very conclusively perceived that speed in a weak mover compensates the power [gagliardia] of a strong resistent [which is] moved but slowly. Now since it is seen that in the operation of impact, too, the movement of the striking body conjoined with its speed acts against the movement of the resistent and the much or little that it is required to be moved, it was the Academician's first idea to try to find out what part in the effect and operation of impact belonged, for example, to the weight of a hammer, and what [part belonged to] the greater or lesser speed with which it was moved. He wanted if possible to find one measure that would measure both of these, and would assign the energy of each;4 and to arrive at this knowledge, he imagined what seems to me to be an ingenious experiment.

He took a very sturdy rod, about three braccia long, pivoted like the beam of a balance, and he suspended at the ends of these balance-arms two equal weights, very heavy. One of these consisted of copper containers; that is, of two buckets, one of which hung at the said extremity of the beam and was filled with water. From the handles of this bucket

3. Cf. p. 278 and note 14 to Fourth Day.

^{4.} Galileo's approach related the problem to compound ratios; see Introduction and Glossary. His discussion is accordingly mainly one of momentum rather than of force in its modern sense. This concentrates attention on velocity rather than on acceleration, but see pp. 330, 332, 344, and notes 12, 14, below.

324

hung two cords, about two braccia each in length, to which was attached by its handles another like bucket, but empty; this hung plumb beneath the bucket already described as filled with water. At the end of the other balance-arm he hung a counterweight of stone or some other heavy material, which exactly balanced the weight of the whole assembly of buckets, water, and ropes. The bottom of the upper bucket had been pierced by a hole the size of an egg or a little smaller, which hole could be opened and closed.

Our first conjecture was that when the balance rested in equilibrium, the whole apparatus having been prepared as described, and then the [hole in the] upper bucket was unstoppered and the water allowed to flow, this would go swiftly down to strike in the lower bucket; and we conceived that the adjoining of this impact must add to the [static] moment on that side, so that in order to restore equilibrium it would be necessary to add more weight to that of the counterpoise on the other arm. This addition would evidently restore and offset the new force of impact of the water, so that we could say that its momentum was equivalent to the weight of the ten or twelve pounds that it would have been necessary [as we imagined] to add to the counterweight.

Sagr. This scheme seems to me really ingenious, and I am eagerly waiting to hear how the experiment succeeded.

Apr. The outcome was no less wonderful than it was unexpected by us. For the hole being suddenly opened, and the water commencing to run out, the balance did indeed tilt toward the side with the counterweight; but the water had hardly begun to strike against the bottom of the lower bucket when the counterweight ceased to descend, and commenced to rise with very tranquil motion, restoring itself to equilibrium while water was still flowing; and upon reaching equilibrium it balanced and came to rest without passing a hairbreadth beyond.

Sagr. This result certainly comes as a surprise to me. The outcome differed from what I had expected, and from which I hoped to learn the amount of the force of impact. Nevertheless it seems to me that we can obtain most of the desired information. Let us say that the force and moment of impact is equivalent to the moment and weight of whatever amount

^{5.} The experimenters expected some constant effect as long as the flow of water continued, enabling them to re-establish equilibrium by adding weight to the counterpoise.

of falling water is found to be suspended in the air between the upper and lower buckets, which quantity of water does not weigh at all against either upper or lower bucket. Not against the upper, for the parts of water are not attached together, so they cannot exert force and draw down on those above, as would some viscous liquid, such as pitch or lime, for example. Nor [does it weigh] against the lower [bucket]. because the falling water goes with continually accelerated motion, so its upper parts cannot weigh down on or press against its lower ones. Hence it follows that all the water contained in the jet is as if it were not in the balance. Indeed, that is more than evident; for if that [intermediate] water exerted any weight against the buckets, that weight together with the impact would greatly incline the buckets downward, raising the counterweight; and this is seen not to happen. This is again exactly confirmed if we imagine all the water suddenly to freeze; for then the jet, made into solid ice, would weigh with all the rest of the structure, while cessation of the motion would remove all impact.

Apr. Your reasoning conforms exactly with ours—immediately after the experiment we had witnessed. To us also, it seemed possible to conclude that the speed alone, acquired by the fall of that amount of water from a height of two braccia, without [taking into account] the weight of this water, operated to press down exactly as much as did the weight of the water, without [taking into account] the impetus of the impact. Hence if one could measure and weigh the quantity of water hanging in air between the containers, one might safely assert that the impact has the same power to act by pressing down as would be that of a weight equal to the ten or twelve pounds of falling water.

Salv. This clever contrivance much pleases me, and it appears to me that without straying from that path, in which some ambiguity is introduced by the difficulty of measuring the amount of this falling water, 6 we might by a not unlike experiment smooth the road to the complete understanding which we desire.

Imagine, for instance, one of those great weights (which I believe are called pile drivers [herte]) that are used to drive stout poles into the ground by allowing them to fall from some height onto such poles. Let us put the weight of such a

^{6.} Notes survive in which Galileo made calculations concerning the volume of this jet of water.

pile driver at 100 pounds, and let the height from which this falls be four braccia, while the entrance of the pole into hard ground, when driven by a single [such] impact, shall be four inches. Next, suppose that we want to achieve the same pressure and entrance of four inches without using impact, and we find that this can be done by a weight of 1000 pounds, which, operating by its heaviness alone, without any preceding motion, we may call "dead weight." I ask whether, without error or fallacy, we may affirm that the force and energy of a weight of 100 pounds, combined with its speed acquired in falling from a height of four braccia, is equivalent to the dead weight of 1000 pounds. That is, does the force [virtū] of this speed alone signify as much as the pressure of 900 pounds of dead weight, which is the remainder after subtracting from 1000 [pounds] the 100 of the pile driver?

I see that you both hesitate to reply, perhaps because I have not explained my question properly. Then let us merely ask briefly whether, from the experiment described, we may assert that the pressure of this dead weight will always produce the same effect on a resistance as the weight of 100 pounds falling from a height of four braccia. To make things perfectly clear, [say that] the pile driver, falling from the same height but striking on a more resistant pole, will drive it no more than two inches. Now, can we be sure of this same effect from the pressing down alone of the dead weight of 1000 pounds? I mean, will that drive the pole two inches?

Apr. I think, at least on first hearing this, that it would not be rejected by anyone.

Salv. And you, Sagredo, do you raise any question about this?

Sagr. Not at the moment, no; but my having experienced a thousand times the ease with which one is deceived prevents my being so bold as to feel no trepidation.

Salv. Even you, whose great perspicacity I have known on many occasions, now show yourself as leaning toward the wrong side; hence I believe that it would be hard to find even one or two men in a thousand who would not be snared into so plausible a fallacy. But what will astonish you still more will be to see this fallacy to be hidden beneath so thin a veil that the slightest breeze would serve to uncover and reveal it, though it is now concealed and hidden.

First, then, let the pile driver in question fall on the pole as before, driving this four inches down, and let it be true

that to accomplish this with dead weight would require exactly 1000 pounds. Next, let us raise this same pile driver to the same height, so that it falls a second time on the same pole, but drives it only two inches, by reason of the pole's having encountered harder ground. Must we suppose that it would be driven as much by the pressure of that same dead weight of 1000 pounds?

Apr. So it seems to me.

Sagr. Alas, Paolo, for us; this must be emphatically denied. For if in the first placement, the dead weight of 1000 pounds drove the pole only four inches and no more, why will you have it that by merely being removed and replaced, it will drive the pole two more inches? Why did it not do this before it was removed, while it was still pressing? Do you suppose that just taking it off and gently replacing it makes it do that which it could not do before?

Apr. I can only blush and admit that I was in danger of drowning in a glass of water.

Salv. Do not reproach yourself, Aproino, for I can assure you that you have plenty of company in remaining fastened by knots that are in fact quite easy to untie. No doubt every fallacy would be inherently easy to discover, if people went about untangling it and resolving it into its principles, for it cannot be but that something connected with it, or close to it, would plainly reveal its falsity. Our Academician had a certain special genius in such cases for reducing with a few words to absurdity and contradiction conclusions that are palpably false, and which nevertheless have hitherto been believed to be true. I have collected many conclusions in physics that had always passed for true, which were later shown by him to be false by means of brief and quite simple reasoning.

Sagr. Truly this is one of them, and if the others are like this, it will be good that at some time you will share them with us. But meanwhile let us continue with the question we have undertaken; we are searching for a way (if there is one) in which to give a rule and assign a just and known measure to the force of impact. It seems to me that this cannot be had through the experience proposed; for as sensible experiment shows us, repeated blows of the pile driver on the pole do drive it further and further, and it is clear that each succeeding blow does act, which is not true of the dead weight. Having acted when it made its first pres-

sure, it does not go on and produce the effect of the second [blow] when replaced; that is, [it does not] again drive the pole. Indeed, it is clearly seen that for this second entrance we need a weight of more than 1000 pounds; and if we want with dead weights to equal the entrances of the third, fourth, and fifth blow, and so on, we shall need the heaviness of continually greater and greater dead weights. Now, which of these can we take as a constant and secure measure of the force of that blow which, considered by itself, seems to be always the same?

Salv. This is one of the prime marvels that I believe must doubtless have held in perplexity and hesitation all speculative minds. Who, indeed, will not find it novel to hear that the measure of the force of impact must be taken not from that which strikes, but rather from that which receives the impact? As to the experiment cited, it seems to me that from this one may deduce the force of impact to be infinite—or rather, let us say indeterminate, or undeterminable, being now greater and now less, according as it is applied to a greater or lesser resistance.

Sagr. Already I seem to understand that the truth may be that the force of impact is immense, or infinite. For in the above experiment, given that the first blow will drive the pole four inches and the second, three, and continuing ever to encounter firmer ground, the third blow will drive it two inches, the fourth an inch and one-half, the ensuing ones a single inch, one-half, one-fourth, and so on; it seems that unless the resistance of the pole is to become infinite through this firming of the ground, then repeated blows will always budge the pole, but always through shorter and shorter distances. But since the distance may become as small as you please, and is always divisible and subdivisible, entrance [of the pole] will continue; and this effect having to be made by the dead weight, each [movement] will require more weight than the preceding. Hence it may be that in order to equal the force of the latest blows, a weight immensely greater and greater will be required.

Salv. So I should certainly think.

Apr. Then there cannot be any resistance so great as to remain firm and obstinate against the power of any impact, however light?

^{7.} The compact phrasing here is meant to convey the double idea that (1) no resistance exists that can withstand a blow of unlimited strength,

Salv. I think not, unless what is struck is completely immovable; that is, unless its resistance is infinite.

Sagr. These statements seem remarkable, and so to speak, prodigious. It appears that in this effect [and in this] alone, art may overpower and defraud nature—something that at first glance it [mistakenly] appears that other mechanical instruments can do, very heavy weights being raised with small force by the power of the lever, screw, pulleys, and the rest. But in this effect of impact, a few blows of a hammer weighing no more than ten or twelve pounds may flatten a cube of copper that is not broken or mashed by resting a big marble steeple or even a very high tower upon the hammer. This seems to me to defeat all the physical reasoning by which one might try to remove the wonder from it. Therefore, Salviati, take the clue in your hand and lead us from this complicated maze.

Salv. From what you two have to say, it appears that the principal knot of the difficulty lies in puzzlement why the action of impact, which seems infinite, may arise in a different way from that of other machines which overcome immense resistances with very small forces. But I do not despair of explaining how in this, too, one proceeds in the same manner. I shall try to clear up the process; and though it seems to me quite complicated, perhaps, as a result of your questions and objections, my remarks may become more subtle and acute, and sufficient at least to loosen the knot, if not to untie it.

It is evident that the property [facultà] of force in the mover and [that] of resistance in the moved is not single and simple, but is compounded from two actions, by which their energy must be measured. One of these is the weight, of the mover as well as of the resistent; the other is the speed with which the one must move and the other be moved. Thus, if the moved must be moved with the speed of the mover—that is, if the spaces traversed by both in a given time are equalit will be impossible for the heaviness of the mover to be less than that of the moved, but rather it must be somewhat greater; for in exact equality [of weight] resides equilibrium and rest, as seen in the balance of equal arms. But if with a lesser weight we wish to raise a greater, it will be necessary

and (2) any impact, however small, has some effect on any given resistent. Cf. note 26 to Fourth Day; pp. 337, 341, below; and Fragment 4 at end.

to arrange the machine in such a way that the smaller moving weight goes in the same time through a greater space than does the other weight; that is to say, the former is moved more swiftly than the latter. And thus we are taught by experience that in the steelyard, for example, in order for the counterweight to raise a weight ten or fifteen times as heavy, the distance along the beam from the center round which it turns must be ten or fifteen times as great as the distance between that same center and the point of suspension of the other weight; and this is the same as to say that the speed of the mover is ten or fifteen times as great as that of the moved. Since this is found to happen in all the other instruments. we may take it as established that the weights and speeds are inversely proportional. Let us say in general, then, that the momentum of the less heavy body balances the momentum of the more heavy when the speed of the lesser has the same ratio to the speed of the greater as the heaviness of the greater has to that of the lesser -- to which, any small advantage being allowed, equilibrium is overcome and motion is introduced.

This settled, I say that not only in impact does the action [operazione] seem infinite as to the overcoming of whatever great resistance, but that this also shows itself in every other mechanical device. For it is clear that a tiny weight of one pound, descending, will raise a weight of 100 or 1000 or as much more as you please, if we place it 100 or 1000 times as far from the center on the arm of the steelyard as the other, great, weight; that is, if we make the space through which the former shall descend to be 100 or 1000 or more times as great as the space through which the other is to rise, so that the speed of the former is 100 or 1000 times the speed of the latter. Yet I wish, by means of a more striking example, to make it palpable to you that any little weight, descending, makes any immense or very heavy bulk ascend.

Suppose a vast weight to be attached to a rope fastened to a firm high place, around which as center you are to imagine to be described the circumference of a circle that passes through the center of gravity of the suspended bulk. This center of gravity, you know, will be vertically beneath the suspending rope; or, to put it better, will be in that straight line which goes from the point of suspension to the common center of all heavy things; that is, the center of the earth. Next, imagine a fine thread to which any weight, as small

as you please, is attached in such a way that its center of gravity always remains in the previously mentioned circumference; and suppose that this little weight just touches and rests against the vast bulk. Do you not believe that this new weight. added at the side, will push the greater one somewhat, separating its center of gravity from the previously mentioned vertical line in which it originally lay? Yet it will unquestionably move along the circumference mentioned, and being moved, it will separate from the horizontal line tangent to the lowest point of the circumference in which the center of gravity of this vast bulk was situated. As to the space, the arc passed through by the heavy weight will be the same as that passed through by the tiny weight which was supported against the vast one. Yet the rise of the center of the great weight will not thereby equal the descent of the center of the tiny weight, because the latter descends through a place or space much more tilted than that of the ascent of the other center, which is made in a certain way from the tangent of the circle along an angle less than the most acute frectilineal] angle.8 Here, if I were dealing with people less versed in geometry than you are, I should demonstrate how a moveable leaving [along a circle] from the lowest point of tangency [with the horizontal], its [vertical] rise from [della] the horizontal line to some point in the circumference outside [separato dal] the tangent may be smaller in any desired ratio than its [vertical] drop along an equal arc [asse] taken at any other place not containing the point of tangency; but surely you have no doubt as to this.9

Now, if the simple touching of the tiny weight against the great bulk can move and raise that, what will it do when, drawn back and allowed to run along the circumference, it comes to strike there?

Apr. Truly, it seems to me that there is no room left for doubt that the force of impact is infinite, from what the experiment adduced explains about it. But this information does not suffice my mind for the clearing away of many dark shadows which hold it so obscured that I do not see how

^{8.} The "mixed angle" of note 33 to Second Day; cf. Euclid, Elements HL16.

^{9.} Asse (axis) was probably a scribal error for arco; the idea is that the vertical drop for any arc not touching the lowest point is greater than the drop for an equal arc touching that point, while the latter may be made as small as one pleases by shortening the arc. Many dubious readings are found in this posthumously printed work; cf. note 10, below.

this business of impacts proceeds; at least, not so that I could reply to every question that might be asked of me.

Salv. Before going further, I want to reveal to you a certain equivocation that is lurking in ambush. This lets us believe that, in the previous example, all blows on the pole were equal (or the same), being made by the same pile driver raised always to the same height. But this does not follow. To understand this, imagine striking with your hand against a ball that comes falling from above, and tell me: if, when this arrived upon your hand, you were to have your hand sinking along the same line and with the same speed as the ball, what shock would you feel? Surely none. But if, upon the arrival of the ball, you yielded only in part, by dropping your hand with less speed than that of the ball, you would indeed receive an impact—not as with the whole speed of the ball, but only as with the excess of its speed over that of the dropping of your hand. Thus if the ball should descend with ten degrees of speed, and your hand yielded with eight, the blow would be made as by two degrees of speed of the ball. The hand yielding with four [degrees], the blow would be as six; and the yielding being as one, the blow would be as nine; the entire impact of the speed of ten degrees would be [only] that which struck the hand that did not vield.

Now apply this reasoning to the pile driver, when the pole yields to the impetus of the pile driver four inches the first time, and two [inches] the second, and a single inch the third. These impacts come out unequal, the first being weaker than the second, and the second than the third, according as the yielding of four inches retires more from the [initial] speed of the first blow than the second [yielding of only two inches], and the second (impact] is weaker than the third, which takes away twice as much as the second from the same [initial] speed. Hence, if the great yielding of the pole to the first shock, and its lesser yielding to the second and still less to the third, and so on continually, is the reason that the first blow is less effective [valido] than the

^{10.} Reading retrae for detrae of the printed text. In pursuance of his previous argument, Galileo reasons that even though the terminal speed of fall (initial speed of impact) is the same in each case, we should call the effective blow, or impact, weaker in the earlier strokes, because the pole offers less resistance. A quite different adumbration of Newton's third law of motion was already present in Galileo's first work; cf. On Motion, pp. 64, 109 (Opere, I, 297, 336).

second, and this than the third, what wonder is it if a lesser quantity of dead weight is needed for the first driving of four inches, and more is needed for the second, of two inches, and still more for the third, and always more and more continually, in proportion as the drivings go diminishing with diminutions of the yielding of the pole, which amounts to saying with the increase of the resistance?

From what I have said, it seems to me that one may easily gather how difficult it is to determine anything about the force of impact made upon a resistent that varies its yielding, such as this pole that becomes indeterminately more and more resisting. Hence I think it necessary to give thought to something that receives the impacts and always opposes them with the same resistance. Now, to establish such a resistent, I want you to imagine a solid weight of, say, 1000 pounds, placed on a plane that sustains it. Next, I want you to think of a rope tied to this weight and led over a pulley fixed high above. Here it is evident that when force is applied by pulling down on the end of the rope, it will always meet with quite equal resistance in raising the weight; that is, the opposition of 1000 pounds of weight. For if from the end of the rope there were suspended another weight, equal to the first, equilibrium would be established; and being raised up without support from anything below, they would remain still; nor would this second weight descend and raise the first unless given some excess of weight. And if we rest the first weight on the said plane that sustains it, we can use other weights of varying heaviness (though each of them less than the weight sustained at rest) to test what the forces of different impacts are. [This is done] by tying such weights to the end of the rope and then letting them fall from a given height, observing what happens at the other end to that great solid that feels the pull of the falling weight, which pull will be to that large weight as a blow that would drive it upward.

Here, in the first place, it seems to me to follow that however small the falling weight, it should undoubtedly overcome the resistance of the heavy weight and lift it up. This consequence seems to me to be conclusively drawn from our certainty that a smaller weight will prevail over another, however much greater, whenever the speed of the lesser shall have, to the speed of the greater, a greater ratio than the weight of the greater has to the weight of the smaller; and this [always] happens in the present instance, since the speed of

the falling weight infinitely surpasses the speed of the other, whose speed is nil when it is sustained at rest. But the heaviness of the falling solid is not nil in relation to that of the other, since we did not assume the latter to be infinite, or the former to be nil; hence the force of this percussent will overcome the resistance of that on which it makes its impact.

Next we shall seek to find out how great is the space through which the impact received will raise it, and whether perhaps this [distance] will correspond to that of other mechanical instruments. Thus it is seen in the steelyard, for example, that the rise of the heavy weight will be that part of the fall of the counterweight, which the weight of the counterweight is of the greater weight. So in our case we should have to see, supposing the weight of the big resting solid to be 1000 times that of the falling weight-which falls, let us say, from a height of one braccio-whether this raises the other [weight] one one-hundredth of a braccio; if so, it would appear to be following the rule for the other mechanical instruments. Let us imagine making the first experiment by dropping from some height, say one braccio, a weight equal to the other, which we have placed on a [supporting] plane, these weights being tied to the opposite ends of the same rope. What shall we believe to be the effect of the pull of the falling weight. with regard to the moving and raising of the other, which was at rest? I should be glad to hear your opinion.

Apr. Since you look at me, as if you were waiting for my reply, it appears to me that the two weights being equally heavy, and the one which falls having in addition the impetus of its speed, the other must be raised by it far beyond equilibration, inasmuch as the mere weight of the other was sufficient to hold it in balance. Hence, in my opinion, it will rise through much more than a space of one braccio, which is the measure of the descent of the falling weight.

Salv. And what do you say, Sagredo?

Sagr. The reasoning seems conclusive to me at first glance; but, as I said a while ago, many experiences have taught me how easily one may be deceived, and accordingly how necessary it is to go circumspectly before boldly pronouncing and affirming anything. Hence I shall say, still dubiously, that it is true that the weight of 100 pounds of the falling heavy body will suffice to raise the other, which also weighs 100 pounds, as far as to equilibrium, even without its being

endowed and supplied with speed; [to do this,] the excess of a mere half-ounce will suffice. But I also think that that equilibration will be made very slowly, and hence that when the falling body acts with great speed, it will necessarily raise its companion on high with like speed. Now, there seems to me no doubt that greater force is needed to drive a heavy body upward with great speed than to push it very slowly;11 so it might happen that the advantage of the speed acquired by the falling body in free fall through one braccio would be consumed, and so to speak spent, in driving the other with equal speed to a like height. Hence I am inclined to believe that these two movements, upward and downward, would end in rest immediately after the rising weight had gone up one braccio, which would mean two braccia of fall for the other, counting the first braccio of free fall as executed by that one alone.

Salv. I truly lean toward the same belief. For though the falling weight is an aggregate of heaviness and speed, the operation of its heaviness in raising the other [weight] is nil, this being opposed by the resistance of equal heaviness in that other, which clearly would not be moved without the addition of some small weight. Therefore the operation is entirely that of the speed, which can confer nothing but speed. Being unable to confer other [speed] than what it has, and having nothing other than that which it acquired in the descent of one braccio after leaving from rest, it will drive the other upward through a like space and with a like speed, in agreement with what can be discerned in various experiences; namely, that the falling weight, leaving from rest, is everywhere found to have that impetus which suffices to restore it to the original height.

Sagr. I recall that this is clearly shown by a weight hanging from a thread fixed above. Removed from the vertical by any arc less than a quadrant, and set free, this weight descends

^{11.} Galileo's emphasis on speed as such underlay the essential difference between his mechanics and that of medieval, as that of Cartesian, writers; cf. note 32 to Fourth Day. But see also note 15, below.

^{12.} This inference was probably suggested by the use of compound ratios in physics (note 4, above). The Aristotelian position was very different, defining greater "force" or "power" in terms of the imparting of greater speed; cf. *Physica* vii, § 5, especially at line 250a. Medieval physicists followed that lead; thus the theory of proportions in motion developed by Thomas Bradwardine (1290?–1349) was intended to justify precisely this passage in Aristotle.

and passes beyond the vertical, rising through an arc equal to that of its descent. From this it is evident that the ascent derives entirely from the speed acquired in descent, inasmuch as in [any] rising upward, the weight of the moving body can have played no part. Indeed, that weight, resisting ascent, goes despoiling the moveable of the speed with which it was endowed by the descent.

Salv. If the example of what is done by the heavy solid on the thread, of which I remember that we spoke in our discussions of days past, squared and fitted as well with the case we are now dealing with as it fits with the facts [alla veritàl, your reasoning would be very cogent. But I find no trifling discrepancy between these two operations; I mean between that of the heavy solid hanging from the thread, which released from a height and descending along the circumference of a circle, acquires impetus to transport itself to another equal height, and this other operation of the falling body tied to the end of a rope in order to lift another one equal to itself in weight. For that which descends along the circle continues to acquire speed as far as the vertical sposition, favored by its own weight, which impedes its ascent as soon as the vertical is passed, ascent being a motion contrary to its heaviness. Thus [in return] for the impetus acquired in natural descent, it is no small repayment to be carried along by violent motion or through a height. But in the other case, the falling weight comes upon its equal placed at rest, not only with its acquired speed but with its heaviness as well; and this [heaviness], being maintained, by itself alone removes all resistance on the part of its companion [weight] to being lifted. 13 Hence the [previously] acquired speed meets with no opposition from any weight that resists rising; and just as impetus conferred downward on a heavy body would encounter no cause in that [body] for annihilation or retardation [of that impetus], so none is encountered in that rising weight whose [effective] heaviness remains nil, being counterpoised by the other, descending, weight.

Here, it seems to me, precisely the same thing takes place

^{13.} Here Galileo begins to speak of an inertial motion in the modern sense, using balanced weights for the study of impact rather than the usual and intuitive analysis in terms of frictionless bodies striking while supported on a hard flat surface. It was on the latter basis that Descartes deduced, in contradiction with the ensuing discussion, that a smaller body could never budge a larger one, however great the speed of the smaller.

which happens to a heavy and perfectly round moveable placed on a very smooth plane, somewhat inclined; this will descend naturally by itself, acquiring ever greater speed. But if, on the other hand, anyone should wish to drive it upward from the lower part [of the plane], he would have to confer impetus on it, and this would be ever diminished and finally annihilated [in the rise]. If the plane were not inclined. but horizontal, then this round solid placed on it would do whatever we wish; that is, if we place it at rest, it will remain at rest, and given an impetus in any direction, it will move in that direction, maintaining always the same speed that it shall have received from our hand and having no action [by which] to increase or diminish this, there being neither rise nor drop in that plane. And in this same way the two equal weights, hanging from the ends of the rope, will be at rest when placed in balance, and if impetus downward shall be given to one, it will always conserve this equably. Here it is to be noted that all these things would follow if there were removed all external and accidental impediments, as of roughness and heaviness of rope or pulleys, of friction in the turning of these about the axle, and whatever others there may be of these.

But since we are considering the speed acquired by one of these weights in descent from some height while the other remains at rest, it will be good to determine what and how much must be the speed with which both would be moved after the [initial] fall of the one, this descending and the other ascending. From what is already demonstrated, we know that a heavy body which falls freely on departing from rest perpetually acquires a greater and greater degree of speed; hence in our case, the greatest degree of speed of the heavy body, while it descends freely, is that which it is found to have at the point at which it commences to lift its companion. Now it is evident that this degree of speed will not go on increasing when its cause of increase is taken away, this being the weight of the descending body itself; for its weight no longer acts when its propensity to descend is taken away by the repugnance to rising of its companion of equal weight. Hence the maximum degree of speed will be conserved, and the motion will be converted from one of acceleration to uniform motion. 14

14. Reduction of accelerated motion to some equivalent uniform motion was essential before development of the calculus; cf. Third Day, Bk. II,

What the future speed will then be is manifest from the things demonstrated and seen in the [discussions of the] past days. That is, the future speed will be such that, in another time equal to that of the [initial free] descent, double the space of [free] fall would be passed.

Sagr. Then Apronio has philosophized better than I have. Thus far I am well satisfied by your reasoning, and admit what you have told me as most true. But I still do not feel that I have learned enough to remove the great wonder I feel at seeing very great resistances overcome by the force of impact of the striking body when its weight is not great and its speed not excessive. It increases my bafflement to hear you affirm that there is no resistance short of the infinite that will resist a blow without yielding, and moreover that there is no way of assigning a definite measure to [the force of] such a blow. So it is our wish that you attempt to shed light in this darkness.

338

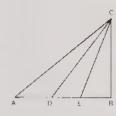
Salv. No demonstration can be applied to a proposition unless what is given is one and certain; and since we wish to philosophize about the force of a striking body and the resistance of one which receives the impact, we must choose a percussent whose force shall be always the same, such as that of the same heavy body falling always from the same height; and likewise let us establish a recipient of the blow that will always offer the same resistance. To have this, and keep to the above example of the two heavy bodies hanging from the ends of the same rope, I shall have the percussent be the small weight that is allowed to fall, and the other shall be a weight as much greater [than this] as you please, in the raising of which the impetus of the small falling weight is to be exercised. It is manifest that the resistance of the larger body is the same at all times and all places, as would not be the case with the resistance of a nail, or of the pole, in which resistance increases continually with penetration, but in some unknown ratio because of the various accidental events involved, such as hardness of wood or ground, and so on, even though the nail and the pole remain always the same. It is further necessary to remember some true conclusions of which we spoke in past days in the treatise on motion. The

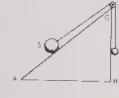
Theorem 1. No clear physics of force was likely to emerge under the theory of proportion alone, in which force can appear only as some kind of relation rather than as an entity. As will be seen in Salviati's next speech, "force" is simply made to cancel out.

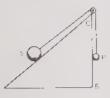
first of these is that heavy bodies, in falling from a high point to a horizontal plane beneath, acquire equal degrees of speed whether their descent is made vertically or upon any of diversely inclined planes.

For example, AB being a horizontal plane upon which the vertical CB is dropped from point C, and other planes, diversely inclined, CA, CD, and CE, fall from the same C, we must understand that the degrees of speed of bodies falling from the high point C along any of the lines going from C to end at the horizontal are all equal. In the second place, it is assumed that the impetus acquired at A by the body falling from the point C is such that it is exactly needed to drive the same falling body (or another one equal to it) up to the same height, from which we may understand that such force is required to raise that same heavy body from the horizontal to height C, whether it is driven from point A, D, E, or B. Let us recall in the third place that the times of descent along the designated planes have the same ratio as the lengths of these planes, so that if the plane AC, for example, were double the length of CE and quadruple that of CB, the time of descent along CA would be double the time of descent along CE and four times that along CB. Further, let us recall that in order to pull the same weight over diverse inclined planes, lesser force will always suffice to move it over one which is more inclined [to the vertical] than over one less inclined, according as the length of the latter is less than the length of the former.

Now, these truths being supposed, let us take the plane AC to be, say, ten times as long as the vertical CB, and let there be placed on AC a solid, S, weighing 100 pounds. It is manifest that if a cord is attached to this solid, riding over a pulley placed above the point C, and to the other end of this cord a weight of ten pounds is attached, which shall be the weight of P, then that weight P will descend with any small addition of force, drawing the weight S along the plane AC. Here one must note that the space through which the greater weight moves over the plane beneath it is equal to the space through which the small descending weight is moved; from this, someone might question the general truth applying to all mechanical propositions, which is that a small force does not overcome and move a great resistance unless the motion of the former exceeds the motion of the latter in inverse ratio of their weights. But in the present instance







the descent of the small weight, which is vertical, must be compared [only] with the vertical rise of the great solid S, observing how much this is lifted vertically from the horizontal; that is, one must consider how much S rises in the vertical BC.

Having made various meditations, gentlemen, about the setting forth of that which remains to be said by me, which is the crux of the present matter, I affirm the following conclusion, which will then be explained and demonstrated.

340

PROPOSITION

If the effect made by an impact of the same weight falling from the same height shall be to drive a resistent of constant resistance through some space; and [if] to produce a similar effect there is needed a determined quantity of dead weight [merely] pressing, without impact, I say that if the original percussent, [acting] upon some greater resistent, with the given impact shall drive it (for example) through one-half the space that the other was driven, then in order to accomplish this second driving, the pressure of the said dead weight will not suffice, but there will be required another one, twice as heavy. And similarly in all other ratios, when a shorter [constantly resisted] drive is made by the same percussent, then inversely by that much there will be required, to do the same, a greater pressing quantity of dead weight.

In the earlier example of the pole, the resistance is to be understood to be such that it cannot be overcome by less than one hundred pounds of dead weight pressing, and lit is understood that] the weight of the percussent is only ten pounds, falling from a height of, say, four braccia, and driving the pole four inches. Here, in the first place, it is evident that the weight of ten pounds falling vertically will be sufficient to raise a weight of one hundred pounds along a plane so inclined that its length is ten times its height, according to what has been said above; and that as much force is needed to raise ten pounds of weight vertically as to raise one hundred on a plane whose length is ten times its vertical elevation. Hence if the impetus acquired by the falling body through such a vertical space is applied to raise another that is equal to it in resistance, it will raise it a like space: but the resistance of the vertically falling body of ten pounds is equal to that of the body of one hundred pounds rising along a plane of length ten times its vertical height. Therefore, let the weight of ten pounds fall through any height vertically, and its acquired impetus, applied to the weight of one hundred pounds, will drive this through as much space on the inclined plane as corresponds to the vertical height as great as one-tenth part of this inclined space. And it is already concluded above that the force able to drive a weight on an inclined plane is sufficient to drive it through the vertical corresponding to the height of this inclined plane—which vertical, in the present instance, is one-tenth the space passed along the incline, which is equal to the space of fall of the first weight, of ten pounds.

Thus it is manifest that the fall of the weight of ten pounds made vertically is sufficient to raise the weight of one hundred pounds, also vertically, but only through a space that is one-tenth the descent of the falling body of ten pounds.15 But that force which can raise a weight of one hundred pounds is equal to the force with which the same weight of one hundred pounds presses down, and this was its power to drive the pole when placed upon it and pressing it. Behold, therefore, the explanation how the fall of ten pounds of weight is able to drive a resistance equivalent to that which a weight of one hundred pounds has to being raised, while the driving will be no more than one-tenth the descent of the percussent. And if we now assume the resistance of the pole to be doubled or tripled, so that to overcome it there is needed the pressure of two hundred or three hundred pounds of dead weight, then repeating the reasoning, we shall find that the impetus of the ten pounds falling vertically will be able to drive the pole the second and the third time, as it did the first time; and as [far as] the tenth part of its fall the first time, so the twentieth the second time, and the third time, the thirtieth of this descent. And thus, multiplying the resistance in infinitum, the same blow will always be able to overcome it, but by driving the resisting body always through less and less space, in inverse [alterna] proportion; from which it seems that we may reasonably assert the force of impact to be infinite.16

But we must also consider that in another way, the force

^{15.} Here the neglect of time (or speed), unusual for Galileo, results in his adoption of a conservation principle in terms of vertical displacements alone, akin to the medieval and Cartesian approaches (cf. note 13, above) but not restricted to connected motions as in the simple machines.

^{16.} Cf. notes 26 to Fourth Day, note 7, above, and Fragment 4 at end.

of pressing without impact is also infinite, inasmuch as if it overcomes the resistance of the pole, it will drive it not merely through some space through which the blow will have driven it, but will continue to drive it in infinitum.¹⁷

Sagr. Truly, I perceive that your attack travels very directly to the investigation of the true cause of the present problem; but since it appears to me that impact may be created in many ways, and applied to a great variety of resistances, I believe it is necessary to go on and explain some [of these] at least, the understanding of which might open our minds to the understanding of all.

342

Salv. You say well, and I have already prepared myself to give examples. For one thing, we shall say that at times it may happen that the operation of the percussent is revealed not on the thing struck, but in the percussent itself. Thus, a blow being struck on a fixed anvil with a lead hammer, the effect will happen to the hammer, which will be flattened. rather than to the anvil, which will not descend. Not unlike this is the effect of the mallet on the sculptor's chisel; for the mallet being of soft untempered iron and striking repeatedly on the chisel of hard tempered steel, it is not the chisel that is damaged, but the mallet that becomes dented and lacerated. Again, in another way, the effect is reflected solely in the percussent; thus we see not infrequently that if one continues to drive a nail into very hard wood, the hammer [finally] rebounds without driving the nail forward at all, and we say in this case that the blow did not "take." Not very different is the bouncing of an inflated ball on a hard pavement, or of any other body so disposed, which indeed yields to the impact, but returns to its first shape as by arching, and such a rebound occurs not only when that which strikes yields and then recovers, but also when the same occurs in that upon which it strikes; and in such a manner a ball bounces when it is of very hard and unvielding material, but falls on the tightly stretched membrane of a drum.

Also perceived with great wonder is that effect produced when a blow is added to pressure without impact, making a compound of the two. We see this in mangles or olive presses and the like, when by the simple pushing of several

^{17.} The seeming incongruity between an infinite force of impact and the finite force of dead weight (in Galileo's sense) is here removed by him through showing how either finite or infinite strength may be attributed to impact in one way or to steady pressure in another way; see also Fragment 1, at end.

men the screw has been made to go down as far as they can manage. By drawing back a step from the bar and then striking swiftly against it, they move the screw more and more, and get it to such a point that the shock of the force of four or six men will achieve what mere pushing by a dozen or a score could not do. In this case it is required that the bar be very thick and of very hard wood, so that it bends little or not at all; for if it should give, the blow would be spent in bending it.

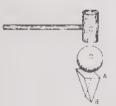
[Fragments]18

[1] In every moveable that is to be moved by force, it seems that there are two distinct species of resistance. One relates to that internal resistance which makes us say that a body weighing a thousand pounds is harder to raise than one of a hundred; the other relates to the space through which motion must be made, as a stone requires greater force to be thrown one hundred paces than fifty, and so on. To these different resistances correspond proportionably the two different movers-the one that moves [a thing] by pressing without striking, and the other that acts by striking. The mover that operates without impact moves only a resistance which is less, though [it may be] only insensibly [less], than the power [virtù] or the pressing heaviness; but that will move it through an infinite distance, accompanying it always with its same force. That which moves by striking, moves any resistance, though [this may be] immense; but [moves it only through a limited distance.

Hence I consider these two propositions true: that the percussent moves an infinite resistance through a finite and limited interval, while the pressing [force] moves a finite and limited resistance through an infinite interval; hence to the percussent, the interval is proportionable, and not the resistance, while to the pressing [force] the resistance, and not the interval [is proportionable]. These things make me doubt whether Sagredo's question has an answer, as one that seeks to equate things that are incommensurable; for

^{18.} These fragments were collected and published at the end of this dialogue by the editors of the 1718 edition of Galileo's works, probably from manuscripts no longer extant. It is possible that despite the editor's assertion, they were not all in Galileo's own hand; particularly Fragment 2 seems suspect. Numbers are here assigned for convenience of reference; none were given in the original printed version.

344



such, I believe, are the actions of impact and of pressing.¹⁹ Thus, in this particular case [illustrated], any immense resistance that may exist in the wedge BA will be moved by any percussent C, but [only] through a limited interval, as between points B and A, while the pressing [force] D will not drive just any resistance existing in the wedge BA, but only a limited resistance, and one not greater than the weight D. That, however, will be driven not [only] through the limited interval between points B and A, but in infinitum, provided that the resistance in the movable body AB remains always equal, as must be assumed, nothing to the contrary having been mentioned in the inquiry.

[2] The momentum of a body in the act of impact is nothing but a composite and aggregate of infinitely many momenta, each of them equal only to a single moment [al solo momento], 20 either internal and natural per se, as is that [moment] of its own absolute weight which it eternally exercises when placed on any resistant body, or else extrinsic and violent, as is that [momentum] of the moving power [forza]. Such momenta go accumulating during the time of [naturally accelerated] motion of the heavy body from instant to instant with equal increments, and are stored therein, in exactly the way that the speed of a falling body goes increasing; for as in the infinitely many instants of a time, however short, a heavy body goes ever passing through new and equal degrees of speed, always retaining those acquired in the previously elapsed time, so also in the moveable those momenta (either natural or violent, conferred on it by nature or by art) go conserving [themselves] and compounding from instant to instant, etc.

19. This concept of incommensurability in the Euclidean sense, carried over by Galileo into physics, disappeared in the algebraic treatment of nearly every later writer. The authenticity of this fragment appears to me incontestable, and its content suggests some probable reasons for which Galileo finally decided to withhold the Added Day from publication.

^{20.} Because the word momento is used in both senses of "static moment" and "momentum" (see Glossary), not alternately, but in a mixed way uncharacteristic of Galileo, this fragment is hard to translate. It fits much better with Torricelli's later modification of Galileo's thought than with his own writings, and it may be apocryphal. The idea here is that moments, like degrees of speed, are uniformly added with time, so that the momentum of a body on impact resembles its terminal speed in free fall as being a finite aggregate of infinitely many unquantifiable parts; cf. parti non quante in Glossary.

[3] The force of impact is equivalent to [di] infinite [static] moment, provided that it is applied in one momentum and in one instant by the striking heavy body, upon unyielding material, as will be demonstrated.

[4] The yielding of a material struck by a heavy body moved at any speed cannot take place instantaneously, because otherwise there would be instantaneous movement through some finite space, which is demonstrably impossible. If therefore the yielding in the place struck takes time, time is also required for the application of those momenta acquired in the motion of the percussent, which time is sufficient to extinguish and dissipate in part that aggregate of the aforesaid momenta. These, if they were exercised against the resisting body in an instant (as would happen if the materials of the thing struck and of the percussent did not yield at all), would absolutely have an effect and an action far greater, in moving it and overcoming it, than if applied in a time, however short. I say "greater effect" because they will have some effect against the thing struck, however tiny the blow or however swift the yielding; but this effect may perhaps be imperceptible to our senses, even though it really exists, as we shall demonstrate in the proper place. Yet that is also clearly revealed by experience, since, if with quite a small hammer one shall strike with uniform impacts against the end of a very large beam that is lying on the ground, then after a great many impacts, the beam will eventually be seen to have been moved through some perceptile space -a most evident sign that every impact acted separately on its own, in driving the beam.21 For if the first impact had no part in the effect, then all those which followed, as in the place of the first, would achieve nothing at all; which is contrary to experience, to sense, and to the proof that will be given, etc.

[5] The force of impact is infinite in [equivalent static] moment, because there is no resistance, however large, that is not overcome by the force of the tiniest impact.

- [6] He who shuts the bronze doors of San Giovanni will try in vain to close them with one single simple push; but with a
- 21. Mersenne, in the preface to his French translation of Galileo's *Mechanics* (Paris, 1634) alluded to an experiment of this sort carried out by Galileo, though there is no trace of it in his published works.

continual impulse he goes impressing on that very heavy movable body such a force that when it comes to strike and knock against the jamb, it makes the whole church tremble. From this one sees how there is impressed in moveables—and the more, the heavier these are—and how there is multiplied and conserved in them the force that has been communicated to them over some time, etc.

A similar effect is seen in a great bell, which is not set in strong and impetuous motion with a single pull of its rope, nor with four, or six [pulls], but [is] with a great many. These being long repeated, the final [pulls] add force to that acquired from the preceding pulls; and the thicker and heavier the bell shall be, the more force and impetus it acquires, this being communicated to it in a longer time and by a larger number of pulls than are required for a small bell, into which impetus is readily put, but from which it is also readily taken away, this [small bell] not drinking in, so to speak, as much force as the larger one.

A similar thing happens also in ships, which are not set in full course by the first tugs at the oars, or by the first impulses of wind; but, by continual rowing or continual impression of force made by the wind on the sails, they acquire very great impetus, capable of breaking the vessels themselves, when, carried by this [impetus] they strike a reef.

[7] A weak but long bow of a balestra will sometimes make a greater throw than another [bow] much stronger but not as long; for the former, accompanying the ball for a longer time, goes on continually impressing force on it, while the latter soon abandons it.

[The End]

Reference Matter

Bibliography of Principal Editions and Translations of the Two New Sciences

- Discorsi e dimostrazioni matematiche, intorno a due nuove scienze attenenti alla Mecanica & i Movimenti Locali... con una Appendice del centro di gravità d'alcuni Solidi. Leyden, 1638.
- 2. Les nouvelles pensées de Galilée. Paris, 1639. Partial translation and paraphrase by Marin Mersenne.
- 3. Discorsi Bologna, 1655. In Opere del Galileo, Bologna, 1655-56. Contains the addition dictated to Viviani.
- 4. Mathematical Discourses and Demonstrations, Touching Two New Sciences . . . Englished from the Originall Latine and Italian, by Thomas Salusbury, Esq. London, 1665 (but actually printed in 1662 and published in 1666). In Thomas Salusbury, Mathematical Collections and Translations: The Second Tome . . . The First Part. London, 1665. English translation from the 1655 edition. Facsimile reprint (of both tomes) issued in 1967 by Dawson's of Pall Mall (London) and Zeitlin and Ver Brugge (Los Angeles).
- 5. Principio della Quinta Giornata del Galileo. Da aggiugnersi all'altre quattro de' Discorsi... In Vincenzio Viviani, Quinto Libro degli Elementi d'Euclide, ovvero Scienza universale delle proporzioni.... Florence, 1674. This so-called Fifth Day of the Discorsi was reprinted several times in a small two-volume Euclid, Florence, 1690, 1718, etc.
- 6. Discursus et demonstrationes mathematicae, circa duas novas scientias.... Leyden, 1699. Latin translation from the edition of 1638. Issued with the Latin translation of Galileo's Dialogue by Mathias Bernegger (1st ed., 1635) under the general title, Galilaei Galilaei Lyncei Dialogi, tam eos quos edidit De Systemate Mundi quam quos De Motu Locali. Leyden, 1699-1700. Possibly this translation was made under Galileo's own direction for a proposed Latin edition of his works projected by the Elzevirs.
- Discorsi In Opere di Galileo Galilei . . . , vol. 2 (of 3).
 Florence, 1718; contains the so-called Fifth Day (see 5,

above) and the added dialogue on percussion, called the Sixth Day. Subsequent collected editions generally

contain both additional "days."

8. Mathematical Discourses Concerning Two New Sciences ... Done into English from the Italian, by Tho. Weston, late Master, and now publish'd by John Weston, present Master, of the Academy at Greenwich. London, 1730. English translation from the edition of 1638, apparently with the Salusbury and the Latin translations (4 and 6, above) at hand. A reissue, differing only as to title page, appeared in 1734.

9. Discorsi In Opere di Galileo Galilei . . . , vol. 3 (of 4).

Padua, 1744.

10. Discorsi In Opere di Galileo Galilei . . . , vols. 8-9 (of 13). Milan, 1811.

11. Discorsi In Opere di Galileo Galilei vol. 1 (of 2). Biblioteca Enciclopedica Italiana, vol. 20. Milan, 1832.

12, Discorsi In Le Opere di Galileo Galilei, Prima Edizione Completa . . . , edited by Eugenio Alberi, vol. 13

(of 16), Florence, 1855.

13. Unterredungen und mathematische Demonstrationen über zwei neue Wissenzweige . . . ubersetzt und herausgegeben von Arthur von Oettingen, 3 vols. Ostwald's Klassiker der exakten Wissenschaften, Leipzig, 1890-91. The first edition with critical notes; several reprint editions.

14. Discorsi. . . . In Le Opere di Galileo Galilei, edited by Antonio Favaro, vol. 8 (of 20). Edizione Nazionale. Florence, 1898. With the additional days, notes and fragments. Reprinted with some additions 1933, 1965

(largely destroyed by flood), and 1968.

15. Dialogues Concerning Two New Sciences . . . Translated from the Italian and Latin into English by Henry Crew and Alfonso De Salvio, with an Introduction by Antonio Favaro. New York, 1914, reissued 1933; reprinted. Northwestern University Press, Evanston and Chicago, 1939, 1946, 1950; reprinted frequently by Dover Books. New York; included in Great Books of the Western World, vol. 28.

16. Besedy i matematicheskie dokazatelstva, kasaiushchiesia dvuch novykh otraslei nauki Moscow, 1934. Russian translation by S. N. Dolgov. Reprinted in Galileo Galilei. Izbranny Trudy, vol. 1 (of 2). Moscow, 1964.

17. Discorsi In Galileo Galilei, Opere, edited by Pietro Pagnini, vol. 4 (of 5). Florence, 1935; reprinted 1964.

18. Discorsi In Opere, edited by Schastiano Timpanaro, vol. 2 (of 2). Milan, 1936.

- Dialogos acerca de Dos Nuevas Ciencias. Buenos Aires, 1945. Spanish translation by Jose San Roman Villasante. The most accurate modern translation to have been published.
- 20. Discorsi . . . In Galileo Galilei, Opere Scelte, edited by Ferdinando Flora. Milan and Naples, 1953.
- 21. Discorsi . . . Edited by Adriano Carugo and Ludovico Geymonat. Torino, 1958. Italian translations of Latin passages; includes notes and fragments from Opere (14, above).
- Japanese translation by Takeo Konno & Setsuji Hida, 2 vols. Tokyo, 1958.
- 23. Dialoguri aspura stiintelor noi. Bucharest, 1962. Romanian translation. This may be an abridged version; details lacking.
- Discours et demonstrations mathematiques concernant Deux Sciences Nouvelles. Paris, 1970. French translation by Maurice Clavelin.
- Two New Sciences. Translated by Stillman Drake. Madison, 1974. Second edition with corrections and revised introduction, Toronto 1989.
- Consideraciones y demostraciones matemáticas sobre dos nuevas ciencias. Edited by C. Solis & J. Sadaba. Madrid, 1976.
- Duas Novas Ciências. Translated by Latizio & Pablo Mariconda. São Paulo, 1985. Second edition, 1988.
- 28. La nueva ciencia del movimento. Selección de los Discorsi . . . Abridged translation edited by C. Azcárate, M. Garcia Doncel, J. Romo. Barcelona, 1985.

Index

abstraction, 12, 58, 78-80, 112-13, 131, 135*n*, 162, 217, 223, 225, 227

Academician (Author; our friend; i.e., Galileo), xxxiii, 7, 15, 22, 34, 74, 97, 142, 143, 152, 155, 160, 161, 162, 169, 171, 174, 175, 215, 217, 218, 221, 223, 229, 230, 232, 235, 236, 242, 245, 250, 259, 260, 281, 282, 283, 287

acceleration: 53n, 215; along curves, 164; and medium, 94-95; and weight, 90; cause of, xix, 77, 157-59, 158n, 196, 198, 297; continuity of, 154, 157, 233; duration of, xx; force of, 198; indefinite, 94, 297; law of, viii, 77, 166, 223; limited, 95; measurement, xviii, natural, ix, 77, 78, 147-48, 153 ff., 169, 197, 230, 232, 233; reduction of, 172, 293. See also deceleration; double-distance rule; motion; odd-number rule; speeds; times-squared law; uniform

accidents, external, 15, 77, 87, 162, 217, 223, 225, 227, 297, 298, See also motion, impediments to; resistance

acceleration

act and potency, 42, 42n, 43, 44, 53

actual. See act and potency; potential

air: as cause of motion, 98; as habitat, 129-29; compressed, 76, 82-85; conflict with water, 74-75; escape of, 23, 73, 82, 83; expansion into void, 20, 84; lifting of, 84n; particles of, 27; penetration of, 20, 24; pressure of, 25n, 75n, 129n; rarefaction of, 24; removal of, 78; reistance to speed, 78,

88n, 90-91, 95, 163, 225-28; speed in, 70, 79, 81, 224, 226 ff.; vibration of, 99; weight in, 76; weight of, 76, 80-85. See also medium; waves

ambit and ambient, 85

angle of contact, 291

animals: aquatic, 73, 127, 129; fall of, 14, 123; proportions of, 127; size of, 14, 123, 127; strength of, 128. See also fish

antipathy, 75

antiperistasis, xxxii, 98, 159

Antonini, Daniello (1588-1616), 282, 282n

anvil, 302

Apollonius of Perga (262-190 B.C.), 215, 218, 218n

Aproino, Paolo (d. 1638): xxxiv, 282n; as interlocutor, xxxiv, 281

Archimedes (287?-212 B.C.): xvii, xxxviii, 38, 48, 110, 121n, 140, 141, 215, 223; and physics, 110, 151n; method of exhaustion, 139-41, 139n; mirror of, 48, 48n; on mathematics, xiii; on the method of physics, xiii; on the object of science, xviii; postulates of, 110, 110n, 139; principle of, see buoyancy

--works: Conoids and Spheroids, 139n; Floating Bodies; Plane Equilibrium, 110, 110n, 223, 259n; Quadrature of Parabola, 141n, 223; Spiral Lines, xli, 139, 139n, 148n, 149n

architects, 224

Ariosto, Lodovico (1475-1533), 127n

Aristotle (384-322 B.C.): axioms of, 21, 27n, 42n;

experiments of, 66, 69, 81-82; on mathematics, xiii; on speed of fall, 65-71, 79; on the method of physics, xiii; on the object of science, xiii; on the void, 20, 20n, 34, 55, 65-71; on weight of air, 80-83; wheel of, 29 ff., 56-57. See also Peripatetics; philosophers; physics, Aristoltelian

—works: De caelo, 21n, 42n; Metaphysics, xxxviii; Physics, 20n, 21n, 39n, 42n, 148n, 229n, 295n. See also Questions of Mechanics

arquebus, 95, 228

Arrighetti, Andrea (1592-1672), 125*n*

arrows, 225

artillery, 49, 224, 229n, 245

artisans, 11, 142, 143, 182

astronomers, 8, 169

atomists, 34, 34n, 65, 66, 71

atoms, xliii, 26, 27n, 28, 33, 34n, 47, 54, 92. See also indivisibles; minima naturalia

Author. See Academician

balance: 137, 223, 289; in centers of gravity, 261-63, 272-74; in impact experiments, 283-85; in weighing air, 82-85

Baliani, Giovanni Battista (1582-1666), 25n, 83n

ball: bronze, 142-43, 169; cork, 87-88; glass, 75; horizontal projections of, xv, xxix; inflated, 302; gold, 75; lead, 75, 76, 87-88, 225-26, 236; on inclined plane, xviii, 162, 164; wax, 72-73; wooden, 30, 79-80, 225-26

basket, capacity of, 61

beam: driven by taps, 305; lightening of, 135-38, 142; of even strength, 135-41; supported at ends, 131 ff., 135n, 138n. See also breakage; strength

bells, 99, 306

bending, 53, 123, 144, 303

Benedetti, Giovanni Battista (1530-90), xxxiv, 66n

Berkeley, George (1685-1753), axioms or lemma of: 37n, 57n

bladders, 73, 76-78

Blondel, François (1626-86), 138n

body, xli

Bologna; 49n; University of, 261n

Bolzano, Bernard (1781-1848), 37n

bones: 14; size of, 127-28; strength of, 144; wieght of, 128-29

Borri, Girolamo (1512-92), 81n

bottle, leather, 80-81

bouncing, 302

bows, 225-27, 306

brachistochrone, 97, 212-13, 213n

bran, 81

Bradwardine, Thomas (1290?-1349), 39n, 295n

brass plate, 102-3

breakage: 11-15, 25-26, 114-34; neutrality to, 13, 123-24; of columns, 14-15; of cylinders, 23; of wire, 25-26; place of, 133, 134; resistance to, 22-28, 134-46; transverse, propositions on, 114, 116. See also strength; self-support;

buckets, 24, 283-85

weight

buoyancy, 78, 78n, 79, 80n, 84, 85, 90

cannonballs, xxxiv, 66, 68, 90, 95, 96, 228

Castelli, Benedetto (1578-1643), 49n

catapult, 48n, 227

catenary, 143n

cause: xviii-xix, xli, 12, 19, 24, 77, 296; before effect, 21; first, 182, 182n; Galileo on, 11, 21, 159n, 245; internal vs. external, 74, 77, 158; of cohesion, 19, 22-23, 26, 27, 109; of impact effects, 242, 283, 302; of resistance, 227

Cavalieri, Buonaventura (1598?-1647): 35n, 39n, 49n, 147n; Specchio Ustorio of, 49

celestial: hemisphere, 37, 46; motions, 232-33

cement: 16, 17, 19, 20, 109; burning of, 26. See also parts, coherence of

center of gravity: 112n, 172, 259, 290-91; Archimedes on, see Archimedes, Plane Equalibrium; Federico Commandino on, 259; Galileo on, 141n, 142, 261-80, 281; Galileo's postulate concerning, 261; Luca Valerio on, 141-42; propositions concerning weights distributedarithmetically, 261-62, 272; in geometric progression, 269-70, 278; as successive squares, 273. See also cones; parabolic conoids

center of heavy things, 77, 172, 223, 290

chains, 127, 143, 256-57, 259

chisels, 102-3, 302

Cicero, Marcus Tullius (106-43 B.C.), 7n

circles: as loci of intersections, 46-47, 51-52; concentric, 181; divide lines into points, 53-54; equality of all, 37; equivalent to points, 37-38; infinite, 46-47, 51; internally tangent, 181, 205; polygons and, 62; polygons of infinite "sides," 33, 53, 54, 56, 57, 61-62; rolling of, 31 ff.; uniform motion in, 233

315

Clavius, Christopher (1537-1612), 62n, 261n, 263n

clocks, 12

coherence. See parts

Coignet, Michael (1544-1623), 261n

coins, 22, 27

Colombe, Lodovico delle (fl. 1615), xxxiii

comets, 8

Commandino, Federico (1509-75), 259n, 260

commensurability, xxxvii. See also incommensurables

compass, proportional, 143, 143n

compound force, 113n, 289. See also moment, compound

compound ratio. See ratio

compounded motion, 217 ff., 229 ff.

condensation: 64; of air, 82-85; Galileo's theory of, 54-57, 64-65, 84*n*

cones, propositions on, 219-20, 274, 275, 276, 277, 279

conic sections, 218, 218n, 221

conservation principles, 241n, 301n

consonance: 96, 106-7; "forms" of, 97, 97*n*, 100-102; Galileo's theory of, 104-6, 106*n*; ratios in, 99-103

continuum: 28, 34, 47; and indivisibles, 33, 39, 42-43, 54

Copernican system, 142n

copper: flattening of, 289; tensile strength of, 25-26

cosmogony, 233

counterlever, 117, 144, 284, 290

counterweight, 82, 85, 257, 294

crassitude. See materiality

Cremonini, Cesare (1550-1631), xxxviii

Crew, Henry, vii-viii

cylinders: enclosing rope, 19; hollow, 144-46; inscribed and circumscribed, 263-69, 274-77; pressure between, 18; pulled apart, 16, 22-24; supported at both ends, 14, 15, 131; surfaces of, 59-60; theorems on, 59, 60. See also strength, of cylinders

cylindrical razor, 36

dead weight, 286-88, 300-301, 302n. See also pressure; weight

deceleration: 78, 91, 94, 157, 196, 197-98, 198n, 296; proportional to speed, 227

definitions: arbitrary, 154-55; mathematical, 35n, 36n, 144n

Democritus (460-357 B.C.), 34n

demonstration: mathematical, 8, 12, 13, 15, 58, 60, 142, 169, 245; necessary, 15, 16, 133, 256, 257

density. See specific gravity De Salvio, Alfonso, vii

De Soto, Domingo, xix

Descartes, René (1596-1650), xxxi, 257n, 296n. See also physics, Cartesian

die, 92

discontinuity, 30, 31

dissonance, 104, 106-7. See also consonance

distances in fall, propositions on, 188, 190, 191, 192, 193, 194, 199, 201, 207, 209, 213

divisibility: and indivisibles, 39, 45, 51, 54; unending, 43, 45, 54, 155, 288

doctors, 73

double-distance rule, 168, 168*n*, 196, 198, 203, 226, 231, 232, 236, 239, 240, 298

doughnut (ciambella), 144, 144n, 145

drumskin, 302

dust, 22n, 69, 90. See also powder

eardrum, 102, 104, 105, 106, 107, 108

earth: xli; center of, 77, 222, 223, 224, 290; motion of, xi, xxxiv; radius of, 227; reduced to walnut, 58; surface of, 197n, 222n, 224

ebony and lead, 79

eggs in water, 71

Einstein, Albert (1879-1955), xxxi-xxxii

elements, weight of, 76, 80-81, 83

Elzevirs (Bonaventure and Louis, printers), 5, 6, 7, 9n, 146n

energy, 172, 173, 239, 240, 242, 256, 283, 286, 289

Epicurus (341-270 B.C.), 34n, 39n

equable acceleration. See uniform acceleration

equable motion. See uniform motion

equality: in infinites, 34, 35n, 40, 40n, 41; in the limit, 36-37, 37n; in the square, xxxvii, 229, 235, 238, 239, 240, 247; ratio of, 178. See also paradoxes; vector addition

equidistance of ratios, xxxviii equilibrium: 110-12, 173, 284,

289, 290, 294, 299; in water, 72-73, 129; of forces, 157

Euclid (fl. 300 B.C.): x, xvii-xviii, xxxix, 215, 218, 219, 252; Elements of, xi, xviii, xxv, xxxvii, xxxix, 149n, 215, 220, 220n, 252, 281—; on mean proportionals, xxv, xxx; on

motion, 215; on number, xxxi, on ratios, xxx-xxxi

Euclidean xxxviii, xxxix, 93, 196n, 304n

Eudoxian theory of proportion, 149n

expansion: of air, 20, 23, 24, 73, 82, 84; of gold, 33-34, 58, 60; of lines, 33; of odors, 64

experience: 11, 169; and reason 96; of breaking thread, 17-18; of broken column, 14-15; of descent by rope, 19; of driving pile, 156, 287; of drops on leaves, 74; of gilding, 58; of gold leaf, 58, 69; of hollow stalks, 144; of hum in projectiles, 90; of hydrometer, 73; of parabolas, 142; of pendulums, 88, 96, 107; of range of shots, 245; of rarefaction, 64; of separating slabs, 19-22; of speed inverse to weight, 257, 290; of speed of fall, 71, 228; of speed of sound, 49; of swiftness in fall, 155-56; of time in fall, 160-61; of tremor in throat, 43; of weight in air, 81, 82; of winch, 19; of yielding to speed, 292

experiments: Aristotle and, 66, 69; 81-82; beam driven by taps, 305; checked pendulum, 162-64; chisel marks, 102-3; commensurable pendulums, 107; differential density, 73; equal speed of fall, 68, 87; Galileo and, vii, viii, xv, xxi, xxv, 24, 81n, 96, 153, 159, 161, 171, 221n, 223 226n 245, 282, 284-85; impact of water jet, 283-85; inclined plane 169-70, 170n; inertial motion, 197n, 296n; inflated bladder, 76; isochronism, 87-88, 88n, 226; musical, 97n; musket shot, 95, 228; power of vacuum, 23-24; speed of light, 50-51; tensile strength, 23; tracing parabolas, 142-43; vibrating

goblet, 100, 102; weight of air, 82-86; weights over pulley, 294-95, 297; wine through water, 74-75

fall: viii-ix, xix, xxvii-xxix, 147n, 155-56, 176n, 236-37; along chords and arcs, 97, 164, 164n, 178-80, 183, 202; Aristotle on, xiii, 65 ff.; cause of, 77; deflected along planes, 185, 186-90, 193, 194, 199, 200, 202, 214; equal speed in, xiii, 68, 69, 72, 75-76, 78, 86, 90, 91, 225; in void, 76, 78; law of xv, xvii-xxi. See also uniform acceleration; vertical fall.

fallacies, 69, 160, 161, 180, 227, 286, 287

Favaro, Antonio (1847-1922), vii, 21n

fibres and filaments: binding of, 17-18; breaking of, 17; hempen, 16-17, 28; in wood, 16, 117; separation of, 17

"Fifth Day" on proportion, 9n fire: xliii, 80; and motion, 49; wood resolved into, 64

fire-particles, 27, 28n, 48

fish: 153; bones of, 128-129; equilibration of, 72-73, 129; on land, 129

flask, 82-85

floating, 69, 70, 72, 75, 81

Florence, xi, xxxiii

fluids: as mediums, 84, 92; continuity of, 47; resistance of, 84n. See also air; water

football, 82

force: xix, xxxii, 295n, 298n, 299, 303; and speed, 257, 283, 295, 299; and weight, 301; compounded, 113ff.; conserved, 306; impressed, xix, xxxii, xl, 157-58, 306; infinite, 132, 242, 256, 259, 291, 301n, 302n; minimal, 28, 92, 258-59, 290-91, 299;

multiplication of, 283, 306; of firing powder, 228, 283; of impact, 242, of void, 22, 27-28

freezing, 285 friction, 87, 91, 100, 297 functional relations, 121n, 177n

Galilei, Galileo (1564-1642); see Academician; cause, Galileo on; consonance, Galileo's theory of; constant, xxv; demonstration; experiments, Galileo and; infinite, Galileo on; mathematics, Galileo and; opponents of Galileo; paradoxes, Galileo on; physics, Galilean, postulates of Galileo

--works: Assayer (II Saggiatore), 34n, 50n; Bodies in Water, 22n, 74n; Centers of Gravity, 141n, 142n, 261-80; De motu (On Motion), 66n, 78n, 91n, 158n, 193n, 292n; Dialogue, xi, xxxii, 5, 21n, 35n, 47n, 75n 88n, 147n, 163n, 176n, 197n, 229n, 233n, 237n, 258n; Mechanics, 110n, 112n, 172, 172n, 179n, 281n, 305n. See also Two New Sciences

geometrical theorems, 46, 51, 59, 60, 137-41, 210, 211, 229, 243, 247

giants, 14, 127-28 gilding, 58-60

glass: ball, 75; flasks, 82-85; impenetrability of, 24; molten, 26, 47

gluey substance. See cement goblet, singing, 100, 102

gold: 75; expansibility of, 33-34, 58, 60; leaf, 58, 60, 69; molten, 26, 27; point-atoms of, 34n, 48; Spanish, 22; strings, 103

Grassi, Orazio (1590-1654), 34n

Guevara, Giovanni di (1561-1641), 29, 29n, 123 Guiducci, Mario (1585-1646), 193n gunner's square, 245, 245n, 256 gunpowder: 49; expansion of,

64; force of, 283; motion from, 96, 227, 229

hammers, 242, 283, 289, 302, 305

heat, 27, 49. See also fire Heath, Thomas Little (1861-1940), xxxviii, xxxix, xl

heaviness (gravita); ix, 16, 20, 65, 76-78, 80, 90, 91, 103, 109n, 112 ft., 157-58, 217, 225, 242, 258, 289, 293, 294, 296; neutralized, 296

heights, measuring: 98

Hertz, Heinrich Rudolf (1857-94) xxxv, 153n, 159n, 164n

hollow cylinders, 143 ff. horizontal impetus, 240, 255, 296n

horizontal planes: ideal nature of, 197*n*, 223; motion on, 172, 196-97, 197*n*, 202-3, 217, 225, 297

horizontal shots, 255-56 humming of projectiles, 90 Huygens, Christiaan (1629-95),

hypothesis (ex suppositione), 153, 164, 222, 224

impact (percussion): 281n; and dead weight, 156; as measure of speed, 156, 160; energy of, 240, 242; first, 305; force of, 259, 282 ff., 298, 305; instant, 305; of air waves, 104; of projectiles, 95-96, 228, 240, 242; of weight, 156; on riverbed, 95; partial, 241; theory of, 240-42, 300-303;

weight and speed in, 283, 289, 293. See also resistent; yielding

impetus: accumulated, 99; compound, 235; conserved, 297; destroyed, 296; equality of in fall and rise, 96, 164, 295, 296, 299; excessive (supernatural) 227-29; infinite, 253; initial, 156; maximal, 172, 178, 242; of projectiles, 229, 234-41, 247, 255; theory, xix. See also momentum

impressed speed, 197-98 impulses, periodic, 99, 306

inclined planes: decrease acceleration, 172; equilibrium on, 172-73, 299-300; motion along, xxix, 87, 162, 164, 169, 171, 217, 297-300; postulate concerning, 162; propositions on, 171, 175, 176, 177, 178-80, 183, 184, 185, 187, 188, 189, 190, 194, 199, 200, 201, 203, 204, 206, 211, 213, 214. See also fall, deflected

incommensurables, 104, 107, 303, 304n

indivisibles: 33, 34, 38, 39n, 55, 57; dimensionality of, 35n, 39n; in physical material, xliii, 33-34, 47, 48, 60; method of, 35n, 39n. See also atoms; continuum; divisibility; parts

inertia, 181n, 194n, 197n, 296n. See also motion, inertial

infinite: aggregates, x; distance, 224; finite attributes and, 41-43, 46; number and, xxxviii, 28, 46, 47; orders of, 39; paradoxes of, 28, 33-46 passim; passage to, 30n, 45, 46, 47, 51. See also divisibility; paradoxes

instant: 20, 65; first, 155, 157, 167; in finite time, 157, 196; mathematical, 155, 157, 165n; physical, see moment

interpenetration, 54-57, 64 inverse squares, 98, 101, 177 isochronism. See pendulum

jet of water, 285 Johnson, Alexander Bryan (1786-1867), xxxv

Kästner, Abraham (1719-1800), 37n

Koyré, Alexandre (1892-1964), viii-ix

lance, 68, 144, 241

least time, propositions concerning: 203, 204, 205, 212, 213. See also brachistochrone; minimum

lever: 113 ff., 132, 137, 144, 242, 257, 289; law of, 109 ff.; material and ideal, 112-13, 113n. See also balance; steelyard

levity, 80, 82 Leyden, 146

light: xliii; expansion of, 50, 64; speed of, 49-51 50n

lightning, 49, 51

Lincean Academy, 7

logic, 133

Lucretius (98-55 B.C.), 34n

machines, 12, 13, 257*n*, 283, 289, 290, 301*n*; sizes of, 12, 14, 127

magnitude: 42*n*, 43; continuous, 42; of same kind 295; orders of, 223, 225, 227

mallet, 302

mangles, 302

Marchetti, Alessandro (1633-1714), 138n

mass, xl

materiality, 65, 70, 112 mathematicians, 215, 220

mathematics: applicability of, 153, 155, 169, 223; Aristotle on, xiii; assumptions in, 223-24; definitions in, 35n, 36, 144n; discovery by, 133; physics and, 12, 112-13, 133, 151n, 153, 215, 223-24; study of, 93, 133

matter: 58, 112; imperfections of, 12; inalterable, 12-13; prime components of, 33-34, 47, 60

maximum: 124n; area, 61-64; capacity, 61; length of beam, 123-24, 130-31; length of wire, 25-26; range of shots, 245, 246n; weight, 25, 134 ff.

mean proportional: xxxviii, 45; rule for times, 170-71, 174, 185-86

mean speed, 165n

measure: of force of vacuum, 22-23; of height, 98; of impact, 283, 287; of impetus, 230, 231, 234, 236, 237, 255; of resistance, 227; of speed, 231, 234, 237, 239, 283; of time, 170, 236, 239; of total moment, 173; of wavelengths, 102-3; standard of, 231, 236-37

mechanical: advantage, 122n, 290; conclusions, 16, 171; instruments or devices, 12, 110, 113, 172, 242, 257, 289, 290, 294; movements, 173

mechanics, xxxviii, 11, 12, 13, 109, 169, 179, 242, 295n

Mechanics in Italy, 66n, 81n, 229n, 245n, 246n

medieval statics, 179n, 257n, 295n, 301n

medium: and speed, 65, 69-71, 75-80, 90, 224, 226*n*; Aristotle on, 65 ff.; buoyancy of, 78; density of, 79; displacement of, 77-78, 84-87, 104; extrusion by, 159;

friction with, 78 ff., 91-92; lifting of, 84n; motion of, 90, 99; non-resistant, 76, 78-80; resistance of, 69-76, 84n, 92. See also antiperistasis; buoyancy; specific gravity

melting, 26, 47-49 mercury, 47, 75

Mersenne, Marin (1588-1648), 172n, 233n, 305n

metaphysics, 182n

Middle Ages, 179n, 215n. See also medieval statics; physics, medieval

minima naturalia, 34n

minimum: force, 244; parts, 26, 27, 47; time, 202-3, 205, 211 ff.; resistance, 173

mirrors: concave, 48; metal, 142-43; parabolic, 48

mixed angle, 291

mixed triangle, 139, 139n, 141

moment: xl, xli, 113 ff.; against internal resistance, 122 ff.; compound, 121; infinite, 305; of force, 28; of heaviness, 117; of speed, 231; of time, 106; partial, 173; static, 112-13, 125, 179, 284, 305

momentum: 87; acquired, 236; as aggregate, 99, 304; compounded, 229, 257; in fall and rise, 163-64; of impact, 160, 161n; on inclined plane 172; quantity of, 240; weight and speed in, 257, 290

monochord, 101

Monte, Guidobaldo del (1545-1607), 143n, 259n, 260, 261n, 263n

moon: fall from, 14, 95; spots on, 7

mortars, 229, 229n, 245

motion: and force, xxxii; and heat, 49; beginning of, 76, 81n, 154, 155, 170, 174, 228; cause of, 77; circular 181-82, 233; compounded, 217 ff., 229 ff.; conflict of, 222, 229n;

continuous, 46; curved, 164, 218, 256; deflected, see fall, deflected along planes; horizontal, 172, 196-97, 202-3, 217, 222, 225, 297; impediments to, 11n, 77, 78, 87, 94, 162, 164, 223, 224, 225, 226-27, 297, 298; indifference to, 172; inertial, 172, 182, 194n, 217, 222, 225, 236, 240, 296-97; instantaneous, 20, 50, 65, 160, 305; in void, 20, 65 ff., 76, 78-80; minimal, 156; mixed, 197-98, 222, 235-36, 239, 255; natural, 147, 155, 157-58, 181-82, 239, 281; of medium, 90; perpetual, 157, 196-98, 217, 223, 225, 233, 302; propensity to, 77, 173, 197, 297; reflected, 198-99, 200; science of, 8, 147 ff., 171, 215; violent, 148, 158, 281, 296. See also acceleration, deceleration; fall; inclined planes; medium; paradoxes; projectiles; speeds; uniform acceleration; uniform motion

music: instruments of, 96, 99; intervals of, 101, 104. See also consonance; dissonance; vibration; waves

musket ball, 66

mutation, xlii

muzzle velocity, 96

nails, 15, 143, 162-63, 298, 302

nature: actions of, 143, 153; defrauding of, 289; motions used by, 153, 154, 181-82; pranks of, 180; simplicity in, 153

net impact, 241

net leverage, 113n, 122, 122n neutrality to breakage, 123-24

Noailles, François de (1584-1645), 5-6

number: xxxviii, xxxix, 40n; indefinite, 43-44; infinite, xxxviii, 41, 43, 45, 47, 51; one (unity), xxxviii, 45, 67n; prime, 44; real xxxix; squared, 40-41, 45

oars, 127, 306

observation: and reasoning, 64; by artisans, 11; of bells, 99, 306; of broken rope, 17; of chisel marks, 102-3; of dust, 47-48; of fluids 48; of fish, 72-73; of goblets, 100, 102; of gold, 75; of impact through water, 95; of lathes, 90; of lightning, 51; of long ropes, 119; of pack twine, 18; of pendulums, 87, 89, 227; of planetary motions, 233; of rarefaction, 64; of specific gravity, 73; of speed in water, 71; of split waves, 100; of suction pump, 24-25; of swinging lamp, 98; of sympathetic vibration, 99-100; of terminal speed, 228; of trajectories, 143; of wetting rope, 28

odd-number rule, 147, 147n, 167-69

odors, 64

one-to-one correspondence, 32, 40-41, 40n, 45, 160n, 165, 165n, 176, 196-97

opponents of Galileo, 34, 86, 89-90, 161, 234

Padua: 35n; University of, 62n, 172n, 179n, 281, 282n

Pappus of Alexandria (fl. 285), xxxviii

parabolas: as burning glasses, 48; as conic sections, 218-21; degenerate, 222; drawing of, 142-43; 143n; for shaping beams, 137 ff.; properties of, 137-41, 219-20, 263n; propositions concerning, 137

ff., 217 ff., 247 ff.; quadrature of, 141; tangents to, 220, 242; trajectories and, 49*n*, 143, 147, 147*n*, 217 ff., 222, 224, 225, 229, 240 ff.

parabolic conoids, 263, 264, 266, 268, 271

paradoxes: Aristotle's laws of fall, 67-68; Aristotle's wheel, 29 ff.; Galileo on, 57n; of equal speed, 88-89; of infinity, 28, 32-47 passim, 51, 57; of line, point, and surface, 35 ff., 37n; of numbers and squares, 40-41; of passage to infinite, 30n; of passage to limit, 35-37, 57n

Paris, 143n

parti. See parts, quantified; parts, unquantifiable

particles: minimum, 26, 27, 28, 47, 48; of lines, 31-32

parts: coherence of, 16-17, 19, 21, 26, 27, 54, 109, 115; quantified, xlii-xliii, 32-34, 42, 43, 44, 47, 57; unquantifiable, xlii, 33, 34, 42, 304n

pendulum: xxi-xxix, 87-88, 94, 96, 107, 296; and heights, 98; checked, 162-64; isochronism of, 87, 88n, 94, 97, 99, 226-27; law of, 94, 97-98; period unalterable, 99; started by puffs, 99; swings to same level, 96, 163-64, 295-96

percussent, 156, 160-61, 294, 298, 300, 302, 303, 305

percussion, Added Day on: 9n, 241n, 259, 281-303; Galileo's proposition on, 300. See also impact

Peripatetics, 54, 55, 65, 66n

philosophers, viii, xviii, xxxii 8, 20, 34, 44, 64, 69n, 73, 80, 94, 96, 102, 147, 157, 159, 215, 218. See also Peripatetics

physics: Aristotelian, xiii, xxxviii, xli-xlii, 295n; Aristotle on, xviii, xxix, xxxix, xlii-xliii; assumptions in, 223; Cartesian, xl, 295n,, 301n; Galilean, ix, xxx, 151n, 159n; mathematical, xvii, xxxi; measurement in, xviii; medieval, xxx, 147n, 153n, 295n, 301n; modern, xxxiv; terrestrial, xli

Pieroni manuscript, 21n, 69n, 80n, 81n, 104n, 106n, 134n, 137n

pikestaff, 236-37 pile driver, 285 ff., 292 ff., 301 Pisa, University of, 38n, 81n piston, 23-24 planets, 233

Plato (427?-347 B.C.): 93, 133, 232, 233; *Timaeus* of, 234*n*

Platonism, 193n

points: and lines, 34, 35, 38, 53-54; bisection of, 39; equal to circles, 37-38; filled vs. void, xli, 27n, 33

polygons: inscribed and circumscribed, 62; relation to circles, 33, 62, rotation of, 29 ff., 55-56

porosities, 24, 27, 28, 90

postulate of Galileo on acquired speeds: 162, 164-65, 174, 175; dynamic lemma for, 162n, 164n, 171n, 171-74; kinematic arguments for, 174-75, 199; utilized, 299

potential, xxxviii, 42. See also power

powder, 47, 48, 92. See also dust power: in mathematics, xxxviii, 235: in physics, 114, 256,

295n. See also three-halves power

pressure: atmospheric, 25n, 75n, 129n; combined with impact, 156, 242, 291, 302-3; effect of, 156, 242, 302; of fingers, 17-18; of weight, 156, 242, 288-89, 300; separation of, 18

projectiles: 215, 217, 221 ff.; actual, 225; impetus of,

230-42; motion of, 143, 148, 217 ff.; paths of, 49n, 143, 147, 221, 243; propositions on impetus of, 229, 244, 245, 247, 248, 252; propositions on ranges of, 246, 249, 253; trajectory of, xxix. See also trajectories

proportion, theory of: xxx, 295n, 298n; propositions on, 192, 210, 247, 269, 278. See also Eudoxian theory of proportion

proportionality: inverse, xxxviii, 150, 151

Ptolemy (astronomer, fl. 140), xvii, xxxviii

pulleys, 289, 293-95, 297, 299 pumps, 24-25, 25n

quantified. See parts, quantified Questions of Mechanics (psuedo-Aristotelian), 29, 109, 109n, 123, 131, 229n, 257

rafters, 135, 169

range of shots: 229; maximum, 245, 246n; with given impetus, 246, 249-51

rarefaction, 54, 55, 57, 58, 64. See also condensation

ratio: compound, xxxvii, 114, 120, 151-52, 177, 177n, 283n, 295n; defined, xxvii; duplicate, xxxvii; Euclidean restriction on, xxx-xxxi; Galileo's, xxviii, inverse, 60, 109, 121, 152, 174; of equality, 178; of infinites, 196; of volume and surface, 92; same, xxx, 149

relativity, xxxix

resistance: absolute, 115; and speed, 78, 257; constant, 293 ff., 298 ff.; increasing, 286-87, 292-93, 298; infinite, 132, 287, 289, 298, 303; of

medium, 68, 72, 78, 94; of vacuum, 22, 23, 25, 76; proportionality to speed, 88n; to ascent, 173; to breakage, 12, 13, 19, 54n, 93, 109, 115 ff.; to separation, 20, 21, 92; two kinds of, 19, 119, 303; uniform, 131 ff., 135 ff.

resistent: xliii, 288; always yields, 28, 257, 288, 301, 305; condition of, 241; movement of, 241, 257, 283; obliquity of, 241; weight of, 289. See also yielding

rest, 56, 57, 67, 68, 155, 156, 157, 158, 172, 230, 232, 233, 289, 290, 295, 296

retardation. See deceleration

Rome, 5, 38n, 62n, 142n

rope: breaking of, 16, 17, 25; descent by, 19; fibers of, 16-17; long and short, 19-20; of water, 25; roughness of, 297; stretched straight, 256-59; swelling of, 28; twisting of, 17; weight of, 25, 256; wetting of, 28n

sacks, capacity of, 61

Sacrobosco, Joannes (13th c.), 62, 62n

Sagredo, Giovanni Francesco (1571-1620), xxxiii-xxxiv; as interlocutor, xxxiii-xxxiv, 42n, 158n, 223n

Salviati, Filippo (1582-1614), xxxiii; as interlocutor, xxxiii, 28n, 182n, 224n

sand, 23, 72, 82, 85, 90

San Giovanni, church of, 305

Saturn, 7

science: vii, xi, xiii, 15, 139, 224, 225; demonstrative, 90, 169; object of, xviii

screw, 172, 242, 289, 303

sculptors, 182, 302

self-support, propositions on, 117, 123, 124, 130

sensorium, 104

shape: and speed, 90, 94, 104, 225; and strength, 122-23, 135; and weight, 112; implies finite, 47

ships, 11, 28, 127, 130, 138, 306 Siena, 125n

Simplicio as interlocutor, xxxiii-xxxiv, 91n, 182n, 223n, 281

siphon, 25n

Sixth Day, 9n. See also percussion size, 11, 12, 13, 15, 90, 123, 127, 225

skeleton, 127-29

slabs, separation of, 19-22

sledge, 156

slowness, infinite, 155, 156, 157, 233. See also rest; acceleration, continuity of

sound: 96; pitch of, 90, 102-4; sensation, 102; speed of, 49-50; waves, 102

soupdish, 36

specific gravity: 68n, 80, 82, 129; heat and, 73; in fall, 68, 72-73, 75n, 78, 79, 90; of mercury, 75

speeds: absolute, 66, 80; acquired, 162, 236-37, 296-97; and pitch, 90; and shape, 90-91, 104, 225; and weight, 65, 68-71, 78, 90, 173, 257; Aristotle on, 65-71; composition of, 241; conserved, 197, 297; consumed, 150n, 157; degrees of, xlii, 70-71, 77, 77n, 154, 156-57, 162, 165, 176, 176n, 197, 241, 297, 299; equality of, 88-89; impressed, 197, 228; indefinitely increased, 156; inequalities in, 72; in free fall, 65-71, 78, 225-28; mean, ix, xviii-xix, 165n; measure of, xviii; natural and supernatural, 95, 226-29, 228n; overall, 161n, 173, 176n, 196n, 197n, 226;

physical definition, 159n; proportional to distances, ix, 154n, 159-60, 176n; proportional to times, 77, 154, 159, 168, 171, 174, 231, 237, 238; ratio of, xviii, 69, 72, 80; universal unit of, 236-37. See also air, speed in; fall, equal speed in; medium, and speed; momentum, speed in; weight, and speed

spinning, 90 spirals, 18, 19, 153 square number, 40-41, 45 steelyard, 237, 290, 294 sticks, 13, 16, 131

stones; falling, 157; hurled up, 157; tied together, 67-68

straw, 144

strength: and length, 123-24, 131; breaking, propositions on, 114, 116, 117, 118, 119, 120, 121, 123, 124, 126, 130, 133, 134, 144, 145; of beams, 13, 114 ff.; of cylinders, 118, 121, 125 ff., 143 ff.; of dogs, 128; of materials, 8, 109 ff., 115n, 143 ff.; of plants, 14, 144; of nails, 15; of rope, 16-18, 119-20; of structures, 11-13; of wood 16; propositions on ratios of, 118, 119, 120-21, 126, 144, 145; size and, 11-12, 15, 123; tensile, 16, 25-26, 109, 114-16, 118; transverse, 109, 114 ff., 143; uniform, 131, 135 ff.; uniqueness in, 13, 123-24. See also breakage; resistance; self-support; weight

strings (musical): tension in, 101, 103. See also vibration

sublimity (of parabola): 232, 233, 240, 243, 252

suction, 24-25

sunspots, 7

supernatural speed, 226-29, 228*n* surfaces: and lengths, 58-60; and perimeters, 61-63; and

volumes, 60-61, 91-92; irregular, 61; of cylinders, 59-60; roughness of, 90-92, 162

surface tension, 74n swim bladders, 73

Swineshead, Richard (fl. 1350), 148n

tables of trajectories, 251, 254

tardity, 155, 157. See also slowness

Tartaglia, Niccolo (1500?-1557), 229n, 245n, 246n

telescope, vii, xxx, 7, 50

tensile strength. See strength, tensile

terminal velocity, 78n, 94-95, 161n, 225, 228

theology and mathematics, 182*n* three-halves power, 92, 93, 119, 121-22

time; accumulation of, 87; divisibility of, 106, 154, 157; measure of, 170, 236; minimum, 202, 203, 204, 205, 211; moment, 106; motion and, 154; representation of, 175n, 237, 239

times of motion, propositions concerning: equal times, 178, 180, 183, 184, 185, 187, 188, 190, 206, 207, 209, 213, 214; minimum time, 203, 204, 205, 212, 213, 214; ratios of times, 175, 176, 177, 185, 186, 190, 199, 200, 202, 214; shorter time, 159, 183, 189, 191, 194, 211

times-squared law, viii, xv, xviii-xix, xxix, 147n, 166, 169, 174, 222, 237

Torricelli, Evangelista (1608-47), 129n, 172n, 304n

tower, 14, 79, 95, 224

trajectories: 49n; distorted, 223-24, 229; propositions concerning, 221, 229, 243,

244, 245, 247, 248, 249, 252, 253

transparency, 48 trees, 14, 127

Treviso, 281

Two New Sciences: Added Day, x, 176n, 241n, 242, 259, 281-306; Appendix, 259, 260, 261-80, 281; beginning of modern science, xiii; edition of 1638, 21n, 28n, 68n, 80n, 134n, 162n, 193n, 196n; edition of 1655, 171n, 196n; Fourth Day, viii, xxx, 143, 143n, 148, 217-60; interlocutors of, xxxiii; Latin treatise in, xv, 147-59, 162 ff., 217 ff.; manuscripts of, 5, 21n, 68n, 69n, 80n, 104n,106n, 134n; passages added, 68n, 69n, 71n, 85-6, 171-75; Second Day, xxx; Third Day, viii, x, xxi; translations of, x

Udine, 282

uniform acceleration; xviii, 77, 153 ff., 168, 181, 217, 232, 236, 297; added theorem on, 174, 175; definition, 154-55, 161-62, 169, 174; law of, 166; medieval work on, 147n, 153n, 165n; problems on, 191, 192, 206, 207, 208; Prop. I on, 165-66, 176, 196, 197*n*, 297*n*; Prop. II on, 166-71, 171n, 177, 221; Prop. III on, 175, 199, 299. See also acceleration; double-distance rule; distances in fall; fall, deflected; inclined planes; odd-number rule; times of motion; times-squared law; vertical fall

uniform motion: viii, 147-52, 154, 166, 168, 181, 196, 217, 229, 236, 238, 297; axioms of, 148-49, 148n, 150n; composition of, 229n, 237; defined, 148, 148n; following on fall, 94; never actual, 223, 225; perpetual, 157, 197n,

198; Prop. I on, 148n, 149; Prop. II on, 148n, 150, 160n, 179; Prop. IV on, 167. See also motion, inertial unison, 97, 106 unit, xxxix unity, xxxviii, 45, 51, 147, 167 universe; creation of, 233; infinite, 193n

unquantifiable. See parts, unquantifiable

vacuum. See void

Valerio, Luca (1552-1618): 38n, 141-42, 142n, 260; his De centro gravitas solidorum, 38, 141n, 142

valves, 24, 82-85

vapors, 49, 81

vector addition, xxxvii, xliii, 229-30, 238-39

velocity. See speeds

Venice: 281n, 282; arsenal of, 11

Venus, 8

vertical fall, propositions concerning, xxv, 165, 166, 167, 175, 185-86, 190, 191, 192, 193

vibration: of church larnps, 98; of strings, 104; of throat, 103; sympathetic, 97, 99-100

Virgil (70-19 B.C.), 160n

virtual velocities, 109n, 257n, 257-58

viscosity, 74

Viviani, Vincenzio (1622-1703), 9n, 28n, 98n, 107n, 135n, 138n, 171n, 172n

void: equal speed in, 76, 241; horror of, 19-20, 23, 26, 27n, 54n; in nature, xliii, 20, 21, 34, 54, 64, 69n; interstitial, xliii, 27-28, 33, 34n, 51, 85; macroscopic, xliii, 54n, 57, 71, 76, 78; motion in, xliii, 20, 65 ff., 76, 78-80; not instantaneous, 20; particles, 31; point-void, xliii, 27n, 28, 33-34, 54n, 57, 64n; power of, 19-23, 26; produced by force, 21; resistance of, 25, 26, 109; weight in, 84-86

washer, 36-37

water: antagonism with air, 74-75; as measure of time, 170; as medium, 70; breakage by own weight, 25-26; bouyancy of, 80n; descent through wine, 74; density of, 71, 79; drops on leaves, 74; falling, 285; has no coherency, 22, 22n, 48, 73-74; height in column, 24-25; impact of, 285; rarefaction of, 24; salt, 73; speeds in, 70; transparency of, 48; turbid, 22n, 73, 90; weight in void, 86. See also fluids; medium

waves: frequency of, 100; of air, 99-100, 102, 104; of water, 48, 100, 102, 181; preservation of, 102-3

wax, 24, 72-73

wedge, 304

weight; absolute, 80, 85; action of, 128; and distance, 173; and pitch, 101, 103; and shape, 112; and speed, 65-72, 76, 77, 86, 90, 257, 289, 293; breakage under own, 11, 14, 15, 25-26, 117, 122, 123, 124, 127, 130, 131; dead, 286-87, 300, 302n; during fall, 67-68, 285; in air, 84; in equilibrium, 110; in void, 84-86; minimal, 258-59, 290-91; of air, 80-85; of lever, 112-13, 115; of hemp, 67; supported, 134 ff., 293; suspended, 28, 290-91, 293, 296

Weston, Thomas (d. 1728?), xlii, 193n, 196n

whales, 128-29

wheel of Aristotle, 29 ff., 56 winch, 19

wine, 74-75

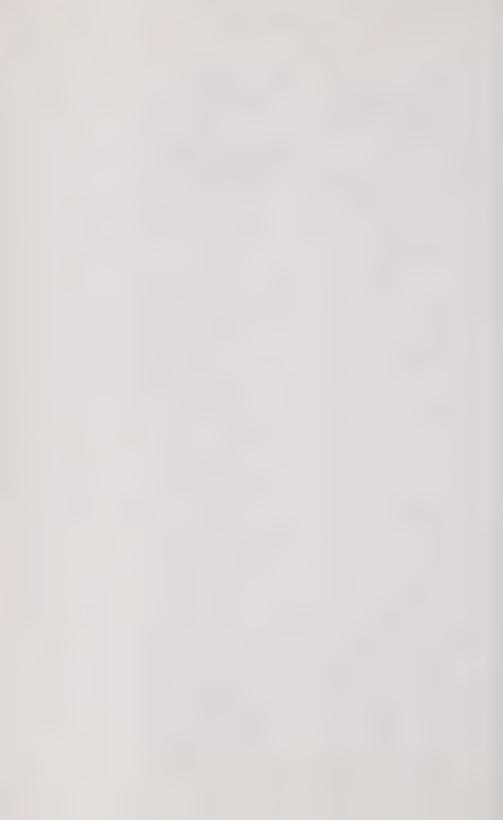
wire: copper, 25-26; drawing of, 58, 60; maximum length of, 25-26

Wisan, Winifred, xli wool, 76, 241

Wyclif, John (1320?-84), 39n

yielding, 68, 72, 76, 241, 292-93, 298, 302, 305

Zeno of Elea (fl. 400? B.C.), paradoxes of. See Aristotle, on Zeno's paradoxes; paradoxes, Zeno's



Stillman Drake

History of Free Fall Aristotle to Galileo

With an Epilogue on π in the Sky

To my friends of more than three decades A. Rupert Hall and Marie Boas Hall this monograph is dedicated with affection and respect

Table of Contents

1	Introductory	1
2	From Aristotle to Hipparchus, 350 –150 B.C.	7
3	From 1300 to 1500	13
4	The Sixteenth Century	23
5	Discovery of the Law of Fall	35
6	Applications of the Law	51
7	Reception of the Law, 1632–49	67
	Epilogue: Kepler's Problem and Galilean	
	Units	81
	Bibliography of Works Cited	93
	Index	97

1

Introductory

The law of fall states that distances from rest are as the squares of the clapsed times. Galileo used this in his *Dialogue* of 1632 and developed consequences of it in *Two New Sciences* six years later. The law had been first recognized by him early in 1604, immediately following his discovery of the pendulum law.

In a way it is surprising that the times-squared law for the spontaneous descent of heavy bodies had not been recognized long before the 17th century. Measurements sufficient to put the law within someone's grasp are quite simple.\(^1\) Equipment for making them had not been lacking—a gently sloping ramp, a heavy ball, and the sense of rhythm with which everyone is born. Discovery of the law by those means would be easier from rough measurements than from painstaking ones. Counting regularly would suffice for timing. The ball's place at each count is marked, and a piece of string, stretched between the thumbnails from the point of rest to the first mark, is used as the unit of length. The marks will thus be found to be separated, serially, by 1, 3, 5, 7, ... units. Distances from rest must then sum to 1, 4, 9, 16, ...; and, since the counts 1, 2, 3, 4, ... numbered equal times, the times-squared rule of distances from rest becomes immediately recognizable.

If one were to measure in fractions of an inch, applying a yardstick instead of a length of string, this odd-number spacing might go unnoticed and the law would not become evident.² The unit used makes no

The matter of proof, or rigorous derivation of the law, is quite separate from that of its discovery, or recognition, from measurements and calculations.

The odd-number rule will be found unmistakably when the first distance is used as the unit, even in casual demonstrations on a gently sloping plane, as by holding the hand stretched to the first distance and counting its applications to the others.

difference mathematically, but could greatly increase the difficulty of discovery. It happens that the best unit in this case is the natural one for a person merely curious, not seeking a cause. Idle curiosity might thus have led to the discovery of the law of fall at any epoch (and more probably by a construction foreman than by a natural philosopher.)

Once the times-squared law has been so found, a conjecture that the same rule applies also to vertical fall could be easily verified, to any practicable degree of accuracy. On the other hand it would be extremely difficult for anyone to discover the fact in the same way that it could easily be shown to be true. Furthermore, however nearly the law might be found to correspond with actual measurements, it is quite another matter to derive the times-squared law by logic, or to prove it mathematically.

The ease of stumbling on this discovery renders it highly improbable that natural philosophers had ever searched for the *law* of fall. They gave many reasoned accounts of the *cause* of fall, from Aristotle's to Buridan's, all without value in terms of useful knowledge.³ Newton lamented his inability to find the cause of gravitation. It may be hard to imagine what *kind* of a cause he was looking for, and it has been a waste of time for historians to seek a historical source of the *law* of fall among philosophical quests for the *cause* of fall that were made up to the time of Galileo—and also by him, in his early years.

Historians were in possession of the law of fall when they began the search for its possible sources before the 17th century. Knowing proportionality to be involved in it, it seemed to them reasonable to assume that some natural philosopher before the time of Galileo had hit upon the idea that a proportionality of speeds in accelerated motion to distances fallen (or to times of fall) could explain the motions of heavy bodies causally. But that was simply not the case. Aristotle had defined the goal of science to be causal knowledge. Any proportionality capable of accounting causally for fall would, it seemed to his followers,

Galileo's comment on the subject in his famous *Dialogue* is worth quoting. His spokesman having said that he would know what makes the earth move if he knew what moves heavy bodies downward, the spokesman for philosophers replied that that cause is well known; it is gravity. "You are wrong," was the answer, "what you ought to say is that it is *called* gravity. I am asking not for its name, but its essence, of which you know no more than you know the essence of whatever moves the planets."

necessarily relate speeds either to the heaviness of a falling body or to some external force impressed upon it. Those things were acceptable causal agencies, whereas the distances or times of a motion were philosophically unacceptable as its cause. Heaviness as the cause of fall, and impressed force as the cause of acceleration during fall, were proposed (in that order) by theories of fall during Greek antiquity. The two alternative ancient causes were eventually combined in a novel 14thcentury theory of fall. The 16th century witnessed the destruction of simple heaviness as the cause of fall, by mathematical logic and by actual tests. The heavier of two bodies does not fall with a speed proportionately greater than speed of the lighter. As the 16th century ended, Galileo saw that it was superfluous to assume action of impressed force in order to explain continuation of any motion. Only then, with those traditional causal preconceptions out of the way, was the times-squared law—which might easily have been found through curiosity-discovered by Galileo after a series of painstaking and rather complex investigations. The discovery followed immediately upon his discovery of the law of the pendulum, which in turn had required his adoption of units of length and time particularly appropriate for gravitational phenomena. Although Galileo did not apply them to planetary motions, that will be done in the Epilogue on Kepler's problem, for the Galilean units are still of use today.

Before the 17th century was over, Newton restored both the old ideas of heaviness and impressed force at a higher level of physical thought. But his creation of modern dynamics came after the end of

the period to be considered in the present monograph.

Despite its rigorous derivation in 1638 (and confirmation by measurement), the law of fall was still in dispute among scholars in 1650. The notion that it produced a sudden shift of attention among 17th-century natural philosophers, away from causal inquiry and toward measurements and mathematics, is more a product of our customary terminology than a demonstrable truth. We call René Descartes a natural philosopher; yet far from his having sought consequences of the times-squared law, he declared that Galileo had merely asserted his law without any causal foundation, and that it rarely, if ever, applied in actual fall. Honoré Fabri, who vigorously opposed the new law of fall, is called a natural philosopher—but so are Christiaan Huygens and Isaac Newton who as vigorously investigated its consequences, strengthening its foundations as a true law of nature.

Publication of the times-squared law of fall did not hinder philosophical speculations about the cause of spontaneous motion by heavy bodies, or improve them. In physics, it initiated an unprecedented line

of inquiry into natural phenomena. Confusion arises from calling those who adhered to strictly causal theories of fall by the old, established name, and also extending the same title to those others who investigated physical phenomena in the new way, aimed toward a different goal. This confusion could be eliminated by calling the former "natural philosophers" and the latter "physicists," or "scientists," or the like. Yet Newton certainly, and Huygens very probably, thought of himself as a natural philosopher, so we do well not to alter our terminology. Any confusion is better avoided by understanding clearly what did happen in the 17th century—no matter what status that may have had then (or now has) among philosophers of the highest repute.

The principal purpose of the present monograph is to improve our understanding of what did happen in the 17th century. To do that effectively it is necessary to begin at the beginning, from theories of fall and rules arising incidentally to them—rules which, being wrong, are not entitled to be called "laws" without mental reservations. When the old theories and rules are studied in order, they show a certain pattern of recurrence at each epoch in the history of theories of fall. In turn, some events of the 17th century then appear less surprising, and less revolutionary in the usual sense, than they now seem to have been, by becoming more easily understandable in this chronological framework.

work.

Two obstacles exist to comprehension of that framework. One is the fact that theories of fall from Aristotle to Galileo have been fully documented and studied by many scholars. The prospect of learning anything new seems hardly to justify one's reviewing the old documents and reconsidering the established conclusions. Nevertheless, patient re-examination of familiar things has often resulted in historical insights, formerly unappreciated only by reason of some inveterate preconception.

The other obstacle is that events of the 17th century have been even more copiously documented than those of ancient and medieval natural philosophy, so that nothing relevant to the law of fall seems to have escaped notice. Nevertheless, a decade ago there was still uncertainty about the circumstances of the eventual discovery. From Galileo's working papers, restored to their order of composition, it is at last possible to follow his work step by step, and hence to determine whether, and how, any of the known theories of fall could have helped or hindered that eventual discovery. That process brings to attention aspects of older theories that had been relatively obscured from notice.

Until quite recently it has been possible only to speculate about the possible influence of this or that theory on Galileo's thought at one

time or another during his long career. A great many such speculations were offered, of which none required any role for the pendulum law in the discovery (because pendulums had played no part in old theories of fall.) Now, however, Galileo's working papers leave no doubt that his 1604 discovery of the law of fall depended on his having found the pendulum law. Not only was that used in Galileo's approach, but when G.B. Baliani also published the same law in the same year (1638), he postulated the pendulum law for his proof of the times-squared law of fall. It is clear that not everything that happened in the 17th century to bring forth the times-squared law was already at least implicit in some previous theory of fall. Documents formerly unexamined reveal what had been lacking, after which, with knowledge of the facts in need of explanation, new study of familiar documents is called for to reveal why that had been lacking.

There is also at least one positive reason for composing a monograph on theories of fall; namely, that none already exists. In order to learn the pre-history of the times-squared law of fall it is presently necessary to study the scattered accounts—sometimes contradictory accounts, and so far as the 16th century is concerned, incomplete accounts. Nearly all the documentation needed for theories of fall before 1500 was compiled a quarter-century ago by Marshall Clagett, who incorporated it with a much greater bulk of documentation for many other aspects of natural philosophy and mechanics during the same period. To extract the part relevant to the present topic, and present it together with documentation for the 16th and 17th centuries, will therefore be of some service to historians of early modern physics.

The times-squared law of fall belongs to purely mathematical physics, a field opened by Archimedes in antiquity, approached in a different way during the 14th century, and finally revised and continuously pursued from the 17th century to the present. Old theories of fall belonged to speculative physics, and came only incidentally to include some mathematical formulations.

Clearly, the mathematical physics of any epoch is shaped by the

Marshall Clagett, The Science of Mechanics in the Middle Ages (Madison, 1959.) Citations of documents from this source will be identified by the name Clagett followed by page numbers. Some of his English translations will occasionally be slightly altered in the present text, since comparison with the original Latin in that volume may be easily made.

mathematics of that period. Because there was a fundamental difference between the mathematics employed by Archimedes and that created in the 14th century, while that of Archimedes was reinstated in the 16th century, it will be necessary to identify the nature and occasions of such alterations of mathematics. The relevance of each change to theories (and to the law) of fall may not be immediately clear at the places of exposition, but will become so as the story proceeds.

The language in which old theories of fall were expressed also underwent changes with time, and again in translation from Greek, the language of the first theories, into Latin. Thus the word κίνησις became motus, so in modern-language translations of Aristotle, commentaries on his writings, and discussions of his meaning, κίνησις appears as "motion" (or its equivalent in other languages). Aristotle's term included not only locomotion, or change of place with time, but also alteration and growth. The word "physics" was coined by Aristotle to name the science of nature, from φύσις, which became natura in Latin, so that the word "natural" (as in natural philosopher) is often best thought of as meaning "physical" in modern usage. It is less simple to deal with linguistic changes (semantic shifts) than with changes which have taken place in mathematics, but they will at least be pointed out as occasion arises.

From Aristotle to Hipparchus, 350 –150 B.C.

The law of fall was first stated as proportionality between distances and squares of times, and then derived from a direct proportionality of speeds to times. Whether Aristotle intended any proportionalities in his rules of fall is debatable, but if he did, one was a proportionality of speeds to weights when bodies fall through the same medium. A given body falling in different media was (proportionally?) swifter in the less dense medium. Such, at any rate, were the rules taught as Aristotle's from his scattered statements, mainly in *De cælo*. Assuming them to have represented his thought, they did not reveal the hidden cause of acceleration during fall unless the weight of a body increased during the process of falling, and that was the cause offered by Aristotle for greater speed at the end of fall than in its middle part.

Aristotle's theory of fall, though presented piecemeal, was complete and logically coherent. It explained the direction⁵ of motion, rules of swiftness, and the cause of acceleration. Equal speed and greater speed were defined terms, implying the meaning of lesser speed. Only swiftness itself remained undefined, as a quality of motion known intuitively. His was a scientific theory in Aristotle's sense, by virtue of its

giving a causal account of the fall of heavy bodies.

Aristotle did not invoke force to explain continued motion by a body thrown after it left the hand. He did maintain that anything in motion is moved by something; that is, not by itself, but by contact with its mover. Because only the surrounding air remained in contact with a projectile, he favored the opinion that when moving the thing thrown, the moving hand imparts some of its moving power to the air,

Straight toward the center of the universe, at which Aristotle held the earth to also be centered, not by necessity but in fact.

which power continued the motion begun by the hand. Forced motion, being against nature by definition, played little part in Aristotle's physics as the science of nature; projectiles were mentioned only in passing and near the end of his *Physics*.

The first rival theory of fall deserving consideration was proposed about two centuries later by Hipparchus, who was not a philosopher but an astronomer and a mathematician. His book has not survived, but we have its title and a summary of the theory of fall it contained, given by Simplicius in his sixth-century commentaries on Aristotle's De cælo as follows:

Hipparchus in his work entitled *On bodies carried down by heaviness* declares that, in the case of earth thrown upward, the projecting force is the cause of the upward motion as long as the projecting force overpowers the downward tendency of the projectile, and that to the extent that this projecting force predominates, the object moves the more swiftly upward. Then, as this force diminishes, (1) the upward motion continues but no longer at the same rate; (2) the body then moves downward under the influence of its own internal impulse, even though the original projecting force lingers in some measure; and (3) as this force continues to diminish, the object moves downward always more swiftly, and (4) most swiftly when this force is entirely lost.

Now, Hipparchus asserts that the same cause operates in the case of bodies let fall from on high. For, he says, the force which held them back remains with them up to a certain point, and this is the restraining factor which accounts for the slower movement at the start of the fall.⁶

That is another coherent theory of fall, quite different in its implications from Aristotle's, and it appears to be the only other coherent theory put forth in Greek antiquity. Inasmuch as Hipparchus was a mathematician, whereas Simplicius was concerned chiefly with strictly philosophical issues, it is probable that the book contained arguments in support of this theory of fall in relation to a supposed impressed force of projection that were not included by Simplicius, understandably if they were mathematical in character.

The clause, "...to the extent that this projecting force predominates, the object moves the more swiftly upward," certainly suggests that a proportionality was intended by the mathematician whose theory was being outlined. In upward motion, the degree to which the force ex-

⁶ Clagett, p. 543.

ceeded the natural tendency downward was always diminishing, until it vanished entirely, after which event the downward motion must become uniform at a speed determined only by Aristotle's cause of fall, the heaviness of the body. Hence, in the new theory, acceleration during fall was of limited duration.

It is natural to wonder why Hipparchus chose not to assume that acceleration would continue throughout fall. Presumably he had reason to regard something as left unexplained, or even as contradicted, by Aristotle's account of fall. One possibility is that, like Philoponus centuries later, Hipparchus knew that in falling through considerable distances, different weights strike the ground nearly together. What Philoponus wrote in his sixth-century commentaries on Aristotle's *Physics* was: 8

If you let fall from the same height two weights, of which one is many times as heavy as the other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one.

That would certainly be the case if in fact the bodies fell with nearly equal speeds after the leftover force of projection had vanished. Likewise, observation may account for Hipparchus' connection of the case of fall with that of continued motion in projectiles, as Aristotle had not done. Now, although Philoponus did not make that connection explicitly, in his later discussion of projectile motion in the same commentary, having criticized the explanation favored by Aristotle, Philoponus went on to say:⁹

...It is necessary to assume that some incorporeal motive force is imparted by the projector to the projectile, and that the air contributes either nothing at all or else very little to this motion of the projectile. If, then, forced motion is produced as I have suggested, it is quite evident that if one imparts motion contrary to nature, or forced motion, to an arrow or a stone...there will be no need of any [material] agency external to the

When Galileo was a student at Pisa he disputed the rule taught to him as Aristotle's, because he had seen large and small hailstones striking the ground together. Observations of the kind had always been possible, and doubtless many had been made in antiquity.

⁸ Clagett, p. 546.

⁹ Clagett, pp. 509-10.

projector...

The striking similarity between the thought of Hipparchus and that of a commentator on Aristotle centuries later might be regarded by many historians of science as proof that Philoponus had read Hipparchus. On the other hand it is quite possible that a simple observation of falling bodies led each, in turn, to very similar conclusions, contrary to those presented by Aristotle and accepted as scientific explanation by philosophers who cared only for reasoning and neglected to make observations, or considered them to be misleading when they contradicted, or appeared to contradict, pure reasoning from metaphysical principles.

Returning now to Hipparchus, the first author known to have associated the projecting force¹⁰ with the body, we may call his theory of fall the first dynamic explanation of that phenomenon. Aristotle's theory may be called kinetic, for he regarded weight not as a force but as a natural tendency, a realization of the energy of matter. Or it could be called kinematic, as he wrote in terms of motions rather than of forces.

The idea of "force" came into Greek philosophy as a concept of something altering the course of nature, and it was associated with the notion of the supernatural, as when the gods intervene to compel an action (serving a purpose of their own) evidently contrary to the interests of the doer. It was also a principle of Aristotle's that nothing forced, or violent, could long endure. The concept of power was different; powers could exist in nature and need not, like force, be contrary to nature and accordingly excluded from physics (as the science of nature.)

Here we may properly digress to consider a mathematical rule proposed by Aristotle for forced motions. In his *Metaphysics*, Aristotle appeared to exclude the method of mathematicians from physics when he wrote:

The minute accuracy of mathematics is not to be demanded in all cases, but only in the case of things which have no matter. Hence its method is not that of physical [natural] science, for presumably the whole of nature has matter. (Book α , at end.)

What word Hipparchus used is not known; the Latin translation of the passage in Simplicius gives *virtus*, usually rendered as "strength" rather than as force (= *vis*), and closer to "power."

It is not certain from this that Aristotle meant to exclude the method of mathematicians entirely from physics as the science of nature. On the contrary, it is probable that he meant only to caution others against the extreme mathematicism of the "Italian philosophers" (Pythagoreans) and of his teacher Plato, in which geometric forms and certain properties of particular numbers were invoked to explain qualities and to serve as causes. The phrase "only in cases of things that have no matter" suggests the lines, surfaces, and points of mathematicians. But other things might also have been meant, for Aristotle himself made use of a purely mathematical reason for one rule given in his *Physics*:

If the movent A have moved B a distance Γ in a time Δ , then in the same time the same power¹¹ A will move $\frac{1}{2}$ B twice the distance Γ , and in $\frac{1}{2}$ Δ it will move $\frac{1}{2}$ B the whole distance Γ ; for thus the rules of proportion will be observed¹²...

The continuation (postponed to Chapter 3) gave rise to an important medieval development in mathematics. Here the point of interest is that the rule just given was for locomotion, to which Aristotle gave priority over other forms of κ (ν (η GIC), or change, that he placed at the heart of physical science. Even Aristotle himself had not flinched from a rule of locomotion grounded only in the method of mathematics.

Now, if one stops to think of this, it is not unreasonable to ask whether locomotion has matter, in anything like the sense that a stone, or a spark, has matter. Natural motion would not take place were it not for the presence of matter—earthy or fiery, as the case might be. But must this downward (or upward) motion, as such and considered in its own right, have matter? Motion as a case of "things that have no matter" would be exempt from Aristotle's restriction in his Metaphysics, and he appears here to have so regarded it, precisely where the concept of a motive power—the nearest thing to "force" included in his physics—was subjected by Aristotle to mathematical rules.

Returning now to the ancient dynamic theory of fall, we see that

¹¹ δύναμις. Although in the Oxford Aristotle the English "force" is given here, Greek βία very seldom is found in Aristotle. As remarked above, force had the connotation of being a supernatural intervention, not a proper physical agency in natural phenomena.

¹² Aristotle, Physics 7:5, 249b 25-29

Hipparchus did not discuss or compare speeds in fall through different media, at any rate in the summary by Simplicius. Hence he made no claim that speeds in fall by different weights of the same material are literally equal—and if he had done so, that would certainly have called forth comment by Simplicius. That claim is not found before the 16th century, though when it was made it had an ostensible basis in antiquity, as will be seen.

Either directly, or from the summary account by Simplicius, or by the critique of Philoponus, there is fair evidence that the dynamic theory of fall became widely known, passing first to the Arabs and from them into medieval Latin natural philosophy. The Arabic word mail for disembodied forces of this kind is reported by historians of medieval science, and the leftover force became vis derelicta in the writings of Francesco di Marchia during the 1320's. His account of fall soon gave way to the impetus theory of acceleration in fall as formulated by Jean Buridan at Paris in the mid–14th century and given mathematical expression by Albert of Saxony. That truly marked the introduction of dynamic thought into Aristotelian physics—not just its survival in a doctrine contradicting Aristotle's. The most orthodox Aristotelian natural philosophers remained hostile to impetus theory.

It is this uneasy symbiotic relation between kinematic and dynamic theories of motion, one arising to amend a previous form of the other, that continued to recur at each principal epoch in the history of physics, until conflicts disappeared with Newton's mathematical definition of force impressed upon a moving body. Even that victory of dynamic theories of motion may not have been final, in view of Einstein's principle of equivalence.

From 1300 to 1500

Early in the 14th century a significant new development in mathematics began with the work of Thomas Bradwardine of Merton College (Oxford) on speeds in motion. This was virtually coeval with the advent of dynamic thought in physics signalled by the vis derelicta of Francesco di Marchia in Italy, Bradwardine having composed it in 1328. Yet there was no direct connection between the two events, for Marchia concerned himself with the phenomenon of fall, whereas Bradwardine was motivated by a passage in the *Physics* of Aristotle that had nothing to do with falling bodies. For the passage cited in Chapter 2, giving Aristotle's rule for proportionalities in forced motions, continued as follows:¹³

Again, if a given power move a given weight a certain distance in a certain time, and half that distance in half the time, half the motive power will move half the weight that same distance in the same time. Let E represent half the motive power A, and Z [be] half the weight B; then the ratio between the motive power and the weight in the one case is similar and proportionate to 14 that ratio in the other, so that each power will cause the same distance to be traversed in the same time.

But if E move Z a distance Γ in a time Δ , it does not necessarily follow that E can move 2Z a distance $\frac{1}{2}$ G in the same time $[\Delta]$. If A move B a distance Γ in a time Δ , it does not follow that E, being $\frac{1}{2}$ A, will in the time Δ , or in any fraction thereof, cause B to traverse a part of Γ whose ratio to the whole of Γ is proportionate to [i.e., the same as] the ratio between A and E, whether E be $\frac{1}{2}$ or any other part of A; in fact, it might

¹³ Aristotle, *Physics* 7:5, 249b 30–250b 15

The redundant phrase suggests that in the old theory of proportion known to Aristotle, the definition of proportionality given by Euclid as "sameness of ratio" was not yet in use. The old, purely arithmetical (or number-theoretic) theory is set forth by Euclid in Book VII, while this definition is given in Book V.

well cause no motion at all...

For otherwise, Aristotle went on, one man might move a ship that in fact it would require many men to move, inasmuch as their combined power, and the distance they move the ship, are both divisible into as many parts as there are men.

In modern academic history of science it has become usual to say that mathematical physics is equivalent to an abandonment of Aristotelian natural philosophy in favor of Platonism, a great intellectual revolution which had to await the 17th century and whose leading exponent was Galileo. However, no historian has found it necessary to brand Bradwardine, or any of the medieval scholars to be mentioned in this section, a Platonist. Centuries before Galileo it had been possible to create a whole new theory of proportionality, to lay the mathematical basis for a whole new theory of fall, and devise a mathematical approach to the science of physics, all without forsaking Aristotle. To the contrary, those achievements began from Bradwardine's attempt to understand Aristotle's thought behind the text cited above.

The puzzle Bradwardine set out to solve was how Aristotle's rule of proportionality in motions could be reconciled with the case in which no motion results from application of a power to a weight. He was far from being the first to attack this problem, so he began by showing why no solution previously offered by philosophers could represent the thought of Aristotle. He then set forth his own solution:¹⁵

The ratio of speeds in motions follows the ratio of the motive powers to resistances, and conversely. Or, to put the same thing in another way, the ratios of motive powers to resistances, and the speeds in motions, exist in the same order of proportion. And this is to be understood as geometric proportionality.

H. Lamar Crosby, Jr., Thomas of Bradwardine his Tractatus de Proportionibus...(Madison 1955), p. 112 gives the original Latin, with a very free translation on p. 113.

This rule, which Bradwardine believed to reflect accurately the thought of Aristotle about proportions in forced motions, has come to be called "Bradwardine's function" by those who express it symboli-

cally¹⁶ as $\left(\frac{F_2}{R_2}\right) = \left(\frac{F_1}{R_1}\right)^{\frac{v_2}{v_1}}$ —a translation into our mathematical symbolism that is as unlikely to represent the thought of Bradwardine in 1328

as his rather turgidly expressed conclusion is unlikely to have repre-

sented Aristotle's thought seventeen centuries earlier.

Bradwardine's thought was that speeds were so related to net forces¹⁷ that speed (and hence motion) must vanish entirely when the power acting is not greater than the resistance to motion. If this terminology is strange, so was Bradwardine's conclusion strangely expressed—not because his thought was unclear, but because the language in which he was obliged to state it was as yet hardly equal to the task. Mathematical symbolism of any kind was not available to him; not even the writing of expressions in equation form had been invented. Neither equations nor symbols can easily represent the restrictions imposed by the rules¹⁸ of proportionality before those rules were ignored in algebra. The thought of Bradwardine can be reflected properly only in words.

As to the function-concept, that entered into mathematics after symbolism took over in the 17th century. For Bradwardine's thought, the positive integers alone sufficed, and since the only cases dealt with

¹⁶ Cf. Clagett, p. 438.

I adopt this term to replace Bradwardine's "ratios of motive powers to [the related] resistances [against motion.]" In the symbolism of "Bradwardine's function" that was represented as a ratio of force to resistance encountered in a moving weight, F/R.

Proportionality was defined as "sameness of ratio," and ratio was defined as a relation in respect of greater or less between two magnitudes "of the same kind." Hence ratios of the sort created in algebra when a term is transferred from one side of an equation to the other were simply not allowed.

were those in which R = 1; $\frac{v_2}{v_1} = 2$, < 2, or > 2, it is misleading to use the

term "function." Yet his thought had some interesting mathematical implications, and his approach led others in the 14th century to devise a wholly original theory of proportion which culminated in the earliest treatment of what are now called fractional exponents, and were christened "ratios of ratios" by Nicole Oresme, who completed that treatment.¹⁹

Although the medieval theory of proportion was an original contribution to mathematics, it added nothing to physical science in the sense of knowledge of natural phenomena. Bradwardine's rule did not correctly relate any forces, resistances, and speeds. Yet his manner of approach to mathematical physics proved to be remarkably fertile at the hands of others at Merton College, and later at Paris. This method was to devise and fit mathematical terms and reasoning with physical propositions. Not proofs, but numerical exemplifications (or later, geometrical diagrams) were used to verify their consistency. There was as yet no thought of utilizing measurements of physical phenomena, although the term "measure" was used in its mathematical sense, and was a concept that had underlain all earlier theories of ratio and proportion.

The most significant medieval application of the concept of measure (without actual measurement) was in the definition of the term "speed" as applied to an accelerated motion from rest. The concept of "speed" had remained undefined (unlike that of "equal speed.") Aristotle had offered only a definition of "swift" as applying to motion through a great distance in a small time; "swiftness," or speed, could not yet be mathematically defined.²⁰

For a discussion of some mathematical implications of the medieval theory of proportion and their symbolic expression, see my "Bradwardine's function, mediate denomination, and multiple continua," *Physis* 12:1 (1970), 51–68.

We now think of speed as a "ratio" of distance to time, but in antiquity no ratio could exist except between two things of the same kind.

William Heytesbury of Merton College was probably the first to propose that speed during any completed "uniformly difform motion"21 from rest be assumed equal to the speed at the middle instant. That device, appropriately named the "Merton rule," is loosely called the "medieval mean speed theorem." It was not a theorem, but a postulate—that speed of a completed motion from rest under uniform acceleration is measured by the speed in some uniform motion which carries a body an equal distance in the same time. Since what was taken as the measure was a certain constant speed, postulated to exist at the middle instant among differing degrees of speed, Heytesbury's rule is most fittingly described as the medieval middle-degree postulate. Its application was by no means restricted to locomotion, but also extended to κίνησις in general and was frequently used in discussions of heat, charity, and other qualities subject to increase or decrease. Nonetheless it was a significant contribution to define mathematically any concept having a physical application.

The middle-degree postulate was, in fact, never applied to motion in fall from rest during the 14th, or even in the 15th century, though many imaginary motions²² were invented to fit the definition of uniformly difform motion. The only known statement that fall is a case of uniformly difform motion came in the mid- 16th century, without any accompanying evidence in its support.²³ Inasmuch as fall is uniformly accelerated motion, this historical situation was long puzzling to historians of science. But there was no way in which it could have been known that fall from rest is uniformly accelerated, without some ac-

Uniformly difform motion was the medieval term for uniformly accelerated or decelerated motion, conceived either as continuous in the mathematical sense or as discretely incremental. See Clagett, Ch. 4.

As for example, the motion of a point on the rim of a rotating wheel of ice, in an oven which caused the radius of the wheel to increase by thermal expansion at exactly the rate at which ice melted from the rim.

The writer was a Spanish theologian, Domingo de Soto; see Ch. 4, and W.A. Wallace, "The enigma of Domingo de Soto," Isis 59:4 (1968), 384–401.

tual measurements of the physical phenomena—which, being merely a kind of observation, could shed no light on the hidden cause of motion and accordingly had no place in Aristotelian natural philosophy.²⁴

Now, the causal explanation of fall offered by Marchia did not imply uniform acceleration during fall; rather, the falling body reached uniform motion after an initial acceleration. Even the new causal account to be discussed presently, developed a bit later in the 14th century, appeared to contradict one implication of the Merton rule, as that had been set forth by Heytesbury:²⁵

With respect, however, to the distance traversed in a uniformly accelerated motion commencing from zero degree and terminating at some finite degree, it has already been said that the motion as a whole, or its whole acquisition, will correspond to its middle degree... From the foregoing it can be sufficiently determined, for this kind of acceleration or deceleration, how great a distance will be traversed, other things being equal, in the first half of the time, and how much in the second half. For when the acceleration of a motion takes place uniformly from zero degree to some degree, the distance it will traverse in the first half of the time will be exactly one-third of that which it will traverse in the second half of the time.

It was Jean Buridan who set forth the theory of *impetus*, as an impressed force which did not diminish of its own accord (like that of Hipparchus, the Arab philosophers, and Marchia), but only when there was external resistance to motion or internal conflict with some contrary tendency to motion. About the middle of the 14th century Buridan wrote:²⁶

The first [conclusion] is that this impetus is not the identical local motion in which the projectile is moved, because this impetus moves the projectile, and the mover produces motion; therefore, the impetus produces that motion, and the same thing cannot produce itself.

The second conclusion is that this impetus is not a purely successive thing, since motion is just such a thing and the definition of motion [as a successive thing] is fitting to it, as was stated elsewhere. And now it has

Still less would actual measurement have any place in Platonist doctrine, for Plato discouraged attention to the inconstant and defective world of immediate sensible experience.

²⁵ Clagett, p. 272

²⁶ Clagett, pp. 536-7

just been affirmed that this impetus is not the local motion. Also, since a purely successive thing is continually corrupted and produced, it continually requires a producer. But there cannot be assigned a producer of this impetus which would continue to be simultaneous with it.

The third conclusion is that this impetus is a physically permanent thing distinct from the local motion in which the projectile is moved. This is evident from the two above conclusions and from what went before. And it is probable that this impetus is a quality physically present and predisposed for moving a body in which it is impressed, just as it is said that a quality impressed in iron by a magnet moves the iron to the magnet. And it is also probable that just as that quality—impetus—is impressed in the moving body along with the motion, by the movent, so with the motion it is remitted, corrupted, or impeded by resistance or by a contrary inclination.

Having closely associated impetus with speed, Buridan saw a case in which the speed of a natural motion could inaugurate the process that yielded a causal account of acceleration in fall:²⁷

One must imagine that a heavy body not only acquires motion unto itself from its principal mover, i.e. its heaviness, but that it also acquires unto itself a certain impetus with that motion. This impetus has the power of moving the heavy body in conjunction with the permanent natural heaviness. And because this impetus is acquired in common with the motion, the swifter the motion is, the greater and stronger is the impetus. Therefore the body is moved from the beginning [of fall] by its natural heaviness only, and hence is moved slowly. Afterward it is [still] moved by the same heaviness and [also] by the impetus acquired at the same time [as before]; hence it is moved more swiftly. And because the movement becomes swifter, the impetus also becomes greater and stronger, and thus the body is moved by its natural heaviness and by that greater impetus, and so again it is moved faster; and in this way it will always and continually be accelerated, to the end.

Impetus theory removed the previous temporary character of acceleration in fall inherent in the *vis derelicta* account. But fall did not thereby become associated with uniformly difform motion, because Albert of Saxony soon proceeded to formulate the impetus theory of fall mathematically, as Buridan had not done. Albert examined the various ways in which growth of speeds and distances with time from

²⁷ Clagett, pp. 551–2

rest might occur and eliminated those in which, contrary to Aristotle, infinite speed might be reached in finite time or over a finite distance. One way that Albert eliminated from consideration was this:²⁸

Natural motion does not accelerate by double, triple, and so on, in such a way that in the first proportional part of an hour it is a certain speed, and in the second proportional part of the hour [it is] twice as fast, and so on...

Because only completed motions were ever considered, it was customary to take proportional parts by halving repeatedly from the end of motion, making the first proportional part above a half-hour, the second, the preceding quarter-hour, and so on. In that manner, no first instant of motion would ever be reached, in accordance with a principle of Aristotle's that anything moving must have been already in motion, at any point selected. But an actual infinitude of speeds would surely be implied, each greater than the preceding, if motion could be divided back to its very beginning. Hence if the speeds increased as 1, 2, 3, 4, ..., the final speed in a finite motion could be infinite. Discarding all such progressions, Albert concluded as follows:²⁹

When some space has been traversed, [the speed] is some amount; and when double space is traversed, it is faster by double; and when triple space is traversed, it is faster by triple, and so on beyond...

Although Albert here intended successive motions, in order,³⁰ historians have read this as if each motion named were supposed to begin from rest, and concluded that Albert believed speeds in fall to be proportional to distances traversed from rest. But if that had been his conclusion, it would have been very easy for him simply to have said so—much simpler than to write out the above statement, and much

²⁸ Clagett, pp. 565-6

²⁹ Clagett, p. 566

His purpose was to describe the first three steps in a single fall, from which anyone could go on, not to describe the first step in each of three different falls. The same format was used in attacks against the times-squared law three centuries later.

clearer to any reader.

In Buridan's account of fall there is a first motion during which only heaviness acts, necessarily a uniform motion at some speed.³¹ That is followed by a second motion in which heaviness acts in conjunction with impetus acquired *simul* (all at once) at *its* beginning, and Albert regarded that as acting throughout this second motion, being uniform in speed and producing *simul* a still greater speed to act in the third motion, but not before. That succession of *uniform* speeds, each greater than the preceding, is in fact a *uniform* acceleration, but not mathematically continuous acceleration; it amounts to an acceleration by quantum-jumps of speed, so to speak. Albert might have written, more clearly for us now (but as something self-evident to his medieval readers) the following description of fall:

When some space has been traversed, [the speed] is some amount; and then double space is traversed, and is faster by double; and then triple space, this being faster by triple, and so on beyond...

Under that rule, the successive time-intervals automatically become equal (not divided into proportional parts), while speeds are not increased proportionally either to the times (as they are in actual fall) or to distances from rest (as Albert is wrongly said to imply.) In his mathematization of the impetus theory of fall, times increase as the natural numbers, while the distances from rest accumulate at the ends of successive equal time as do the "triangular numbers" 1, 3, 6, 10, ... and not, as in actual fall, as do the square numbers 1, 4, 9, 16, ...

Albert's rule was easily grasped and it appears to have gone unquestioned before the 16th century. Its implication that in the second of two motions from rest, double the distance of the first motion is traversed, contradicted Heytesbury's rule for uniformly accelerated motion. In other words, the new causal explanation of acceleration during fall excluded fall from the category of uniformly difform motions. That in turn explains why, for 200 years, medieval natural philosophers did not debate whether speeds in fall were proportional to elapsed times, or to distances traversed from rest. Such a question, which may seem natural to historians of science now that laws of nature permeate sci-

Since only a single cause acts, its effect must be uniform. In the same way, when impetus is added, it adds uniform speeds in proportion to the degree of impetus added each time.

entific thought, would simply not have occurred to scholars at a time when causal explanation of natural phenomena was the sole purpose of science.

The Sixteenth Century

As commerce with the Near East revived, classical Greek texts in mathematics and science became known in Europe, mainly through Latin translations of Arabic versions, not from Greek. As universities began to be founded, Euclid's *Elements* in one Latin version became the standard text, with commentaries by Campanus of Novara. Whether the Arabic text he used had been responsible for the corruption of Book V is not known, though it seems probable, because the same faults are found in an earlier Latin translation by Adelard of Bath from an Arabic version in Spain.

Except for Book V, both Latin versions agreed fairly closely with the authentic *Elements*, in which Book V contains the general theory of ratios and proportionality for continuous magnitudes. In the standard medieval version, Book V was transformed into a largely superfluous treatment of continued proportion, applicable to numbers and discrete quantities, but inadequate for dealing generally with mathematically continuous magnitudes.

This transformation appears to have been deliberate, not a product of scribal carelessness or incompetent translation. One definition, essential to the general theory, was omitted, while another definition was inserted, not in place of the one omitted, but following another crucial definition and rendering it merely redundant. Apart from this tampering with two definitions, the rest of Book V remained unaltered (but essentially useless.) The omitted definition (Def. 4) was given by Eudoxus of Cnidos while Aristotle was still living;³² Def. 5, in my opinion, was added by Euclid a century later. The medieval Book V removed those ancient advances, perhaps the greatest of all, returning

³² It is extremely unlikely, however, that Aristotle was aware of the Eudoxian treatment of proportionality, even though he knew and adopted the system of homocentric spheres devised by Eudoxus.

the theory of ratio and proportion to its primitive state, a doctrine of numbers and rational fractions dating back to the Pythagoreans. As a result, medieval European mathematicians could not simply take up the subject at the point where Euclid and Archimedes had left off in Greek antiquity. That did not become possible until the mid-16th century, not long before Galileo was born.

The scientific Renaissance began in the 15th century after Cardinal Bessarion's deposit of classical Greek manuscripts in the library of St. Mark's at Venice. Printing from movable type began shortly afterward. The medieval Euclid had been printed twice when, in 1505, Bartolomeo Zamberti published at Venice a Latin Euclid based on the Greek text which included the complete and correct definitions belonging to Book V. That made rigorous treatment of proportionalities among mathematically continuous magnitudes (such as distances, times, and speeds) possible. But the hold of medieval tradition was so strong in universities that at least two generations elapsed before academic instruction in mathematics recognized the significance of the authentic text. Zamberti himself was partly responsible for the delay. He appears to have been less a mathematician than a humanist whose zeal was to remove the taint of infidel Arabic intervention from the classics of Greek learning. Instead of writing commentaries explaining the restored definitions of Book V, Zamberti pointed to them as examples of the errors of medieval translators. It remained for mathematicians to discern and explain the treasure that had lain unnoticed for a millennium.

The self-taught mathematician Niccolò Tartaglia, of Brescia, ultimately did that in 1543. He translated both Latin versions of the *Elements*, with the commentaries of Campanus, into Italian. His commentaries on Book V—the first to have been written by a first-rate mathematician since antiquity—restored the classic theory of proportion for continuous magnitudes in general.

As an experienced teacher of mathematics to private pupils having common sense and practical interests, Tartaglia knew how to bring Euclid—and the whole of mathematics—within easy reach for any reader of average intelligence, as was promised on the very title-page of this first living-language text of Euclid ever to be printed. That, however, did not change anything in the universities of his time, where medieval proportion theory continued to prevail for another half-century throughout Europe. The long-omitted definition was simple enough, but it had profound mathematical implications. Following the definition of "ratio" as a relation in respect of greater or lesser between two magnitudes of the same kind, it reads:

Magnitudes are said to have a ratio to one another which are capable, when multiplied, of exceeding one another.

Tartaglia commented first that from this it follows that the circumference of a circle has a ratio to its diameter, whether or not that ratio can be represented by numbers (since any diameter multiplied by 4 certainly exceeds the circumference). Moreover, the same definition excluded from the domain of "ratio" both the infinite and the null, which remain unaltered by multiplication. Tartaglia did not say so, but it had been a basic principle of Aristotle's that there can be no ratio between the curved and the straight. A belief so old as to be found in Ecclesiastes I, 15 ("the crooked cannot be made straight") cannot be contradicted without involving profound consequences. For mathematics, one consequence was the rectification of curves; for physics, the abandonment of such Aristotelian dogmas as that of a necessary gulf between circular celestial and straight elemental motions.

Tartaglia's destruction of the spurious definition in the Campanus Euclid, and his restoration of meaning to the celebrated definition of "same ratio" that had been obscured, began from his perception that Campanus himself must have had before his eyes a valid ancient commentary (by Theon of Alexandria), but had been unable to understand it, or he would not have mingled it with meaningless distinctions in his own commentaries. This shows the acuity of Tartaglia (who did not read Greek) as a mathematician. He saw that part of the commentary was ancient, because it made mathematical sense of Euclid's definition, something that no one had managed to do in the Middle Ages. In his edition of Euclid, Tartaglia moved the commentaries explaining medieval proportion theory from Book V to the later arithmetical books, where they belonged (if anywhere.) Even in the 1570 English translation those were still published with Book V, as they continued to be in 1578 Latin textbook version by Christopher Clavius, standard in most universities throughout Europe during Galileo's lifetime.

Fortunately for modern physics, Galileo began his study of mathematics not in a university but under Ostilio Ricci, said to have been a pupil of Tartaglia's. He used the Italian version, rather than any Latin edition lacking Tartaglia's commentaries. Those are still a delight to read, even today, for their clarity, mathematical intelligence, and irreverent exposure of nonsense masquerading as scholarship.

Tartaglia's first published book had appeared in 1537 at Venice, where he taught mathematics privately to the end of his life. Titled Nova Scientia, that book dealt mathematically with artillery problems, such as the angle of elevation at which the maximum horizontal projection is obtained. Tartaglia's Nova Scientia finding of 45° was correct,

but without the law of fall he was unable to correct the medieval conception of projectile paths—that the shot travels straight until the force projecting it is overcome by the natural tendency of things downward, weakened by conflict with that.³³ The projectile was then supposed to fall vertically to earth, as no body could obey two tendencies to motion at the same time, in Aristotelian physics.

Tartaglia remarked that he assumed straight motions only as a practical approximation, for the path must be curved at every part once the ball has left the gun. He seems not to have been familiar with impetus theory, as he never used the word *impetus*. Neither did Tartaglia give any account of acceleration in fall, beyond his likening that to the

hastening of a traveller's steps as he neared home.

Impetus theory seems to have fallen into neglect also among natural philosophers in the early 16th century, unlike medieval kinematics. By 1550 the first known statement had been ventured that fall is an example of uniformly difform motion. The author was Domingo de Soto, who offered no evidence for his statement and appears to have been unaware that it conflicted with Albert of Saxony's mathematization of impetus theory. Father William A. Wallace, who undertook to explain the "enigma of de Soto" and was thus enabled to recognize the classificatory purpose behind the emergence of uniformly difform motion, concluded that the unique statement by de Soto was made mainly because his superiors in the Dominican order disliked mathematical abstractions. They wanted physical examples for things taught in natural philosophy.³⁴

On Aristotelian principles of physics, only the stronger of two tendencies to motion could be obeyed by a heavy body, and the inherent tendency downward could not be weakened, being natural.

W.A. Wallace, "The concept of motion in the sixteenth century," Proceedings of the American Catholic Philosophical Association, Washington, 1967.

In 1551 Tartaglia published a book on the raising of partly sunken ships, often menaces to navigation in the Venetian Gulf. His method used the Archimedean principle, and on the first page he remarked that the speeds of bodies sinking in water were as their specific gravities. Archimedes had not discussed speeds of sinking or rising in water, but Tartaglia repeated his remark in a section of the book presenting, in Italian translation with dialogue commentaries, Book I of Archimedes' *On bodies in water*. The great importance of Tartaglia's remark for new 16th-century developments in the history of fall is not widely recognized.

One of Tartaglia's pupils in 1547 had been G.B. Benedetti, who first asserted, and offered a proof for, the proposition that bodies of the same material but different weights fall with equal speed through the same medium. That first appeared in 1553, in the dedicatory letter to Benedetti's first book, with the promise of further physical propositions to follow. The book concerned solution of all problems in Euclid with a ruler and a compass of fixed setting. Benedetti remarked that the place was not appropriate for his proposition on fall, but said that he did not want to risk his priority. Hence his discovery had been very recent, not earlier than 1552, when Benedetti had indeed good reason to fear that others might hit upon it soon. The proposition of the same of the place was not appropriate for his proposition on fall, but said that he did not want to risk his priority. Hence his discovery had been very recent, not earlier than 1552, when Benedetti had indeed good reason to fear that others might hit upon it soon.

There is little doubt that Benedetti, reading Tartaglia's 1551 book on the raising of sunken ships, noted the remark that bodies sink in water

N. Tartaglia, Regola generale...(Venice 1551), ff. 1v and English translation in T. Salusbury, Mathematical Collections and Translations (London 1665, repr. 1967), vol. 2, pp. 484, 335, Salusbury having printed the Archimedean work with Tartaglia's commentaries separately, and first.

This was a celebrated problem in mathematics at the time, to which Tartaglia had devoted much study. Benedetti's analysis showed him to be an original and talented mathematician.

Tartaglia's solution of the cubic had been published by Girolamo Cardano despite his vow to keep it secret until Tartaglia made it public. Even if Benedetti had not known this, Tartaglia printed the relevant letters in an appendix to his 1551 book on raising sunken ships, the idea for which Cardano had also plagiarized in his De subtilitate of 1550.

with speeds proportional to their specific gravities. No reason appeared why fall through air should not be subject to a like condition, defying Aristotle's rule that speeds were proportional to simple weights. Benedetti's proof applied the Archimedean principle, also to be found in Tartaglia's 1551 book. That made it not unlikely that before long, others would reach the same conclusion or would hear of Benedetti's discovery and claim it for themselves. Hence his haste to publish it.

Announcement of equal speed in fall for bodies of different weights created controversy, in which some seem to have disputed this because it contradicted Aristotle, while others cited other authorities. At any rate in 1554 Benedetti published a book on speeds in fall written "against Aristotle and all the [natural] philosophers." Later he was invited to lecture at Rome on his novel ideas. There he was heard by a Belgian, Jean Taisnier, who published as his own, at Antwerp in 1561, Benedetti's book of 1554. It was translated into English as Taisnier's, and by the 1570's the idea of equal speeds in fall had spread to most of Europe, together with a mathematical demonstration in its support.

What had been lacking was any assertion that the proposition had been tested by observations. This was supplied by the Dutch engineer Simon Stevin in 1586, who had read the Belgian edition. With a friend, Jan de Groot, Stevin compared times of fall from a height of thirty feet and found them equal,³⁹ but he also saw an error in the proof, for which he believed Taisnier responsible. The mistake had been Benedetti's, who had already detected and corrected it in a second edition of the book plagiarized by the Belgian, published later in 1554.

The fact that no one seems to have put so novel a statement to actual test before Stevin, long after it had circulated very widely, is a commentary on the natural philosophy that preceded scientific physics in the modern sense. It was not a difficult experiment to carry out, but

³⁸ G.B. Benedetti, Demonstratio proportionum motuum localium...(Venice (1554); English translation in S. Drake and I.E. Drabkin, Mechanics in Sixteenth-Century Italy (Madison 1969), pp. 154–65.

Simon Stevin, De Beghinselen der Weeghcoonst (Leyden 1586); see E.J. Dijksterhuis, The Principal Works of Simon Stevin, vol. 1 (Amsterdam 1955).

to mathematicians as well as natural philosophers a test appeared unnecessary; only reasoning, or the authorities adduced, really mattered. Stevin was a first-rate mathematician, the inventor of decimal fractions and the first to break with ancient arithmetical theory (and with Euclid himself) by declaring in print that one is a number.⁴⁰ But Stevin was not only a mathematician; he was also, and primarily, an engineer no less interested in practice than in theory.

In 1586 Galileo was tutoring privately in mathematics, as Tartaglia had done most of his life. For the text of Archimedes he must have been using the 1543 edition by Tartaglia, for that alone included the work on bodies in water on which Galileo based his own first scientific essay, *La bilancetta* of 1586. Now, in that year Galileo also began his first manuscript on motion, a pupil-teacher dialogue of the kind Tartaglia had used for his commentary on Archimedes in 1551, and previously in 1546 when he edited and commented on the principal medieval work on statics, attributed to Jordanus Nemorarius.⁴¹

Galileo's dialogue on motion included the proposition that bodies of the same material fall through the same medium with equal speeds, regardless of their weights. The mathematical demonstration he offered was similar to Benedetti's a generation earlier, and some other arguments in the dialogue also resemble those of Benedetti in his second book, newly reprinted in 1585. Many think that Galileo's source for equal speed in fall had been Benedetti, but more probably it was the very same source as that of Benedetti; namely, Tartaglia's book on raising sunken vessels, which had been reissued several times, bound with other works of his. If so, that book inspired two attacks against Aristotelian physics, a generation apart—without Tartaglia's ever having perceived the further implications of his own statement about speeds of sinking through water.

Euclid defined number as "multitude of units," and since one is not a multitude, two was the smallest number in classical Greek mathematics.

⁴¹ N. Tartaglia, Quesiti, et inventioni diverse (Venice 1546); see also his posthumous Jordani opusculum de ponderositate (Venice 1565).

English translation by I.E. Drabkin in our Galileo On Motion and On Mechanics (Madison 1960) pp. 89–90.

⁴³ G.B. Benedetti, Diversarum speculationum...(Torino 1585).

One of many reasons for doubting that Galileo had seen the 1585 edition of Benedetti's works is that in that book Benedetti had set forth the same kind of explanation for acceleration in fall as that of medieval impetus theory. But Galileo, in his writings on motion during the 16th century, treated acceleration as *tempo*rary only, at the beginning of fall and as the result of loss of the impressed force that sustained it, or had moved it upward. That was precisely the explanation already given by Hipparchus in antiquity, and at least implied by Philoponus in the sixth century, which was once more proposed in the 1320's by Marchia. Galileo appears to have arrived at it independently, and to have been very proud of it. After he found it attributed to Hipparchus in a book by Benedict Pereira, Galileo noted that Hipparchus had neglected to explain more than the case of fall ensuing upon upward projection.⁴⁴

Now, that was mistaken, but the mistake was due to failure on the part of Pereira to describe the work of Hipparchus as fully as Simplicius had done, writing:

Hipparchus said that the cause of such events is that violent motion precedes natural motion; that in being moved naturally downward, first came motion and projection upward, so when returning downward, this force that projected upward is weakened and diminished, and near the end this force is broken and remitted so that swifter motion then exists.—But Hipparchus deserved reprehension by Alexander [of Aphrodisias], who said this may be true for natural motions when something violent immediately preceded, but cannot also hold in natural motions in which there was not some violence before...⁴⁵

The fault thus charged by Alexander (as here cited) against Hipparchus was perhaps properly chargeable only against his 14th-century followers such as de Marchia; it did not go back to Greek antiquity. The case of fall from rest at a height is even more common, and physically more interesting, than the case of prompt return after projection upward. In his Pisan *De motu* of 1591–2 Galileo included a passage about this that deserves notice:⁴⁶

⁴⁴ Drabkin & Drake, op. cit.. pp. 89–90.

Benedict Pereira, De communibus omnium rerum...(Venice 1586), Bk. 14, p. 475.

⁴⁶ Drabkin & Drake, op. cit. n. xx, p. 109.

Suppose that there are two bodies equal in size, one of wood and the other of lead; that the weight of the lead is 20, and of the wood, 4; and that both are held up by the line ab.

Now in the first place, it is clear that these bodies press down with a force equal to that with which the line ab presses upward. For if they exerted more than that pressure, line ab would not hold them up, and they would move down in spite of the line. But actually they do not move downward in the air because they are not exerting weight upon the air, the medium through which they must move... It is rather on ab that the bodies are exerting pressure... But when they are released by the line they still retain, at the first point of their departure, an impressed contrary quality that impels them upward, and this quality is lost not instantaneously but gradually. The lead has 20 units of this contrary quality to be used up, and the wood, 4...

In the time in which one unit of the quality departs from the lead, more than one unit has left the wood; and consequently while the lead has recovered only one unit of weight, the wood has recovered more than one unit. It is because of this that the wood moves more swiftly during that time... On the other hand, because the lead ultimately reacquires more weight than the wood, it follows that by that time, the lead is moving much more swiftly [than the wood.]

Galileo certainly did not get this erroneous but interesting analysis from Hipparchus; still less did it come from a medieval natural philosopher or mathematician. Written about the time of Galileo's famous demonstration of equal speeds in fall from the Leaning Tower of Pisa, it demolishes fanciful reconstructions of that event in which it is frequently said that one falling weight was leaden and the other wooden. The original account, written by Vincenzio Viviani in 1657, who had it from Galileo in 1640,⁴⁷ stated that both weights were of the same mate-

At that time Galileo was blind and Viviani took his letters in dictation. A letter from the professor of mathematics at Pisa recounted recent experiments from the Leaning Tower, unaware of Galileo's much earlier demonstration there. That is why Viviani had the details right, though he was not born until long after the event.

rial, which in 1590 was the only case that had been considered by Benedetti, Stevin, or Galileo as having been mathematically established or verified by observation. From the above it is evident that Galileo might expect the lead weight to move much more swiftly than that of wood after the initial motion. The proof for equal speed of fall held only for bodies of the same material, and it would have been foolish for him to risk his reputation with his students by using weights that he would not expect to move with the same speeds.

That the lighter of two materials begins fall from rest more swiftly than the heavier was asserted more than once in *De motu*, and in very recent years such a possibility has been seriously investigated by physicists. Galileo said that he had observed the phenomenon, which is puzzling, though it was reported also in a book by one of his teachers at Pisa, Girolamo Borro, whose explanation of the alleged experimental fact Galileo did not accept. Dr. Thomas Settle has reported that a person holding weights in both hands will release the lighter a bit sooner than the heavier, despite an intention of letting them go at the same time. Dr.

Also of interest is Galileo's implication that the line *ab* pushed up with different forces against the two weights. The equality of action and reaction (Newton's third law of motion) was by no means a commonplace in 16th-century mechanics; indeed, the idea of a table-top pressing upward when a weight is placed on it would have been ridiculed by Aristotelian physicists, and even today seems odd to many beginning students. Galileo brought to his early studies of motion much that had not traditionally been considered relevant to such studies. Even at the outset, he thought more like later physicists than like the earlier natural philosophers whose authority counted heavily with philosophers of his own time. But his conviction that acceleration was a brief event at the beginning of fall, and that it could be ignored for convenience (as Tartaglia had neglected the curvature of paths of cannonballs), held Galileo back for many years. The conflict between ki-

⁴⁸ Girolamo Borro, De motu gravium et levium (Florence 1576), p. 232. Galileo had already mentioned this book on the first page of his 1586–7 dialogue on motion.

⁴⁹ T. Settle, "Galileo and early experimentation" in Springs of Scientific Creativity, ed. R. Aris, H.T. Davis, and R.H. Steuwer (Minneapolis 1983).

netic and dynamic theories of fall, seemingly resolved by medieval impetus theorists, came to life again with Galileo's Hipparchian preference.

The first unequivocal statement that speeds in fall are proportional to distances from rest appeared in 1584, one year before Galileo left the University of Pisa without a degree and began teaching mathematics to private students. The proposition appeared in *De motu tractatus* by Michael Varro, a Swiss merchant who had studied mathematics in his youth and aspired to imitate Archimedes in "demonstrating by reason and proving by experiment" as he said in the opening sentence of his dedicatory letter.⁵⁰

Varro's terminology is entirely different from that of impetus theory. Natural force, by which a thing tends toward its natural place, moves it with continued and orderly motion. That is why it is easier to move a moving thing than a thing at rest. The same force pressing in motion moves a thing more greatly in motion than at rest, and the more greatly as the motion becomes greater. Speeds are greater in the proportion of distance moved to the whole space of the motion. Varro's line and triangle diagrams illustrating his proposition closely resemble those found among Galileo's working papers in 1602–4.

M. Varro, De motu tractatus (Geneva 1584), f. A2. The statement on p. 12 æqualia spatia ab eorum principiis numerata, æqualibus temporibus habebunt, is exemplified by diagrams on p. 13.

Discovery of the Law of Fall

Galileo's working papers on motion from 1602 to 1637 are now in Volume 72 of the Galilean manuscripts at Florence. On f.107v of that volume is his first surviving record of precisely measured distances. They are in *punti*, of 0.94 mm. per *punto* as determined from notations on ff. 115, 116, and 166 of the same volume. A few days later these first measurements became linked with the law of fall, so we may begin from those. Calculations at the center of f.107v are of the form 60x + (60 - n), implying the use of a ruler finely divided into 60 - n equal parts. Florence outlining Galileo's experimental work in obtaining the numbers he tabulated on f.107v, the reason behind that work will be given.

Late in 1602 Galileo wrote a letter to his friend and patron Guidobaldo del Monte, author of the best 16th-century book⁵² on mechanics, recommending the use of pendulums 4 to 6 feet long in experiments relating to descents along a circular arc. In that letter⁵³ he communicated two theorems concerning descents along chords to the

⁵¹ The same ruler was used in drawing and measuring diagrams on several pages of the working papers during the years around 1604.

Guidobaldo del Monte, Mechnicorum liber (Pesaro 1577); Italian translation by F. Pigafetta, Venice 1581; abridged English translation in S. Drake & I.E. Drabkin, Mechanics in Sixteenth Century Italy (Madison, 1969).

⁵³ Translated in S. Drake, Galileo at Work (Chicago 1978), pp. 69–71.

bottom of a circle, with his conjecture that times along arcs to the lowest point are equal for all lengths of arc.⁵⁴ In 1603, after deriving two least-time theorems for straight descents, Galileo saw that he could advance further only by some rule for increase of speed in straight natural descent from rest.

Aristotle had defined "greater speed" as the traversal of greater distance in the same time, so Galileo conceived the idea of equalizing several times during a relatively slow straight descent and taking the distances traversed as measures of speeds. A grooved inclined plane about 2 meters long (over 2,100 punti) was tilted 60 punti, to an angle of 1.7° with the horizontal. Along the groove a bronze ball descended repeatedly from rest while Galileo divided the time into 8 equal intervals, probably by singing at beats of a half-second each. 55 The place of the ball at each beat was marked; at those marks, strings were tied around the grooved plane. Probably gut strings were used, as when frets were tied around the neck of a lute—firmly, but capable of being adjusted when tuning the instrument. After the ball passed over each string, a faint bumping sound was audible as it struck the plane. Positions of the strings were patiently adjusted until all sounds coincided with notes of the tune, and the distance from resting contact of ball with plane to the lower side of each string was noted. Analysis shows

that Galileo was accurate within $\frac{1}{64}$ second for every string except the

lowest. Later he adjusted that string by about 20 punti (say 2 cm.), and also marked a + or a - sign after four of his original measures which seemed to Galileo a bit short or a bit long when he made subsequent

This conjecture was mistaken, as Galileo learned in 1604 when he began measuring times precisely. His knowledge of pendulum motions at each stage of the work will not be discussed in this monograph except as it relates to discovery of the law of fall.

Calculation shows the times to have been very nearly 0.55 seconds each. Marching songs usually have such a tempo, at which even a slight departure from the rhythm is easily detected.

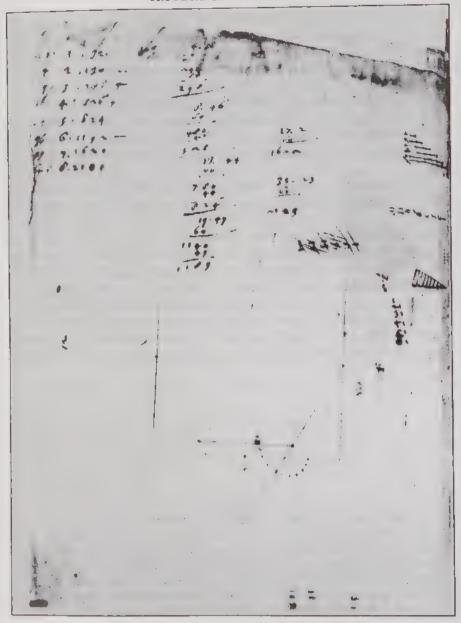
re-runs (these then sounding to him early, or late.)

In equal successive time intervals, Galileo found, the speeds increased as do the odd numbers 1, 3, 5, 7, ... etc.⁵⁶ This simple and exact rule doubtless surprised Galileo as much as it delighted him, for only a year before he had said to Guidobaldo that when put to a test with material objects, rules deduced by mathematicians simply did not agree with observation. Material impediments, as Galileo called friction, air resistance, absence of perfect smoothness and hardness, or the like, played a very important part in his physics from 1602 through 1609.

Having found a simple arithmetical law for a natural motion, Galileo thought next of *measuring* short intervals of time instead of merely equalizing them. Near the bottom of *f.107v* he drew a diagram of the device that he used from then on for measuring the times of motions. In *Two New Sciences* he described its simplest form, in which flow of water from a large pail through a slender tube in the bottom was collected during each motion, was weighed on a sensitive balance, and the weights were treated as measures of the times. ⁵⁷ The sketch on *f.107v* suggests (and the precision of Galileo's few surviving records of timings confirms) my belief that in fact Galileo built and used a somewhat more reliable and consistent means of starting and ending flows

At this time Galileo could measure only overall speeds and did not yet have a way to time brief motions. Because the times had been equalized, the distances were direct measures of overall speeds. It did not occur to Galileo at first to consider them as simple distances also, so he did not sum the successive odd numbers and perceive the times-squared law at once.

⁵⁷ Galileo, Two New Sciences, tr. Drake (2d ed. Toronto 1989), pp. 169-70.



Galileo's earliest surviving measurements of accelerated motion, $f.107\nu$, volume 72, Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by permission). The squared numbers in the left margin are barely legible in reproduction (see text).

than mere removal and replacement of the thumb or a finger at the end of the tube. That simple procedure has, however, been found to give results twice as reliable as Galileo asserted in his later book, and his own extant timings confirm this.⁵⁸

The rate of flow of water from Galileo's device was 3 fluid ounces per second, very nearly indeed. This round number in an old standard unit was mere coincidence, because Galileo was not attempting to measure time in any accepted unit, let alone in astronomical seconds. He always worked entirely in ratios and proportionalities, from which any unit of measurement would of course cancel out.

For practical reasons, Galileo did use a standard unit of weight; namely, the grain, of which there were 480 to the fluid ounce. Galileo's recorded times are in grains weight of flow of water from his timing device. Later he adopted as his unit of time the flow of 16 grains of water from that device; 16 grains weight is almost exactly 1 gram in c.g.s. units.⁵⁹ That unit will be called the *tempo* (plural, *tempi*). How Galileo came to adopt it will be explained below.

Galileo's first recorded timing was noted on f.154v in the form of a column of numbers, totalled as 1,000 + 107 + 107 + 107 + 16 = 1,337 (grains weight of water collected during a motion from rest.) That was his timing of fall through $4,000 \ punti = 376 \ cm$. It was his least exact timing, being about $\frac{1}{30}$ second too high. From his collecting vessel

Galileo first poured off 1,000 grains, probably into a container marked as holding that amount. He then marked on the collection vessel the level at which the remainder stood, and later on he used that mark as

Galileo said that in more than a hundred timings along inclined planes, agreement with the times-squared law had been found never to vary more than one-tenth of a pulsebeat. Dr. Thomas B. Settle reported in 1961 that with little practice he had achieved about double that precision. Cf. Settle, "An Experiment in the History of Science," Science 133 (1961), pp. 19–23.

Settle avoided the nuisance of repeated weighings by collecting flows in a graduated cylinder and taking 1 cc. as 1 gram. It is a curious fact that Galileo, though he did not have a graduated cylinder, used volumetric determinations in place of weighings by marking his collection vessel, as will be seen. That 1 gram of water represented 1 tempo for Galileo and was also the unit for Settle's ratios of times was purely coincidental, since the rates of flow were doubtless very different.

representing 320 grains (the rounded sum of 3 × 107.) The final figure, 16 (grains), was indirectly weighed; it represented the weight of the collecting vessel damp, less its dry weight. As a former medical student Galileo was familiar with that way of accounting for fluid that adhered to the sides of a vessel after pouring from it.

Directly beneath 1,337 Galileo entered 903, a second timing in grains flow during a motion from rest. That was his timing of fall from 2,000 punti=188 cm. (about 6 feet), a very convenient height at which the timing with Galileo's device did not require difficult action on his part. (To dislodge a weight from double that height, as before, in exact coordination with the starting of flow, was less simple.) Timing of 903 grains for fall 2,000 punti is nearly exact; I calculate that 911 or 912 grains would be precise at the latitude of Padua (taking g=980.7

cm/sec), and that Galileo's finding was little more than $\frac{1}{200}$ second too

low. In this case there is also evidence that Galileo had marked the level at which 903 grains stood in the collection vessel before he weighed the water. That is suggested by the fact that there was no column of figures, totalled, as before (and as on f.189v1 a bit later), and it is confirmed by a number on f.151v which Galileo had obtained when he first set out to relate fall to the pendulum. In order to understand the initial steps, it should be mentioned that Galileo used swings of pendulums only through a small arc to the vertical, for a practical reason. The only swing that could be timed with precision was from the instant of releasing the bob to the sound of impact with a block that had been fixed against a side of the bob when hanging plumb.

On f.151v there are several diagrams intended to represent geometrically some distance of fall from rest and the length of pendulum swinging to the vertical in a related time. There is also a freehand sketch of two meshed gears, and the calculation $53 \times 30 = 1,590$. As already said, Galileo measured lengths with a carefully engraved ruler $60 \ punti$ long. He also habitually first eliminated the fraction V_2 when performing a multiplication or a division. Thus the f.151v calculation

stood for $26\frac{1}{2} \times 60 = 1,590$, the length in *punti* of the measured pendulum which, by my calculation, swings at Padua through a small arc to the vertical during the flow of 903 grains of water through Galileo's timing device—exactly the flow he had recorded for fall 2,000 *punti*. 60

Now, the pendulum that takes the same time to the vertical as does fall through 2,000, in any units whatever and anywhere, is in fact (to the nearest digit) 1,621 units long, not 1,590. Galileo's small error in timing of fall through 2,000 punti had resulted in shortage of 31 punti for the pendulum that would time that fall exactly by swing to the vertical through a small arc. Although Galileo's two timings had been exactly consistent, the length-ratio $\frac{2,000}{1.590}$ (= 1.2579) was considerably

above the correct $\frac{\pi^2}{8} = 1.2337$, or $\frac{2,000}{1,621}$ to four significant places.

Galileo's skill as an experimentalist is illustrated by the pendulum length which he recorded on f.151v as being 1,590 punti. That figure can have been obtained only by finding the pendulum whose swing to the vertical through a small arc accompanied flow of 903 grains weight of water through his timing device. Implied is his having started with a pendulum about 5 feet long, and then having patiently adjusted it until water flowed precisely to the previously marked level while the pendulum swung to the vertical. This procedure throws light on the sketch of two meshed gears, seen also on f.151v but appearing out of place on a page bearing diagrams relating fall to the pendulum.

When he had measured the pendulum for 903 grains flow, we might expect Galileo next to find the pendulum timed by 1,337 grains. That would be longer, and very inconvenient to alter in length repeatedly as before. Running the string over a nail in a movable upright and anchoring it to a bench would allow the nail to be raised and lowered by gears and a crank. Such a scheme accounts for the sketch. In the end,

however, Galileo timed the pendulum for $\frac{1,337}{2}$ = 6681/2 grains of flow

The precision of this measurement, though it was of no use for the problem Galileo was addressing, helps to explain the almost perfect values he had for the units described in the Epilogue. His *punto* of 0.94 mm should be 0.9422119204, and his *tempo* of 1/92 second should be 1/91.88024932 second, if my calculations are correct.

as being 870 punti in length, and then he timed the doubled pendulum of 1,740 punti at 942 grains of flow. At any rate that is what is implied by the working papers which Galileo preserved.

From the pendulum measurements Galileo now had at hand, a table of the kind shown below could be compiled. Though I doubt that Galileo troubled to form a table, mine will serve to show the way in

Length of Pendulum in punti	Time to the Vertical in grains flow
870	668 1/2
1,740	942
3,480	1,337
6,960	1,884
13,920	2,674
27,840	3,768

which he arrived at his discoveries by simply applying the theory of ratio and proportionality set forth in Euclid's *Elements*. My table has been extended far enough to show the source of a very important number found in two of Galileo's surviving working papers, on one of which he was writing when he first recognized the law of fall in timessquared form from its mathematically equivalent mean-proportional form.

The first column was formed by successive doubling, and the second by alternate doublings. Except for a slight discrepancy with the second timing, each column separately is accordingly in continued proportion. Galileo's new time unit, the tempo, came into being when

he related the two columns horizontally, so to speak. His original measure of time in grains of flow through his timing device having been completely arbitrary, he was free to alter it in any ratio he pleased.⁶¹ Taking each time to be the mean proportional between 2 and the length of pendulum, the two columns become related line by line. The same numbers result also, almost exactly, from division of each time in grains by 16, so 16 grains of flow became 1 *tempo*—the new unit adopted as a result of this application of the Euclidean theory of proportion.

Because division by 16 of the times in grains weight of flow did not exactly produce that mean-proportional relation between the two columns, Galileo made an adjustment which resulted in his changing 27,840, as seen above, to 27,834. That work was done on one of the working papers of which only a part survives. On the blank side he wrote, in 1609, a note on another topic, cut it out, and pasted it on f.90. That was lifted at my request, and on the hidden side I saw the number 27,834, twice, with enough words to identify it as a "diameter." Galileo's diagram and calculations were thrown away with the part of the page cut off, but they had been finished before Galileo discovered the law of fall, because 27,834 played a crucial part in the calculation on f.189v1 which put that discovery into Galileo's hands.

With his adoption of the *tempo* as the unit of time, Galileo had the pendulum law in a restricted form; that is, for any set of pendulums successively doubled in length. It would have been a difficult task to test it for successively tripled pendulums, let alone for any other integral multiples, and quite impossible to establish it experimentally in its complete generality. What Galileo did next is seen on *f.*154v (on which he had entered his first two timings.) He now calculated the mean proportional of 118 and 167—the times to the vertical, in *tempi*, for the two pendulum lengths 6,960 and 13,920 *punti*—getting 140 (*tempi*.) The mean proportional of those two lengths is 9,843, so if his restricted pendulum law were perfectly general, a pendulum 9,843 *punti* long would swing to the vertical in 140 *tempi*.

On the other side of the same page, f.154r, Galileo wrote the note filo

The unit of length could have been altered instead, but Galileo had recorded previous careful measurements made with his ruler. It was easier to take a new time unit than to graduate another ruler.

br. 16—"the string is 16 braccia long." From two lines drawn and labeled by Galileo at Padua, I measured one braccio as containing about 620 punti. At 615 punti per braccio, length of the pendulum would be 9,840 punti, or about 30 feet. Such a pendulum could be hung from a window over the courtyard of the University of Padua and timed, protected from wind. At Padua it would reach the vertical through a small arc in 141 tempi, by my calculations. Thus Galileo was fully assured of the complete generality of his pendulum law in mean-proportional form that is mathematically the same as our law that periods of pendulums are as the square roots of their lengths.

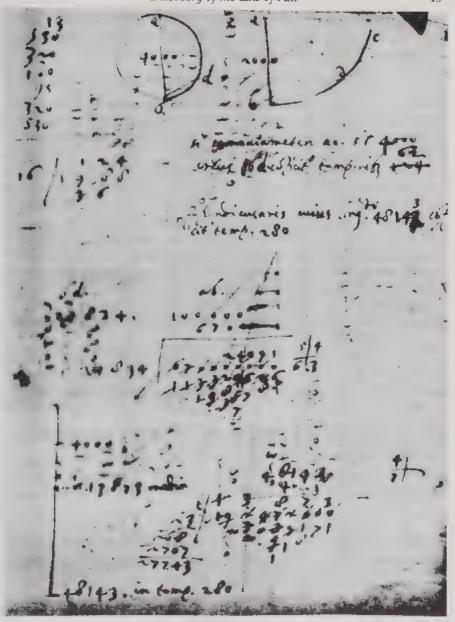
In order to finish linking fall with the pendulum, Galileo needed one bit of information that has not yet been identified, the time of fall through a distance equal to the length of a timed pendulum. The length he chose was $2 \times 870 = 1,740$ punti, and that fall takes 850 grains flow of water. The figure 850 exists in Galileo's extant working papers, but only by implication. At top left on f.189v1 there is a column of figures, added to total 1,988, in which two separate pendulum timings

are recognizable; subtotals are added here in parentheses:

13 + 530 + 320 + 180 (=1,043) and 95 + 320 + 530 (=945), total 1,988. The numbers 180 and 95 represented actual weighings of collected water, while the number 13 represented adjustment for unweighed water adhering to the sides of the collecting vessel. The other two numbers, 530 and 320, were weights in grains found by pouring water from the collecting vessel to marks previously made. The mark for 320 grains had been made during the very first timing, as noted earlier. Hence the mark for 530 grains had been placed when a timing of 850 grains was made, and 850 grains of flow does time the fall through 1,740 punti. Thus the column of figures totalled at the top of f.189v1 recorded two separate timings of a pendulum of length 1,740 punti, one through a very wide and the other through a very small arc, doing this for a reason unrelated to his discovery of the law of fall. 62

In the central calculation on f.189v1, the ratio used was time of pendulum 1,740 punti to time of fall through 1,740 punti, or $\frac{942}{850} = 1.108$

Galileo was diverted into a problem he had considered in 1602, before he had any means of timing brief motions. Discussion of this would unnecessarily complicate the present monograph.



The working paper f.189v1 on which Galileo was writing when he first recognized the law of fall independently of pendulums. Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by permission).

to four places, of which the square is 1.228. Time to the vertical through a small arc, for any pendulum, has to the time of fall through a distance equal to the length of that pendulum, the ratio

 $\frac{\pi}{2\sqrt{2}}$ = 1.1107... Thus Galileo's measured time-ratio had been nearly

exact. In the crucial calculation on f.189v1 it put into Galileo's hands the times-squared law of fall. We have only the final step in a series of calculations, of which others had been made on the discarded part of

the f.90^bv after Galileo had adjusted 27,840 to 27,834.

The time 280 tempi, for which Galileo calculated distance of free fall on f.189v1, was simply double the 140 tempi at which he had timed the 30-foot pendulum that had for him firmly established the generality of the pendulum law. What Galileo calculated on f.189v1 was one-half the fall in time 280, which he then doubled and entered in a Latin statement: "The vertical whose length is pluntil 48,143 is completed in 280 tempi." In cgs units, that says that fall of 45¼ meters takes 3.043 seconds; I calculate the time at Padua to be 3.038 seconds.

The final step in Galileo's work looks odd; to get half the fall sought, he multiplied 6,700 by 100,000 and divided that by 27,834. If we write

this as $\frac{6.7 \times 10^8}{27,834}$, it is easier to see how 6,700 represented a ratio rather

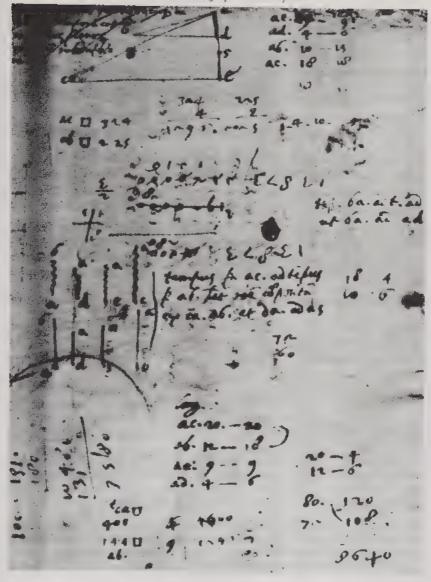
than a number. Because Galileo did not use decimal fractions, but integers (and ratios thereof), he had to keep track of order of magnitude as he went along, and adjust by a power of 10 at the end. Writing

 $2\frac{T}{t}$ for 6.7, that was the ratio of double the time for which distance of

fall was sought, to the time of fall through a known distance, in this instance 4,000 *punti*, timed at 1,337 grains flow = 83.5625 *tempi* (Galileo wrote 6,700 for 6,701½.) Because his timing of fall through 4,000 *punti*

was $\frac{1}{30}$ second high, we might expect Galileo's calculation for so long

a time as 3 seconds to be very defective. It was not, because in his calculations (using ratios only) t had cancelled out. I factor Galileo's



f.189v2, with adjustment of Galileo's timing of fall through 4000 punti and the general rule for descents along inclines differing in slope and in length.

Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by permission).

procedure as below, utilizing the ratio $\frac{f}{p} = \frac{\pi^2}{8} = g$ for the relation that Galileo (had he used symbols) would have thought of as the general ratio of a distance fallen to the pendulum length swinging to the vertical in the same time. This factoring gives: $\left(\frac{Tt}{4}\right)\left(\frac{T}{t}\right)^f = \frac{1}{2}$ fall in time $T = \left(\frac{f}{p}\right)\left(\frac{T^2}{4}\right)$; and since $\frac{f}{p} = g$, Galileo's end result was mathematically no different from ours using a local gravitational constant.

Before Galileo noted redundancies in his calculations with ratios, he would never have "squared a time" (or a measure of time), an operation that as yet made no physical sense. The product Tt, above, arose by compounding ratios, a legitimate operation in Euclidean proportion theory, (though Euclid himself used it only geometrically, and did not define "multiply" except for integers.) Nor was the ratio V_p used directly by Galileo in his (now lost) preliminary calculations; it arose as the product of two occurrences of his ratio $\frac{942}{850}$ when calculating from a distance fallen to a length of pendulum, through related times. Galileo's probable steps can be reconstructed in more than one order, with the above clues as a guide to the ratios he formed, though there are further clues making the order fairly certain.

The factor that Galileo in fact used was not g but the square root of g, which is the relation between *times* when a pendulum and a fall having the same length are compared. It is the square root of g that I call "Galileo's constant"; the length he used was 1,740 punti, as explained above.

Squaring a length did have a legitimate physical sense in terms of areas, and units had long been in use that were analogous to our square foot or square mile. Even now we name no unit the "square second" or "square years," and Galileo did not perform mathematical operations until he perceived them to have a clear meaning.

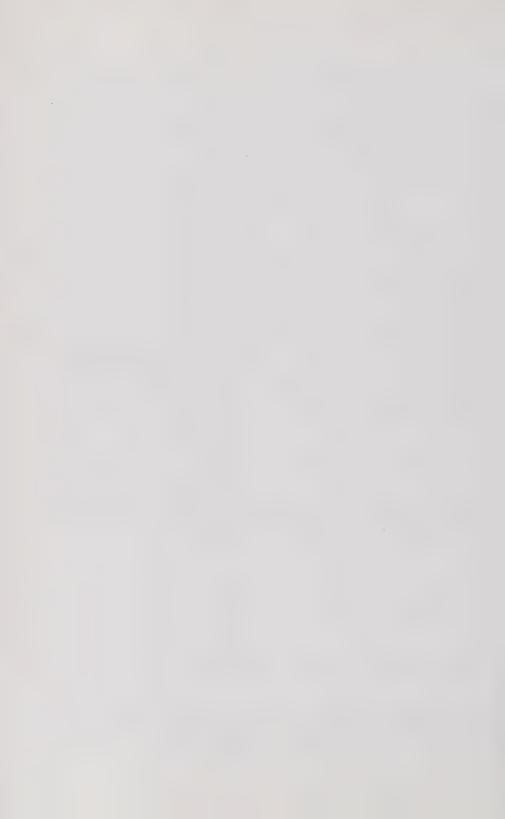
⁶⁵ The principal clues are two uses of a ratio that has not been mentioned, in brief calculations on *f*.189.

Perceiving redundancies in his procedure step by step with ratios, Galileo next took directly the mean proportional between the distances 4,000 and 48,143, recognized this to be almost the half of 27,834, and drew at lower left on f.189v1 the diagram that he used from that day on to relate times and distances in fall by the mean-proportional rule. On f.189v2 he used his new-found law to correct his one poor timing (for fall through 4,000 punti) from 83v2 tempi to 80v3, almost exact. Then on f.115v he summarized what he had found, this time writing p.(for punti) 48,143, confirming my initial assumption that the same unit had been used in 1604 that was first identified from later notes of Galileo's.⁶⁶

Next, having found the law of free fall, Galileo wondered whether it held also for descent along an inclined plane. Taking up again f.107v (from which we started), he entered in the margin of his tabulation (distances rolled after each of 8 successive equal times) the first eight square numbers. Fach, multiplied by the first distance, gave the corresponding measured roll almost exactly. Returning to f.189v2, Galileo conjectured a compound ratio for descents along planes differing both in slope and in length, found it defective, and by arithmetical test found the correct rule. Using that rule, he calculated on f.189r his arithmetical confirmation of a theorem he had sent to Guidobaldo del Monte in 1602.

It is no wonder that Galileo preserved all his life f.189v1, on which he had arrived at the times-squared law of fall. That led him at once to a host of further theorems and solutions of problems, of which the first have just been mentioned. In 1608 he arrived at the parabolic trajectory of horizontally launched projectiles, as the result of a new set of careful measurements of actual uniformly accelerated motions.

The first page it was possible to explain was f.116v, belonging to discovery of the parabolic trajectory in 1608, that was done in 1973, leaving discovery of the law of fall still unsolved. In 1975 that appeared to be explained by f.107v, except for the delayed entry of the square numbers.



Applications of the Law

The law of fall remained unpublished until 1632; then it was included (without proof) in Galileo's famous *Dialogue*. Later in that same year, to his annoyance, a related discovery of his was published by Bonaventura Cavalieri, a mathematician of outstanding ability who had studied at Pisa under Galileo's ablest former pupil, Benedetto Castelli. Cavalieri intended no plagiarism; his book was on uses of the parabola, and he included in it a proof of the proposition that when heavy bodies are projected along the horizontal, the paths of fall are parabolic in form. He thought mistakenly that this had already been published, without proof, by Galileo, who was saving it for his final book on motion. Set the paths of the proposition of the proposition of the paths of fall are parabolic in form. He thought mistakenly that this had already been published, without proof, by Galileo, who was saving it for his final book on motion.

The path of a heavy body falling not from rest, but while it was already moving horizontally, was not identified exactly until four years after the work described in the previous chapter. Its discovery, in 1608, led Galileo to investigate next the case of oblique projection, in which the initial motion is other than horizontal. From his working notes on that problem, much more is now known about Galileo as an experimental physicist than was the case in 1973, when his steps to the parabolic trajectory were first reconstructed.

Galileo, Dialogue Concerning the Two Chief World Systems, tran. S. Drake (Berkeley, 1953, 1967), cited hereinafter as Dialogue. The law of fall appears at p. 222.

When he learned from a friend what Cavalieri was publishing, he was much vexed, but after seeing his Specchio Ustorio he spoke of it with admiration in his own Two New Sciences (p. 49). This incident shows that the law of fall was put to use by Galileo's acquaintances well before he announced it publicly.

The path taken by a projectile was, for Galileo, a "natural" motion from the moment at which it began falling freely, as when a ball left the hand, or a cannonball left the mouth of a cannon. From that moment on, the motion of the body was subject to the law of fall, and accordingly has its proper place at this stage of the story, though published some years later.

The history of previous speculations about the motion of a heavy body propelled into the air dates from some remarks in the Physics of Aristotle. To him, projectiles had a "forced" motion, and precisely for that reason did not merit attention in his own physics as the science of nature. By his definition all "forced" motion was contrary to nature. But near the end of his Physics, Aristotle included two views about persistence of "forced" motion after the "force" had ceased (or appeared to have ceased) to act. Some, he said, ascribed this to the air (or other medium) which rushed into the place behind the body to prevent existence of a void space. In so doing, it pressed the body onward. Aristotle disapproved of that explanation, usually called "antiperistasis." He preferred another in which the air acquired some of the force impelling the body before it left the hand (or any agent causing motion.) This moving air, accompanying the body at first, could keep it in motion, though not for long. It was a principle of Aristotle's that anything violent must soon come to an end.

During the Middle Ages the path of a hurled object was more explicitly described. So long as the impelling force remained stronger than the natural tendency to fall, the body continued in a straight line. But that force became diminished by contending against the tendency to fall, which tendency, being natural, was never weakened. Thus a point was reached at which the tendency to fall was more powerful than the supposed remaining force, and the body fell to earth. Belief in a conflict between nature and force obstructed recognition of the inde-

pendent composition of two motions, even though it had been analyzed in antiquity by the author of *Questions of Mechanics*, then attributed to Aristotle.⁶⁹

In 1537 Tartaglia, as a mathematician, conceived of motion as continuous. He recognized that the path of even the swiftest cannonball must be curved downward from the instant at which it became free to fall, and assumed its two nearly-straight paths to be joined together by a circular arc. In 1546 he emphasized the reasons for his description of the trajectory as not curved at the start, explaining to an artilleryman that for his purpose of analyzing this geometrically, he had treated the "forced" motion as straight, with no great departure from observable facts.

A manuscript by Guidobaldo del Monte contains a remark that trajectories are either parabolic or hyperbolical.⁷¹ He gave the same two methods of drawing their shapes that Galileo offered in his last book, by using a hanging chain or a tilted metal plate on which a rolling ball left its trace as it moved. Perhaps Galileo appropriated these ideas of Guidobaldo, who died in 1607. But the exact reverse may be true, for the two men corresponded and exchanged ideas over many years. The manuscript, now at Paris, is undated, and it is unlikely that Galileo ever saw it.

At the end of his Pisan De motu, in 1591, Galileo proposed the ques-

This, the most ancient treatise on mechanics known, will be mentioned below as Galileo's source for another important idea of his. It was probably written by a pupil of Aristotle's, or by his contemporary Archytas of Tarentum. Galileo owed the basic idea from which he later developed vector-addition to the very first Question; cf. Aristotle, Minor Works (Loeb edition, 1936) pp. 337:12–339:35.

Nee S. Drake & I.E. Drabkin, Mechanics in Sixteenth-Century Italy (Madison, 1969), pp. 84, 103.

⁷¹ Cf. Drake & Drabkin, op. cit., p. 48.

tion why forced upward motion remains straight farther, the more nearly vertically projection has begun. His diagram compared several paths differing in steepness of projection, but beyond that he attempted no description of the trajectories. In 1591 Galileo still accepted the concept of "impetus" as a force impressed into the thrown body, regarding its continued motion thereafter as forced. But in 1597, when he lectured on *Questions of Mechanics*, he appears to have perceived from Question 33⁷² that an "impressed force" was a superfluous assumption. What remained with a ball could be only the *motion* it had shared with the hand, as Galileo later wrote.⁷³

In October 1604, trying to derive the law of fall logically from some incontestable principle,⁷⁴ Galileo postulated that all speeds during fall from rest are proportional to the distances traversed. He based that mistaken postulate on his observations and measurements of percussion effects—"machines that act by striking," as he wrote at this time. Those effects are in fact proportional not to the speeds, but to their squares. Galileo had observed that a given weight, falling from a height and then from double the height, strikes twice as hard. He reasoned that the weight being the same, and its speeds different, the speeds must create any difference in effect, and therefore be related as are the distances fallen.

During the next four years Galileo tried various ways of joining this wrong concept of "speed" with his correct theorems about distances and times in fall, always in vain. The reason for his seemingly obtuse, and certainly stubborn, adherence to an incorrect rule of proportionality for speeds was (of course) sound reasoning from an erroneous principle. The principle was that there can be no such thing as mathematically instantaneous speed. Only motion has speed, and motion requires time. The time allowed could be made as small as one wished, but not zero. If the time is supposed to vanish, the motion must vanish along with it. Similar ancient reasoning had afforded the very basis of

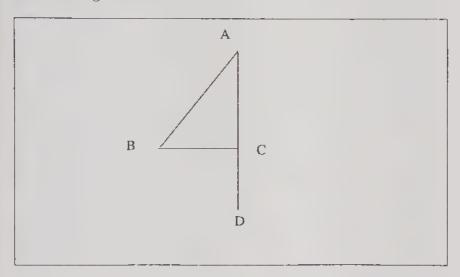
Question 32 began: "Why do objects thrown ever stop travelling?" and Question 33 went on: "Again, why does the body travel at all except by its self-carriage [αὐτοῦ φυράν] when the discharging force does not follow and continue to push it?"

⁷³ Dialogue, p. 151.

⁷⁴ Translated in my Galileo at Work, pp. 102–3.

Zeno's paradoxes, to which Aristotle offered many refutations by utterly rejecting the idea of literally instantaneous speed.

Toward the end of 1607 Galileo began arranging his various theorems about motion with the thought of composing a book on the subject. To some proofs still technically uncompleted he added necessary lemmas, and many further theorems occurred to him which he wrote out. In the course of this work he hit upon a solution of the difficulties with regard to "speeds" that had been holding him back. On f.164 he drew this diagram, and wrote:



Marvellous! Now, is motion through the vertical *AD* swifter than that through the incline *AB*? It seems so, since equal spaces are traversed more quickly along *AD* than along *AB*. But it also seems not; because, drawing the horizontal *BC*, the time through *AB* is to the time through *AC* as *AB* is to *AC*, whence the same *momenta* of speed [exist in motion] through *AB* and [through] *AC*; and indeed that speed is one and the same with which, in equal times, unequal spaces are passed that have the same ratio as do the times. The *momenta* of speed of things falling from a height are as the square roots of distances traversed.

Freed from his long misapprehension that speeds in fall were proportional to the distances from rest, Galileo was at last in a position to

measure speeds in fall correctly. That put into his hands the means of verifying another proposition that he had long believed true, but had had no way of actually testing—that in principle, horizontal motion should continue at uniform speed.⁷⁵

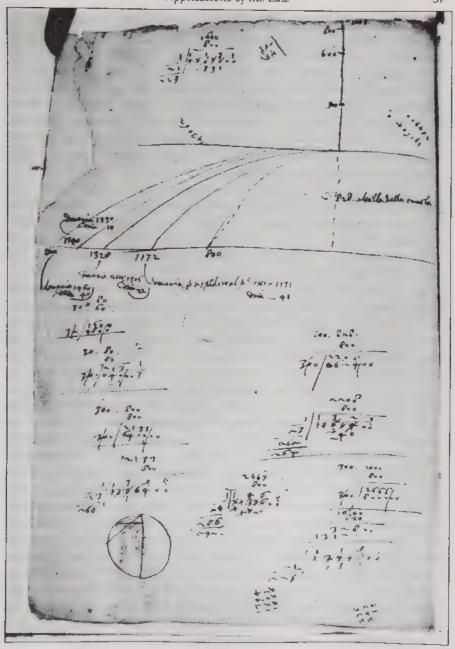
It was early in 1608 that Galileo probably put his inclined plane on a table, let the ball roll down from measured heights, then along the table briefly, and finally fall to the floor. The distance was then measured from each point where the ball struck the floor to the point vertically beneath the end of the table. The speeds of projection being proportional to the square roots of the heights, all horizontal distances measured would follow that same proportion, assuming his long-standing belief correct. His first set of measurements was not preserved, but it probably confirmed Galileo's belief within 4 punti; that is, within half a centimeter for projections out to a meter and more.

Some later data are on f.116v of Galileo's working papers, written probably in the early summer of 1608. When that page was published in 1973, and explained as the discovery-document for the parabolic trajectory, I supposed this to have been Galileo's first testing of the concept I then called "horizontal inertia." Measured distances of projections shown on it departed from his calculations by as much as 40 punti, but Galileo appeared not to have been disturbed by that; in fact, he noted the differences with care on the same page. In 1973, nothing whatever was yet known about his measurements in 1604, whence the accuracy to $\pm 3\%$ implied by f.116v aroused incredulity among other historians of science.

It was generally believed that Galileo had not actually made any experimental measurements at all, let alone accurately. Once Galileo's steps to the pendulum law and the law of fall were fully known, it became evident that f.116v recorded results of a more sophisticated set of experimental measurements than at first supposed. Notations on that document previously unnoticed, or if noticed, not then under-

For his mathematical proof in the Pisan De motu, see I.E. Drabkin & S. Drake, Galileo On Motion and On Mechanics (Madison 1960), Chapter 14.

Inertia being a dynamic concept, it has no place in Galileo's mature physics. Its place was taken by the conservation of motion as presented in the Second Day of the 1632 Dialogue.



f.116v, on which Galileo first noted the parabolic path of horizontally launched projectiles. Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by permission).

stood, can now be explained in full.

First of all, Galileo's word doveria⁷⁷, which I had translated "it should be," was in his time equivalent to modern dovlelrebbe, "it would have had to have been." That was made clear in the 1611 edition of John Florio's Queen Anne's New World of Words, an Italian-English dictionary including an appendix on learning the Italian language. Florio remarked that he had never seen even an Italian grammar that correctly explained the fine distinctions in Italian modal conditionals, adding that nothing in the language was responsible for so many absurd mistakes made by Englishmen.

Galileo's reason for measuring and recording the differences between projections and the advances calculated from the first pair of data was that his measures on f.116v had been obtained in more than one way. He did not expect them to be in agreement, and hoped to learn something more from the recorded differences. Nothing of that kind would have been even suspected in 1973.

To reconstruct the experimental set-up for f.116v, we must observe carefully everything on it before making any unnecessary assumptions about Galileo's procedures, or his figures, or his words. For example, look at the notation: pu. 828 altezza della tavola—"828 punti height of the table," which clearly relates to the length of a vertical line from table to floor. But it is necessary also to notice that, unlike most of the lines on the page, this is a dotted line. Whether the height of the table was ever adjusted to 828 punti is uncertain; but entries show us that Galileo started this work with his table-top 800 punti above the floor, and later adjusted it to 820 punti. Probably he intended to raise it to 828 punti, as indeed he had a valid reason to do. But it is possible (and indeed likely) that he became too deeply interested in his discovery of the parabolic trajectory to finish what he had been doing. For Galileo had not started out to find the shape of any path; he came upon that incidentally to other calculations, as will be seen. Knowing already that horizontal motion is uniform in the absence of any impediment greater than air resistance, he began work on f.116 to verify experimentally the independent composition of two different tendencies to motion in the same body, a conception sure to be challenged by upholders of Aristotelian natural philosophy who were by 1608 in the

⁷⁷ doveria = dovrebbe

habit of automatically contradicting everything that Galileo wrote.

At the top center of f.116v, Galileo calculated the mean-proportional of a number and its double, in his usual manner. We would now multiply the smaller number by $\sqrt{2}$, but Galileo took the square root of their product. The first number was 800. Most of the other calculations—which involved more than a number and a double—are less simple. But at lower right, and unused in the body of the document, the short-cut calculation was repeated for 820. It was not repeated for 828, which would have given 1,171.

There is more than one way to carry out these measurements, and they do not all give the same results. Probably Galileo had already simply set his grooved inclined plane on a table, without any concern about either its height or the angle of the plane. That was done early in 1608, and his measurements were not saved. Coming off the plane, the ball would strike the table and bounce. That would not greatly matter, so long as it rolled on the table before it fell to the floor. Galileo did not know whether this made a difference, but recognized that it might.

To eliminate or at least reduce any bouncing, two procedures were available. A board of the precise thickness to receive the ball on its lowest point exactly when it left the plane could be placed on the table, or a curved deflector could be grooved to match the width of guiding groove in the plane. Those procedures will not yield identical lengths of projection. The first causes the ball to roll on its lowest point, at least briefly; and that will suffice to increase its speed just before it starts to fall freely. While in the groove, the ball rolls on a reduced radius. If it is then allowed to roll on its entire radius, some of its energy of rotation is converted into speed of forward advance. By changing the mode of deflection, Galileo had increased the length of his initial projection from 800+ punti to 820 punti.

No doubt he was surprised by this, because he had meant only to eliminate, or reduce, any bouncing. But having seen that the distance of projection was also affected, it naturally left him wondering how much it could be increased. Before describing how he found out, I shall first explain the +, added above after 800. I calculate projection to be

Very little energy would be lost by the bounce of a bronze ball on a hardwood table. The main thing was to assure horizontal motion at the time the ball left the table, as will be seen.

804—about where the *solid* curved line in Galileo's diagram meets the floor. He then drew a *dotted* line to represent 800, a projection not actually measured, but it was much simpler to use in calculations of mean proportionals by the extraction of square roots.

A guiding groove is quite necessary when the plane is given a considerable tilt, to assure projection always along the same line. Even a small imperfection in the groove will send the ball flying out of it when the motion becomes very swift. To prevent that, Galileo covered the groove with limp vellum; the weight of the bronze ball pressed this down enough to keep it rolling quite straight. Thus Galileo noted 828 punti to be the maximum initial projection, after vertical descent of 300 punti along the plane. It is very doubtful that he ever knew the reason for this, which is that the lowest point of the ball remained in contact with the vellum covering during its entire roll.

Next comes the question why 828 punti should appear as the height of the table, when it had been found as the maximum length of projection for descent of 300 punti. There was a reason for this. Vertical descent during roll along the plane and height of the final drop to the floor are interchangeable in this kind of experimental measurements. Distance of projection remains the same for vertical descent x and drop y as for vertical descent y and drop x. As said earlier, whether Galileo completed such a trial is uncertain, but there can be no reasonable doubt that he had discovered experimentally a great deal more about motions on inclined planes (and off them) than he eventually published.

His table was about the normal height, and the highest that Galileo had to reach when placing the ball was about six feet, so he could easily bend down to observe its paths. Those were then sketched on f.116v, and they appear parabolic. The calculations on the page are such as to have assured Galileo that they must be indeed semi-parabolas. A letter that he wrote in February, 1609, confirms that he was then studying phenomena of artillery shots, and a diagram in it also contains a sketch of a parabolic path.

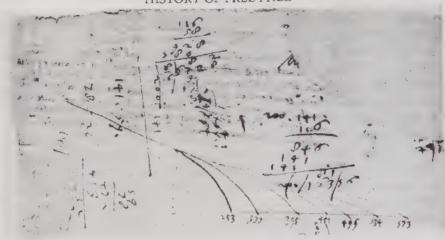
⁷⁹ Cf. Two New Sciences, p. 169.

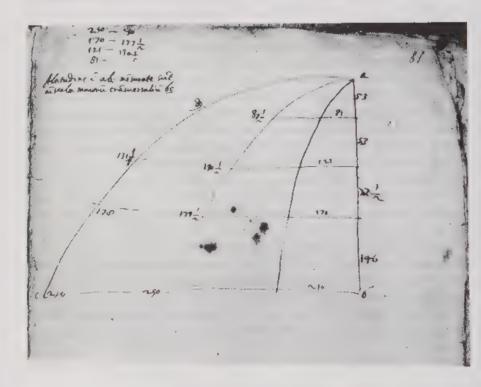
As mentioned at the beginning, all previous writers on the paths of projectiles regarded those motions not as natural, but "forced"—including Galileo himself in his youth. But after he abandoned the concept of "impressed force" in favor of conserved motion, he came to regard the motions of projectiles as natural motions from the moment when any outside force ceased to act. In 1609 he started making tables of heights and distances for shots fired at different elevations of a mortar, later completed and published in his last book. The symmetry of parabolas makes it possible to reduce such calculations to equivalent horizontal trajectories. But there is another class of oblique projections that are not so reducible, and to that Galileo next turned his attention.

When a ball rolls from the end of an inclined plane without any horizontal deflection, its fall to the floor is not a simple parabolic curve, though this is a natural motion from the moment that a finger is lifted from a ball held at rest on an incline. No force is imparted to the ball at any time (Galileo did not regard gravity as a force, but as a natural tendency downward.) These constituted a new class of projections belonging to his physics as the science of natural motions, and on f.114v there is a freehand sketch of seven descents, after rolls of different lengths along an inclined plane, with the projections measured in punti. Also, on f.81r, we have a diagram on which were recorded the results of some quite sophisticated (and remarkably accurate) experimental measurements of oblique projections. From those records it is possible to determine exactly what equipment was used by Galileo, and how he went about investigating a problem in physics that he was unable to solve, and about which he therefore never published anything.

In 1973, calculating from the data on f.116v (using modern information and procedures), I noticed that there was an apparent systematic loss of gravitational energy in Galileo's results. At that time I employed this, incorrectly, to estimate the angle at which the plane had been tilted. That angle does not matter when all projections are horizontal, as critics were quick to point out. Eventually I realized that the

There Galileo took care to point out that his tables would not apply to high-speed artillery shots, because resistance of the air became great enough to alter the shape of trajectory very considerably.





Galileo's records of measured projections from the ends of inclined planes without horizontal deflection.

Above, part of f.114 ν ; and below, f.81r. Manoscritti Galileiani in the Biblioteca Nazionale Centrale di Firenze (reproduced by permission).

seeming loss was the result of his using a grooved plane, into which part of the ball always extends. Its forward acceleration is thus diminished, while the equivalent energy goes into rotating the ball. No energy, of course, is lost, and Galileo's measurements proved to have been uncannily accurate when all the physical factors were taken into account.

It is from the data concerning oblique trajectories of the kind described above that the diameter of Galileo's bronze ball and the width of the guiding groove in his plane can be deduced. The ball was 20 punti, or just under 19 mm, in diameter, and the groove was between 8mm and 9mm wide. The same plane was used in 1604 and 1608-9, being a little more than 2 meters long. In his final work on oblique trajectories Galileo added another plane, described in his last book as 12 braccia (or about 7 meters) in length. This was butted against the other plane to permit a roll of 9,600 punti, required for the work recorded on f.81r.

Also from the data on oblique projections it is possible to deduce the angles at which Galileo fixed his plane, and why he chose those angles. The freehand sketch on f.114v indicates an angle of about 26° (as I noted in 1973), and the data on f.81r later threw light this seemingly strange choice. More precisely, Galileo's angle was 26.57°, which is arctan ½, an angle that can be constructed very exactly by two simple measurements. One has only to make sure that the height above the table is exactly one-half the distance along it from one end of the plane to the other. Galileo's reason for that choice was that he wanted the horizontal advance at the moment of projection to be double the vertical motion downward.

There is abundant evidence that the work on f.116v was also carried out with the plane at this same angle, once all the data in the working papers are fully understood. For the measurements behind f.81r, three different angles of plane were employed, and three lengths of roll, and three heights of drop. The angles chosen were arcsin 1/3, arcsin 1/6, and

arcsin ½12, or 19.47°, 9.59°, and 4.78°—all seemingly irregular, but actually easy to set with precision and designed to maximize Galileo's chances of recognizing simple numerical ratios, if any were to be found.81

These investigations of the paths of bodies in free fall after motion initiated by descent along inclined planes serve to illustrate the fruitfulness to mathematical physics of the law of free fall. In the course of Galileo's applying it, he hit upon a new idea for explaining the places and speeds of the planets in terms of the law of fall, outlined many years later in his famous Dialogue of 1632.82 In a very different way. Johann Kepler⁸³ had attempted to account for the planetary orbits in his first book, from which Galileo had taken the data that had led him to his discovery in 1601 that planetary distances from the sun could be related directly to orbital speeds in the Copernican system. One entry added in 1609 to an earlier diagram of concentric circles, representing planets with the sun at the center, cannot have been made before the writing of f.91, on which Galileo proved that times in fall from rest are measures of speeds acquired. Close similarity between the form of his discovery in 1601 and that of the law of fall then led Galileo to the "Platonic cosmogony" that he set forth near the beginning of his 1632 Dialogue. There he speculated that all planets were created at a place beyond Saturn (then the outermost planet known), and moved toward the sun with uniformly accelerated motion until each had reached the speed at which God had ordained it to circle the sun forever. Planetary

The first two angles and rolls were such as to produce a speed of projection and its double. For the third, that would have required an impracticably long plane; Galileo used half that length, and even that required him to make a second plane about 20 feet long.

⁸² Dialogue, p. **2**9.

⁸³ See the Epilogue for more on "Kepler's problem," as this may be called.

deflection from straight accelerated to uniform circular motion was by special act of the divine will, in Galileo's scheme.

This speculation is wrong, but not randomly so; it is wrong by a factor of 2, so to speak.⁸⁴ Newton, asked about it, replied that for the sun to *hold* the planets in orbit in such a case, its gravitational power would have to be doubled at the instant of deflection into circular motion. Galileo certainly had no idea whatever of universal gravitation, and in the *Dialogue* he denied that he, or anyone, knew what held planets in orbit.⁸⁵ Yet it is interesting that his mathematics of ratios and proportionality, applied to physical concepts such as distance, speed, and time, led him to a speculation that is not entirely unrelated to facts undiscovered until long after his death.

It is noteworthy that Galileo put the times-squared law of distances in spontaneous natural descent to use, applying it to previously unsolved problems of physics, and so did Cavalieri, independently, arriving at one of the same solutions. During a whole decade following its publication in 1638 by Galileo and also by a friend and correspondent of his, nearly all professors of natural philosophy rejected it on metaphysical grounds of the kinds summarized in the next chapter. The two views of science, one as something useful to mankind and the other as only a branch of philosophy, still live on in wordy disputes today.

Because Galileo worked entirely with ratios, the factor of 2 in both terms would simply have cancelled out. Those who scorn his "Platonic cosmogony" as unscientific do not take into account the mathematics he employed when they resort to algebraic equations. What those prove is that the scheme was wrong, not unscientific. Most scientific theories started out in incorrect forms.

⁸⁵ Dialogue, p. 234.

Reception of the Law, 1632-49

Galileo first publicly announced his law of fall in 1632, using it in his *Dialogue* for calculating time of fall from the moon to the earth. Only a "probable argument" in support of one consequence⁸⁶ of the law was offered in 1632. Not until 1638, in his *Two New Sciences*, was the law derived from the definition of uniformly accelerated motion as motion in which equal increments of speed are acquired in equal intervals of time. It is highly probable that Galileo was still unable to formulate a rigorous proof of the law from that definition alone until shortly before his last book went to press, as one scholium⁸⁷ in it appears to allude to a proof resembling the "probable argument" set forth in the earlier *Dialogue*, not used in the printed text of 1638.

The occasion for stating the law of fall in the *Dialogue* was an absurd calculation by the Jesuit Christopher Scheiner⁸⁸ of the time it would take a cannonball to fall to earth from the moon;. Assuming the fall to

The double-distance rule for uniform motion following uniformly accelerated motion from rest, which Heytesbury had deduced in the 14th century. See Galileo, *Dialogue* (tr. S. Drake, Berkeley 1953), pp. 227–30.

To Proposition 23; see Galileo, Two New Sciences (tr. S. Drake, 2d. ed., Toronto 1989), p. 196. When this scholium was written, proof of Proposition 1 probably still depended on an appeal to areas. In its final form (pp. 165–6) the appeal is to one-to-one correspondence of lines and congruence of triangles which contain them.

At the time Scheiner published his statement he was not unfriendly toward Galileo, but by the time of the *Dialogue* he had become a vindictive enemy over priority in the discovery of sunspots.

be straight to earth at 12,600 German miles per hour, taken as the orbital speed, Scheiner put the time at more than six days. On the author's assumptions, Galileo noted, the time should be less than four hours, the radius of orbit being less than one-sixth of the circumference described in 24 hours, making his claim wrong by a factor of 36. For a correct calculation, Galileo's spokesman said:

First of all, it is necessary to reflect that the motion of descending bodies is not uniform, but that starting from rest they are continually accelerated... But this general knowledge is of no value unless one knows the ratio according to which the increase takes place...

The odd-number rule of distances was next stated, and then the law of fall:

...In sum, this is the same as to say that the spaces passed over by the body starting from rest have to each other the ratio of the squares of the times in which those spaces were traversed. Or we may say that the spaces passed over are to each other as the squares of the times. §99

This statement of the law went unnoticed among the hostile critics of the *Dialogue*, ⁹⁰ perhaps because it did not explicitly mention the proportionality of speeds in fall directly to times, which might have aroused some adherent of Albert of Saxony, or a follower of Varro, to object. Friendly critics, however, noted that in preparing to make his own calculation, Galileo wrote:

...let us suppose we want to make the computations for an iron [cannon]ball of 100 pounds which in repeated experiments falls from a height of 100 braccia in 5 seconds...

⁸⁹ Dialogue, pp. 221–2.

Pierre Fermat was anything but a hostile critic, praising the book highly when he sent it to Pierre Carcavy. But Fermat thought he had proved the law to be false. After Galileo's derivation of it in Two New Sciences appeared and became the subject of heated debates, Fermat supported the law; see below.

Clearly, round figures were taken here in order to make the ensuing calculation simple, and easy for readers to follow. But Marin Mersenne took this to be an assertion of fact. After he verified the length of the Florentine *braccio*, he felt certain that Galileo had never carried out careful experiments. From Genoa, G. B. Baliani wrote to Galileo asking how he had arrived at his figures, which did not conform with Baliani's findings. And long afterward, in 1665–6, Newton took the above passage as describing actual results, although it is obvious that neither Galileo, nor anyone else, had made repeated experiments with a 100-pound cannonball (if there was such a thing) from a height of nearly 200 feet.⁹¹

Baliani, who had been in correspondence with Galileo since 1614 and visited him at Florence in 1615, was in 1611 in charge of the arsenal at Savona, where he had first made experiments relating to the fall of heavy bodies. It was doubtless in 1615 that Galileo gave him the information of which Baliani wrote to Benedetto Castelli in 1627:⁹²

...Composing the treatise on solids of which I have spoken, it happened that, without seeking this, I found (as it appears to me) well proved in a very surprising way a proposition that Signor Galileo had told me to be true without his adducing to me the demonstration; and this is that in natural motion, bodies go increasing the speeds in the proportion of 1, 3, 5, 7, etc., indefinitely; however, he adduced to me a probable reason, that only in this proportion greater, or lesser, spaces preserve always the same proportion. I do not explain further because I know I am speaking with one who understands...

⁹¹ It is a commentary on the state of the literature in 1665 that Newton did not have access to authentic experimental measurements of acceleration in fall, three decades after the law became known. Galileo eventually replied to Baliani that for the purpose of showing the enormous error of his opponent, it made no difference what numbers were used in this calculation.

⁹² Antonio Favaro, ed., Opere di Galileo... (Florence, 1935) vol. 13, p. 248.

The treatise on solids to which Baliani alluded was the book on motions of heavy bodies he published in 1638, deriving the law of fall from the pendulum law, which he postulated from actual measurements. He sent a copy to Galileo, ⁹³ who had become blind and could not study the diagrams accompanying Baliani's theorems. Thanking Baliani for the book, Galileo remarked that in his own book he had reasoned *ex suppositione*, in the style of Archimedes. He had then offered experimental evidence that his definition of uniform acceleration agreed with natural phenomena, and in that agreement, Galileo told Baliani, he counted himself fortunate. In the same letter he explained why he had used arbitrary data in the *Dialogue*, ⁹⁴ and how a correct determination could be made by using a very long pendulum and counting its oscillations during two successive crossings of the meridian by a fixed star.

It is noteworthy that when the times-squared law of fall was eventually found and proved in the 17th century, the independent experiments of Galileo and Baliani that led to it had led also to the law of the pendulum. That law was of interest to musicians; it appears to have been first discussed among them in the 1630's, when quite possibly it had been independently discovered by Marin Mersenne in France or G. B. Doni in Italy, and perhaps both. But pendulums had played no part in any theory of fall before the 17th century, and seemed not to interest the natural philosophers who opposed the law of fall in the years following 1638.

The best-known supporters of the fall law were Mersenne and Pierre Gassendi, both at Paris. Its two most vigorous opponents were also French—Pierre Cazré and Honoré Fabri. 95 Cazré cited impact ex-

⁹³ G.B. Baliani, De motu naturali gravium solidorum (Genoa, 1638). Baliani was unaware that Two New Sciences had been published, and though some copies had reached Rome, Galileo had only a proof copy sent to him for preparation of errata.

Galileo's troubles with the Roman inquisition over that book had caused him to neglect replying to Baliani's earlier inquiry. The letter is translated in my Galileo at Work (Chicago 1978), pp. 399–401.

Whether Baliani should be called an opponent of the law is a complicated question. In 1638 he offered his own proof in its support, but in 1646 he proposed a different law, with an analysis very similar to that of Fabri in the same year.

periments in support of a quite different law of fall, while Fabri conceded that Galileo's experiments implied the times-squared law and simply denied that measurements of any kind, however precise, could reveal the philosophically true laws of nature—for fall or anything else. Curiously enough, the only mathematician outside Italy who thoroughly understood Galileo's derivation of the times-squared law was also French. This was Jacques-Alexandre Le Tenneur, who vindicated Galileo's law in 1649, writing at Mersenne's request after Fabri's publication. Like his contemporary, the celebrated mathematician Pierre Fermat, Le Tenneur was a lawyer and counsellor to a provincial parliament.

Mersenne, an outstanding authority on musical history and theory, was an ingenious and careful experimentalist in physics whose correspondence with scientists and philosophers of the 17th century is the source of much information about the law of fall. In particular, the thought of René Descartes on this subject is known only from his letters to Mersenne. Descartes' interest in the law of fall began with a question addressed to him by Isaac Beeckman in 1618. Beeckman's own answer to this, not the same as that of Descartes, was entered in his journal for that year. It is of interest as reflecting a physical approach similar to that of Albert of Saxony (as I understand that) when he mathematicized impetus theory in the 14th century, except that attraction by the earth now took the place of impetus. Beeckman wrote: 96

...With this agreed, things are thus moved downward toward the center of the earth [through] empty space. In the first moment, as much space is traversed as possible by attraction of the earth. With this motion continuing, in the second moment a new motion is added by attraction, so that double the space is run through in this second moment. In the third moment the doubled space remains and to it is added a third by attraction of the earth, so that in [this] one moment a space triple the first space is run through...

In Beeckman's mathematization, this separation of numbered moments was then abandoned, and continuous uniformly accelerated motion emerged—if we allow the kind of reasoning by which one could also prove that the diagonal of a square equals the sum of two

⁹⁶ In his journal for late 1618; this and later passages are from Clagett, pp. 417–18.

sides of it. In the opening lecture of a course in calculus it is not unusual to offer this startling proposition initially, drawing a right triangle whose hypotenuse is not a line but a series of small steps. Students are then invited to consider the steps more numerous, and smaller, until they become too small to imagine, and are asked whether they could then safely treat the result as a line. In Beeckman's diagram, *ADE* and *ACB* were equal right triangles, so placed that *A [E] B* was the diagonal of a square whose side was double *AD*. His proposition was:

...Since these moments are *individua*, we have a space such as *ADE* through which a thing falls in one hour. The space through which it falls in two hours doubles the time-ratio [i.e., is to the space fallen in the first hour as the square of the time-ratio]; that is, the ratio of *ADE* to *ACB* is the square of the ratio of *AD* to *AC*.

The argument proceeded by dividing each square into smaller squares and noting that those may be again divided interminably. No appeal whatever was made to the rigorous Euclidean theory of proportionality for mathematically continuous magnitudes. The vanishingly small areas were simply regarded as points, in this reasoning, which was not essentially different from that used by G.P. de Roberval in his treatise on indivisibles⁹⁷ two decades later.

Beeckman reasoned only about motions, and though he spoke of attraction toward the earth, he did not introduce the idea of any force. His account of fall was purely kinematic—and although the validity of his mathematical argument is dubious, he thus arrived at the times-squared relationship. Descartes understood his question differently and dealt it as a problem in which force was to be considered. He reasoned as if a whole square could not be ignored just because its area is small, though it would be all right to disregard half of it. His dynamic solution was not the times-squared law. Nevertheless, after reading *Two New Sciences* twenty years later, Descartes wrote to Mersenne that he had once arrived at the same conclusion as Galileo,

⁹⁷ It was this that induced Newton to remark that the hypothesis of indivisibles seems a trifle harsh. Roberval's use of the word "indivisibles" was rooted in medieval denunciations of them, in turn traceable to the pseudo-Aristotelian On atomic lines. In 1635 Bonaventura Cavalieri used the same word very differently, to denote elements having one less dimension than the magnitude treated as containing them.

but then came to see that there is no unique law of fall. Every body falls in the way best suited to its material essence, which could be learned only by studying the Cartesian principles of philosophy. It might happen that something fell according to Galileo's law, but that was not usually the case in Descartes' mature opinion.

In 1639 Mersenne published in French an abridged paraphrase of *Two New Sciences*. Though he approved Galileo's law of fall, he added that he saw no reason for rejecting proportionality of speeds in fall to distances fallen. Mersenne's prowess as an experimentalist was not matched by mathematical perceptivity. In 1645, at Paris, a book was published by Pierre Cazré, S.J., which bore the scornfully anti-Galilean title:

Demonstrative Physics, in which are determined the ratio, measure, mode, and power of acceleration of motion in natural descent of heavy bodies, against the pseudo-science of the same motion recently thought up by Galileo Galilei, Florentine philosopher and mathematician.

Pierre Gassendi, after corresponding with the Jesuit father, replied publicly in defense of Galileo in 1646, also at Paris, with a book entitled:

On the proportion in which falling heavy bodies are accelerated. Three letters. In reply to as many letters by the reverend father Pierre Cazré, S.J.

One principal point at issue among natural philosophers and mathematicians during 1638–49 was to be Galileo's assertion, in *Two New Sciences*, that it was as false and impossible for uniform acceleration to be proportional to distances fallen (or to be fallen) from rest, as it is for instantaneous motion to occur. That statement, which had been at least implicitly questioned by Mersenne, was frequently challenged in the 1640s. It continues to be branded as false by some. A number of modern critics of Galileo, beginning with Ernst Mach, have made a point of refuting it by appealing to a simple differential equation. ⁹⁸ Galileo's statement had been made in reply to this assertion by Sagredo: ⁹⁹

That the falling heavy body acquires force in going, the speed increasing

Of course it is possible to differentiate with respect to distance instead of time. The result is an exponential equation in which the body cannot start from rest, a concept satisfactory to mathematicians but a trifle harsh for physicists.

⁹⁹ Two New Sciences, p. 160.

in the ratio of the space, while the momentum of any given percussent is double when it comes from double height, appear to me as propositions to be granted without repugnance or controversy.

To which Salviati replied, in part, as follows:

And yet they are as false and impossible as that motion should be made instantaneously, and here is a very clear proof of it. When speeds have the same ratio as the spaces passed or to be passed, those spaces come to be passed in equal times; if therefore the speeds with which the falling body passed the space of four *braccia* were the doubles of the speeds with which it passed the first two *braccia*, as one space is double the other space, then the times of those passages are equal; but for the same movable body to pass the four *braccia* and the two in the same time cannot take place except in instantaneous motion.

There was more to the reply, but this completed his "clear proof." Cazré's opposition related chiefly to the ensuing part, concerning the force of impact. Gassendi replied at great length, exposing many fallacies in Cazré's alternative law of fall, which in effect made speeds through successive equal distances increase as successive integral powers of 2. Cazré's impact experiments, interpreted to refute Galileo's law of fall, made his theory a dynamic one.

About a year before he discovered the law of fall, Galileo had carried out equivalent experiments. Later, misled by their results, ¹⁰⁰ he attempted to derive the times-squared law of fall from the "effects of machines that work by striking," which led to his famous letter to Paolo Sarpi of 16 October 1604. But the matter of present interest is reception of the times-squared law after its proof, not the evolution of that proof. ¹⁰¹

Salviati's reply to Sagredo was explicitly called a clear proof of the falsity and impossibility of two propositions, and that is what it was.

He took the impact effect as a measure of speed, whereas in fact that depends on the square of the speed acquired in fall. From 1608 on he avoided this mistake, into which Cazré fell later.

The relation of Galileo's first attempted derivation of the law of fall, written for Sarpi, to the definition of "speed" at which he arrived in 1608, was discussed in my "Galileo's discovery of the law of free fall," Scientific American (June 1973), pp. 84–92. At that time I believed the discovery to have involved a bit of good luck.

Yet even the peerless mathematician Fermat did not recognize it as having *proved* anything. Writing to Gassendi in 1646, Fermat said that doubtless Galileo had had a proof, but did not set it forth. Rather than wasting valuable time in long replies to Jesuit opponents, he said, the task was to supply a proper mathematical proof for Galileo. This Fermat proceeded to do, in classical Archimedean style, and his proof took a half-dozen pages. There is no getting around Fermat's argument in support of Galileo's position, and there is also no way of substantially shortening that argument that I can find. But neither was there anything wrong with Galileo's "very clear proof" in 1638, which took only one sentence. Fermat simply did not recognize it to be a mathematical proof because it assumed a principle banned from classical Greek mathematics by the final axiom in Euclid's *Elements*, Book I,—"The whole is greater than the part."

That axiom excluded the infinite from Euclidean mathematics, perhaps because Greek philosophers had got themselves into a host of paradoxes by attempting to deal with it. Galileo introduced the infinite into Renaissance mathematics in the First Day of *Two New Sciences* by applying the concept of one-to-one correspondence between members of two infinite sets to the positive integers and their squares. ¹⁰³ In the Third Day that same concept, applied to geometry, gave him his basis for deriving the law of fall. In 1646 Baliani published the second edition of his 1638 book on the motions of heavy bodies and of fluids, with an added section asserting that the odd-number rule of spaces in equal successive times during fall was not exactly true. In that new section, Baliani's original kinematic account of fall remained as before, but the new section gave a dynamic account, related to medieval impetus theory but offering a mathematical analysis differing completely from that of Albert of Saxony. Baliani now declared that the timessquared law was only an approximation to the truth.

The year 1646 saw not only Gassendi's reply to Cazré and Baliani's

¹⁰² Oeuvres de Pierre Fermat, vol. III (Paris, 1896).

¹⁰³ See pp. 40-44 in the translation cited earlier. The discussion was preceded and followed by geometrical and material examples.

shift from a kinematic to a dynamic theory, but a third book, Fabri's detailed treatment of impetus theory in opposition to Galileo, published at Lyons by his pupil Mousnier. ¹⁰⁴ The last-named book gave occasion to Mersenne, whose specialty was not mathematical analysis, to invite Le Tenneur's comments, resulting in the first (and for a long time the only) book ¹⁰⁵ whose author clearly understood the principle of one-to-one correspondence and saw its role in Galileo's one-sentence argument in refutation of the hypothesis of proportionality of speeds to distances in fall from rest. One paragraph from Le Tenneur's book cannot do it justice, but will show how briefly the proportionality of speeds in fall to distances fallen could be refuted mathematically:

If possible let the heavy body fall through two equal spaces AB and BC so that the speed at C has become double that which it had at B. Certainly, under the hypothesis, there is no point in the line AC at which the speed is not double that at the [unique] homologous point in line AB... Therefore the speed through all AC was double the speed through all AB, just as the space AC is double the space AB; therefore AC and AB are traversed in equal time.

This, of course, comes down to saying with Galileo that the hypothesis is as false and impossible as is instantaneous motion. For speeds to be as distances fallen, some discontinuity must exist in motion from rest. A body cannot fall through distances *d* and 2*d* in the same time in *continuously* accelerated motion, in the mathematical sense of "continuous."

The impetus-theory of fall by quantum-jumps, from rest to a uniform speed and from that to the next, entailed an infinitude of discontinuities in speed. That had not disturbed Buridan or Albert of Saxony, who regarded motion as a successive process and treated accelerated motion as proceeding by a succession of new speeds. The mathematics of continuity was not yet accessible at their time because

¹⁰⁴ Tractatus physicus de motu locali (Lyons, 1646).

¹⁰⁵ J.A. Le Tenneur, *De motu naturaliter accelerato* (Paris, 1649).

Discontinuity occurred at the end of each part of the motion, in Albert's analysis as in Buridan's description. Only the "first" motion from rest was free of impetus. The initial discontinuity at its end being allowed, all the others followed logically and causal explanation was complete for any number of parts taken.

of the medieval corruption of Euclid, Book V.

Even after Galileo applied the mathematics of continuity to acceleration in fall, discontinuity did not bother Fabri, perhaps because the propriety of regarding very small things as simply non-existent—valuable in philosophy, but hazardous in strict mathematics—went unquestioned among natural philosophers who demanded causes above all else in scientific reasoning.

Like modern quantum theory, the impetus theory of fall entailed an indeterminacy, Each uniform speed, however brief, corresponded with neither a unique point in space nor a unique instant of time. Natural philosophers did not see indeterminacy as an unsatisfactory element in causal accounts of phenomena. Indeterminacy had been given a name in the Middle Ages—"the latitude of forms"—which thereby became an entity deserving analysis, in the scholastic tradition of terminological debates.

What is surprising, in the 17th-century rebirth of impetus theory to combat the times-squared law, is not merely the revival of discontinuity and indeterminacy in physics, but also the clear inability of even some mathematicians, as natural philosophers, to recognize lacunae in their own reasoning after the rationale of continuity had been reintroduced by restoring Euclid, Book V. Fabri, who has to his credit some valuable contributions to the beginnings of modern mathematical physics, is an example of this surprising loyalty to traditional physics.

Fabri wrote, "A body falling freely will go faster in the vertical than it will along an inclined plane. Therefore it must start faster. Hence there must be some speeds along the plane that are not present in straight fall." Galileo had said that in order to reach any speed from rest, a body must pass through every lesser speed. To postulate actual infinitude of speeds was an inadmissible assumption for Fabri, who remained oblivious to the infinitude of speeds by which motion along an inclined plane must exceed the number of speeds existing in free fall, however great that number might be. Aristotle's rejection of any actual infinite in nature did not forbid incommensurable magnitudes in mathematics, and as a mathematician Fabri, had he tried counting speeds along the diagonal, and down the side, of a square, could not fail to see that no unit could measure both the quantities.

In the following theorem, proof, and commentary, Fabri seems aware of this, but unwilling to accept the mathematical solution. He evaded it by a metaphysical subterfuge:

Theorem 61. Naturally accelerated motion is not propagated through every degree of slowness.

Since there are as many of these degrees of propagation as there are

instants through which the motion endures, because new impetus is made in single instants (as shown in our *Metaphysics*), then if infinite instants were permitted, the propagation would not be through every degree of slowness that this series of degrees did not include. For [a body] clearly begins to move more slowly on an inclined plane than straight down in a free medium, and in a dense medium as against a rare one (that is, more slowly in water than in air.) Therefore that degree of slowness with which it begins to move on a slightly inclined plane is not contained among those with which it moves straight down.

Fabri's commentary went on to challenge Galileo directly:

By what is said here, Galileo is rejected on two counts. First, it is in vain that he assumes infinite instants without necessity, and second, the ratio he gives is not convincing. Indeed, he calls rest "infinite slowness" from which the movable [thing] then recedes—and no doubt his motion would then proceed to be propagated through all degrees of slowness. But against him: first, rest is not in fact slowness, as it cannot have motion. Second, fast motion ensues immediately from rest as also from slow motion. Third, motion does begin, and therefore with something, so the initial motion is not infinitely removed from rest.

Le Tenneur observed that this was nothing more than a debate about terminology. The final sentence above shows that Fabri conducted it as terminologists usually proceed, since he might equally validly have concluded above "...is not somehow just a kind of rest," which was all that Galileo had meant. Fabri's metaphysical concern with words, not with physical events in the sensible world, was still more clearly shown a bit later:

There is a most certain rule that no philosopher denies: When some experiment is such that two contrary hypotheses can stand with it, neutrality can surely be deduced. Therefore Galileo cannot properly deduce his hypothesis from the experiments propounded, as I shall clearly show.¹⁰⁸

One might ask how any degree could be excluded when infinite instants were permitted with which to associate such degrees. Fabri simply refused to acknowledge that there is no difficulty for those who do permit infinite instants.

It is not clear here whether the hypothesis meant is the law of fall, or the definition of uniform acceleration. Strictly speaking, nothing can be deduced from experiments, despite the wish of Newton to deduce causes from the phenomena. Much can be discovered from experiments, but hitting on something is not deducing it. Deduction is verbal, and experiments are not.

When it is said that the second distance is triple the first, assuming equal times, this is not geometrically certain and accurate... For every physical experiment must be subject to the senses, and no matter who says that, however often observed, at many places and times, it is the same..., yet since the distances are small and insensible (as are the differences) in greater, less, or equal times, spaces nearly equal to triple may be [mis]taken for triple... I ask Galileo if he or anyone else can say whether

one space is triple another and, if anyone says it is off by $\frac{1}{100000}$, whether the experiment is convincing?

Galileo had answered this verbal gambit in Two New Sciences:

Aristotle says a hundred-pound iron ball falling one hundred *braccia* hits the ground before one of one pound has fallen one *braccio*. I say they arrive at the same time. You find on making the experiment that the larger beats the smaller by two inches... And now you would hide behind those two inches Aristotle's 99 braccia, and speaking only of my tiny error, remain silent about his enormous one.¹⁰⁹

Not just fall, but the purpose of science was at stake, as well as its method of pursuit, once the times-squared law had been mathematically and experimentally established.

¹⁰⁹ Two New Sciences, p. 68.

Epilogue Kepler's Problem and Galilean Units

The units devised by Galileo in the course of his discovery of the pendulum law and the law of fall were never used for any other purpose. They were not published, nor did such units occur to others, though they are singularly appropriate for the study of purely gravitational motions of any kind. Why that is so will be clear when we review the manner in which Galileo came to adopt them early in 1604; that will be done briefly at a later place in this Epilogue.

It may seem that no choice of units of length and time can be intrinsically superior for the study of gravitational motions, because all units of measure appear to be arbitrary, and any set can be related to any other. At present, two different measures of length are widely used in science—the British foot and the metric meter. However, the unit of time remains the same in both systems, this being the astronomical second.

In the British system of measurement, the acceleration due to gravity at the earth's surface is about 32 feet per second per second; in metric units, that is about 9.8 meters per second per second. There is no difficulty in converting any data from one system into the other. In practice, it might be troublesome to interpret a result in other terms if the units of both length and time were different, but in principle that does not alter the situation. Distance and time are dimensionally incommensurable, in the ordinary meanings of the words. Hence it is natural to suppose that no set of measures could have a *real* advantage over those in widespread use (or any others), but only an advantage in the recording of measures and the making of calculations. A mile, or an Ängström unit, would be inconvenient to use for lengths in daily use, or a time-unit of one year or one millisecond; but only because large order-of-magnitude factors would be often necessary that could easily have been avoided.

The fact that both systems use the astronomical second does not imply a time-unit any less arbitrary than our units of length. Both the foot and the meter are entirely arbitrary, being merely distances between two marks made on standard bars of some durable material, decreed by a government to serve as a legal definition. The second is no less arbitrary, for it is $\frac{1}{24}$ of $\frac{l}{3600}$ of the time of axial rotation of the earth. Those fractions originated in ancient Babylonian astrological tradition, not in any serious scientific analysis of the measurement of time.

Yet there are indeed pairs of measures, for length and time, having a real advantage over all others for the investigation of gravitational phenomena. The creation of one such pair of units was reconstructed in Chapter 5. Galileo named his units the *punto* and the *tempo*, and his determinations of them by measurements of some terrestrial gravitational phenomena were remarkably accurate. His *punto* of 0.94 mm, if my calculations are correct, was nearly $\lambda = 0.9422119204$ mm, and his $tempo \approx \frac{1}{92}$ astronomical second was very nearly $\tau = \frac{1}{91.88024932}$ second. Calculations using λ and τ make the acceleration due to gravitation $\frac{\pi^2}{2^3} \frac{\lambda}{\tau^2} (= g \frac{\lambda}{\tau^2})$.

The "Galilean units" will be called G.U. Unlike the common footand-second, or meter-and-second, λ -and- τ of G.U. link time automatically with distance in all purely gravitational motions.

The square of the time in τ of fall through a distance in λ is numerically the same as the length in λ of the pendulum timing fall through double that distance. No such numerical identity of measures relating the times and distances of any two distinct and different gravitational motions exists in arbitrary sets of units. It is a real advantage to link time with distance in the study of planetary motions (for example) merely by adopting suitable units.

Motions of planets are purely gravitational in character, and yet not every problem that has been proposed concerning them has yet been solved. Kepler's problem—to find the rationale of the places occupied by planets—has had a very checkered history and is still pursued by those who believe that something more than chance must be involved.

In Kepler's day, Saturn was the most distant planet known to exist, and he arrived at a theory under which there could not be any more planets beyond Saturn. In 1596 he asserted all planets to move in spheres that were circumscribed around the five regular solids, centered at the sun in a certain ordering, each of those geometrical forms being used only once. In antiquity, Euclid had proved that exactly five regular solids exist, so Kepler held the number of planets to be forever limited to six. He had discovered that orbital radii fitting Mercury,

Venus, Earth, Mars, Jupiter, and Saturn were nearly proportional to the radii of the spheres circumscribing the "Platonic solids", when those were placed in a certain order with the sun at the center of all the spheres. But planets beyond Saturn have been found, so Kepler's "discovery" was no more than coincidentally almost true for the first six planets.

Two decades later, in 1619, Kepler made a genuine discovery about the planets—that the cubes of their orbital radii are as the squares of their periods of revolution. That law became the cornerstone of celestial dynamics after Newton linked it to his law of universal gravitation in 1687. The "third law" threw no light upon Kepler's problem, however; rather, this weakened its status as a serious problem, because the law would hold no matter how many planets there were, or what their distances from the Sun might be.

Although Galileo appears to have made no use whatever of this planetary law, he had found another one from Kepler's first book, which was concerned primarily with the above problem.¹¹¹ By using planetary data calculated by Kepler, Galileo found the *speeds* of planets to be inversely as the square roots of their orbital radii, in 1601.¹¹² In 1608 or 1609 he linked this with the law of falling bodies he had discovered in 1604. From that, he conjectured that all the planets had been

¹¹⁰ Kepler's first and second faws, in 1609, stated that planetary orbits are not circular but elliptical, and that the Sun is fixed at a focus of each ellipse.

Johann Kepler, Prodromus dissertationum cosmographicum...(Tübingen, 1596). I translate the full title as "Prologue to cosmographical theses containing the world-structure mystery of the remarkable proportions of the celestial orbs, and the true and essential reasons for the number of skies, their sizes, and their periodic motions, demonstrated from the five regular geometric solids." There is an English translation of the second edition (of 1621) by A.M. Duncan (Alberis Books, N.Y., 1981).

Though this follows from Kepler's three planetary laws, he did not deduce and state it, at any rate in the above form.

created at some place far beyond Saturn, and had reached their speeds by falling in uniform acceleration 113 toward the Sun, God having turned each to circular motion when it reached its destined speed. Newton later remarked that God would also have had to double the gravitational power of the sun at the moment each circular motion began, to hold that planet in orbit, as mentioned earlier.

Beyond Kepler's first speculation about "Platonic solids," no rule was advanced during the 17th century to link the observed distances of the planets from the sun with one another, except Galileo's notion about speeds of fall from some remote place at which all the planets could be supposed to have been created. He described it in his *Dialogue* as a way to flesh out a sketchy idea about the origin of the world found in Plato's *Timaeus*. 114

In 1772 an amateur of science named J.D. Titius proposed an empirical rule, usually known as Bode's law¹¹⁵ because the German astronomer, Johann Bode, publicized and advocated it. As it was originally expressed, Bode's law had the form:

the orbital radius of planet n is $3\times 2^{(n-2)} + 4$,

where n is the number of the planet out from the Sun. Earth, as number 3, thus had orbital radius 10; Venus had orbital radius 7, and (by a special exception) Mercury had orbital radius 4, (as if n jumped to minus infinity.) The unit implied was AU/10, A.U. standing for the modern astronomical unit with the Sun-Earth distance = 1.

Bode's rule had the kind of simplicity desirable in a law of nature, and it appealed to numerologists because it used only the numbers up to 4—credited with mystical properties ever since Pythagoras in remote Greek antiquity. Now, when Bode's law first appeared, Saturn was still the outermost planet known. In 1781, however, Sir William Herschel discovered a seventh planet, and its distance was found to fit

¹¹³ Cf. my Galileo at Work, pp. 64-5, 154-7.

Of course Plato knew nothing of uniformly accelerated motion. He said that after eons of wandering in chaos, the world-bodies were put in order by the demiurge, and Galileo suggested a means of that ordering.

For the complete story see M.M. Nieto, The Titius-Bode Law of Planetary Distances (Oxford, Pergamon Press, 1972).

the next place after Saturn, n=8 calculated according to Bode's law. Next, in 1801, the missing "planet" following Mars, for n=5, was supplied by the asteroid Ceres, discovered by G. Piazzi during sky-searches inspired by Bode's law. Many asteroids in this region have since been found.

Bode's law thus seemed assured. Both John Couch Adams and Urbaine Leverrier assumed its truth when calculating the place of a hypothesized next planet, needed to account for perturbations of the motion of Uranus. Leverrier's calculations were so accurate that Neptune was sighted in 1846, on the very first night that the astronomer J.G. Galle searched the region in the sky Leverrier had determined for the predicted planet beyond Uranus.¹¹⁶

For a time the success of Bode's law appeared complete. But accurate measurements soon revealed that Neptune was not at the Bodeian place for n=9, falling far short of that. In 1846 it happened that Neptune's position was such that distance had been unimportant in the calculations. Bode's law thus became merely a puzzle, of little interest to astronomers until 1930. Then Pluto was discovered, very nearly where Bode's law would place the next planet after Uranus. That fact restored to Bode's law its former status of astronomical curiosity. It now has too many successes, with only a single failure, for those to be merely coincidental. Something more than met the eye might lie behind Bode's law; for there is a limit to the number of lucky chances that most people regard as truly credible.

Nevertheless, there are reasons for doubting that Bode's rule can be a law of nature. Natural laws are open to discovery by any astronomer, no matter what his base of observation may be. If one planet alone, third from the Sun, moved at the crucial distance in the solar system, astronomers on Earth would have an advantage over all others in discovering the law of its structure, because the most reliable and the most convenient unit of distance for making precise measurements is the observer's own distance from the Sun.

Moreover, although the A.U. presently used is a unit firmly rooted

Early in 1613 Neptune come into direct line with Jupiter, and Galileo noted it as a "fixed star" in his journal of observations 233 years before it was identified as a planet. See S. Drake and C. Kowal, "Galileo's sighting of Neptune," Scientific American December 1980.

in an actual planetary placement, the Bodeian factor of 10 is not essential in any laws of nature. The number 10 is the base of the place-notation we prefer, but 10 has not always been chosen. Ancient Babylonian astronomers, who created the science of stars, chose 60. If Bode's law were truly a law of nature, it would have eluded detection even on Earth until 1585, when decimal fractions were first introduced.

Such considerations may be useful in determining where we ought to search for whatever it is that lies behind Bode's law—for though it is hard to doubt that something must lie behind it, it is equally hard to imagine what kind of thing. Except for the place of Earth, Bode's law does not give any distance beyond two significant figures (and for Mars not even that, giving 1.6 A. U. instead of 1.5.) But out to Neptune it gives them all, including the radius of the asteroid belt, arranged in order by a function of successive integral powers of 2, without any unoccupied places. That is too much to dismiss as a parade of lucky coincidences.

To throw light on these puzzles, the link between Bode's 10 and G.U. will be shown. First, however, some of the basic data for the five planets out to Jupiter will be tabulated in m.U. (or Mercury units), putting the semimajor axis of that planet equal to 1 rather than to 0.3870987—its place in A.U. based on Earth = 1, used in astronomical tables. Distances based on that of a unique planet, Mercury—the innermost 117—avoids fractional ratios of axes for successive planets outward from the Sun.

Writing m for Mercury and M for Mars, the principal data are presently measured as follows:

It is not certain whether there is an outermost, and in the selection of units it is always advantageous to adopt a unique case if there is one.

Table 1: Planetary Data in m.U.							
Semimajor axis		Period in earth days		Eccentricity of orbit		Rotations per period	
m	1	m'	87.969256	m"	0.205614	m*	1.4999
V	1.868595722	V′	224.700789	V"	0.006821	V*	0.92466
Е	2.583318249	E'	365.25636	E"	0.016751	E*	365.256
М	3.936183388	M'	686.979702	M"	0.093309	M*	669.6
J	13.44051012	J'	4,332.5879	J"	0.048254	J*	10,556

Because ratios are entirely independent of the units chosen, they cannot favor observations made from a particular planet. The ratios in the first column are relevant to Kepler's problem, and to Bode's law. The first, V[/m] = 1.868595722, may look like a random assortment of digits, but it is far from being that. In the logarithms called "natural" (to the base e), $V/m = 1 + \frac{2}{\ln 10} = 1.868588964$ (= $\log_{10} 10e^2$), to six signifi-

cant figures. Thus the Bodeian "unit" 10 puts in its appearance at once, in the first non-trivial distance-ratio, V_m—which remains numerically the same no matter what unit of distance is adopted.

The last column is not usually regarded as containing data of any special interest, but will serve to make it clear that the Earth day, the unit in which time is measured, is really a ratio. Astronomers on other planets would use different measures of time from ours, since every planet rotates axially while it orbits the sun, and two stable measures of time suffice to establish a unit satisfactory for use in astronomical measurements.

The distance of Mercury in m.U. is, of course, trivial. But in A.U.

 $^{^{118}}$ So is E/m = 2.583320461 far from being a random collection of digits; 10 ln ln (eE/m) = $(E/m)^2$. It follows that its reciprocal, m/E = 0.3870987, is likewise non-random, and another independent illustration of this will be given presently.

Mercury's semimajor axis is the reciprocal of E as above, making it 0.3870987. ¹¹⁹ Now, suppose that instead of putting E = 1, as in A.U., or E = 10 as in Bode's law, we were to put $E = \frac{10}{2\pi}$. That will be done below. Italic initial letters will represent measures in G.U. units, while ordinary letters continue to mean measures in m.U. as in Table 1. One further assumption is seen at the head of Table 2, in order to put sidereal periods into units other than the arbitrary Earth day.

In Column 3 we have the distances of planets from the Sun in Bode's-law units. By putting $E = \frac{10}{2\pi}$ the figures in the first column had to have the same ratios to E as those in Column 3 have to 10, while those in Column 4 have those same ratios to 1—which is how they were measured in the first place.

	Table 2: Putting $E = \frac{10}{2\pi}$ $V' = \frac{\pi}{2} \sqrt{\frac{E}{2}} = \sqrt{gE}$						
1 Orbital radius (in λ x 10 ¹⁴)		2 Sidereal period (in t x 10°)		3 Circumference of orbit		4 Radius in A.U.	
m	0.616086716	m'	0.6989085354	m°	3.870987001	0.3870987	
V	1.151218156	V'	1.785229369	V°	7.233317001	0.7233310	
E	1.591549431	E'	2.901931271	E°	10.000000000	1	
M	2.425030301	M'	5.457996351	Mo	15.23691476	1.5236915	
J	8.280519739	J'	34.42206	Jo	52.20280400	5.2028040	
S	15.18152703	S'	85.47300834	S°	95.38834756	9.5388348	
U	30.52897772	U'	243.7929396	U°	191.8192243	19.1819224	
N	47.83839973	N'	478.1858513	N°	300.5775303	30.0577530	
P	62.76999504	P'	718.7368677	P°	394.3955106	39.4395511	

The autoroot of π is ρ , such that $\rho^p = \pi$; $(\pi^2 + \rho^2)/\rho^2 = 10 \text{m/E}$ to 6 significant figures, at 3.870983.

Orbits are elliptical, as Kepler was the first to discover. When we take the orbits to be circles, with the semimajor axes as their radii, $E = \frac{10}{2\pi}$ simply transforms the Bodeian planetary distances into orbital circumferences. That is a mathematical consequence of the reciprocal relation between m.U. and A.U., not a "cosmological mystery" of the kind Kepler attempted to penetrate in his first published book. But it is not a merely mathematical consequence that the ratio $\frac{E}{m}$ and its recip-

rocal $\frac{m}{E}$ are related to the ratio $\frac{10}{2\pi}$ astronomically, and hence gravitationally, and thereby physically. Mathematics simply makes it easy to recognize astronomical relationships that would otherwise go unnoticed.

It alters the nature of puzzles about Bode's law when we know that the unit of solar distance it implied for the planets has a real meaning, though not the meaning that Bode's law derived from it. The number 10 which Bode's law gave to the Sun-Earth distance was a step in the right direction. The next move is to bring in π ; or rather, to put π , 2, and $\sqrt{2}$ into our *units* and automatically link our measures of distances with measures of times through gravitational phenomena. But that is done by Galileo's constant. 120

The symbol 10 is involved in point-shifts of one place either way,¹²¹ usually associated with a difference in order of magnitude. When working with astronomical magnitudes it is often necessary to move the point many places, symbolized by the use of $10^{\pm n}$. If we used binary arithmetic, that same *symbol* would be used to denote order of magnitude, but it would then *mean* $2^{\pm n}$, which lies at the very heart of Bode's law.

Next, neglecting position of the point, in decimal notation the digits remain the same in $\sqrt{2}$, $\sqrt{200}$, etc. or in $\sqrt{20}$, $\sqrt{2000}$ etc.; but the digits in

Galileo's constant is π over 2 times the square root of 2; its square is g, the universal acceleration due to gravitation in G.U.

¹²¹ In any place-system of numeration, that operation uses the symbol 10, but that symbol does not mean the number ten except in our decimal system. In binary notation, for example, 10 means the number two, and that number appears in nearly all natural laws.

the two sets differ by the factor $\sqrt{10}$, or $10^{\frac{1}{2}}$. Since in gravitational phenomena, all distances are as the square roots of certain times, we would expect units automatically linking every distance with some time, when expressed in binary notation, to mingle together two things we regard as different in kind—the order of magnitude factor, 2, and the factor which can preserve digital integrity in sets of square roots after one-place point-shifts, which in binary notation is the square root of two. Kepler's third law and Bode's law may be related in a way concealed from us by our habit of taking the *symbol* 10 always to mean the number ten. The exponent $\frac{3}{2}$ in Kepler's law relating distance-ratios of planets to their sidereal period, when applied in G.U. is $\ln \frac{M_m}{m}$.

There is nothing remarkable about Galileo's having used 2 and $\sqrt{2}$ in his discovery of the pendulum law, when we now look back at Chapter 5. He used doubling of lengths because that is easy to do with precision, and it did not lead immediately into impracticable lengths in experimental measurements. He used mean proportionals mathematically equivalent to $\sqrt{2}$, because the rigorous Euclidean theory of ratio and proportion for mathematically continuous magnitudes—not just for numbers—suggested that to him. In retrospect, it ceases to be puzzling that Galileo arrived at the unique constant of gravitation that is the same everywhere in the solar system, though that seemed the most puzzling fact revealed by his working papers when it was first noticed a few years ago.

What is most noteworthy in Table 2 is that the distances in Column 1, if we neglect orders of magnitude shown at the top, are almost

exactly in G.U., with $m \approx \frac{g}{2} = \left(\frac{\pi}{4}\right)^2 = 0.6168502751...$ out to infinity. It was for that reason that V' was assigned the value \sqrt{gE} , relating G.U. directly with m.U. To show how those two sets of units may be physically related requires a digression here into pendulums and fall.

From the modern equations for distance fallen from rest, f, and for

time of pendulum p to the vertical through a small arc,

$$f = g \frac{t^2}{2}$$
 and $t = \frac{\pi}{2} \times \sqrt{P/g}$

it is easily deduced that when any fall from rest is timed by a pendulum-swing to the vertical, distance fallen is $\frac{\pi^2}{8}$ × the pendulum length;

and that when any length is specified, that pendulum takes $\frac{\pi}{2\sqrt{2}}$ times as long to reach the vertical as a body takes to fall from the height equal to the length of the pendulum. It was, in fact, the latter measurements that gave to Galileo the pendulum law, a day or so before he discovered the law of fall from it. It is the ratio $\frac{\pi}{2\sqrt{2}} = \sqrt{g} = 1.11072$ that I called "Galileo's constant," of which the square, g, is the gravitational acceleration in G.U.

Galileo's punto and tempo entailed acceleration not quite g (= 1.2337), but close to that, as 1.228 punti/tempo². He could not apply his units to planetary data, because at his time there were no measurements of celestial distances in conventional units such as miles. Only their ratios were measurable. That is not so today. Mercury, 57.9 million km from the Sun, has the "orbital radius" 0.616×10^{14} punti. That is almost exactly the measure in G.U. shown for Mercury in λ , in Table 2. 122

Next, turning our attention to the unit of time, the sidercal period of Mercury is 87.969256 Earth days, or 0.69834×10^9 tempi, which is nearly m' in the same table. It is accordingly clear why the name "Galilean units" is appropriate for measures of length and time that make g exactly $g = \frac{\pi^2}{2^3}$, and also why G.U. are of particular use for

relating orbital radii and sidereal periods.

It is a remarkable property of G.U. that in its measures, the square of any time of swing to the vertical through a small arc by a pendulum of length $\pi\lambda$ is the length of pendulum timing fall from rest through distance $2\pi\lambda$. Hence when purely gravitational phenomena (such as fall and the swing of a pendulum) are measured in G.U., lengths and times are no longer incommensurable in terms of physical science. Also, in calculations performed when data are in G.U., the time of fall at acceleration g through orbital radius r is \sqrt{r} , the square root of that same radius when measured in m.U.—neglecting orders of magnitude. If we take those also into account, a point-shift of two places is required in order to have 10^7 (the square root of 10^{14}) apply to the peri-

Unfortunately the mean distance in kilometers is reported only to 3 significant figures, so though we can put the punto at 0.94 mm, we need more information to make calculations beyond 3 places.

odic times.

When we calculate the time for half-swing of the pendulum as long as is the semimajor axis of Earth in G.U., we find this to be almost the same as $\frac{V'}{10^2}$ as shown in Table 2. Taking Venus' period in Earth days, V' = 224.700789, and dividing by 24 (hours per day) and 3,600 (seconds per hour), we find τ implied to be almost exactly Galileo's $tempo = \frac{1}{92}$ of a second of time.

It suffices here to have indicated the importance of π in the sky, and the fundamental roles of squaring and point-shifting in planetary relations of the kind I call non-Keplerian.¹²³

There exists a convergent series of operations, by which any number greater than 1 will become F/m; it is the series:

$$\ln$$
, +1, \ln , 10, $\sqrt{\ }$, repeated.

This converges to 2.583322768, which will remain unchanged. It is as if $E_m = 2.583320481$ were a gravitational maintenance of this relation, rendering stable the orbits of the first and third planets. Neglecting relative orders of magnitude, the square of the ratio E_m is nearly G, the Newtonian constant of gravitation.

The kind of relation sought by Kepler geometrically, and in Bode's law arithmetically, in which each solar distance leads to the next, appears to exist with respect to the first four planets only. It is $y = (\ln \ln 10x^2)^4$, in which x being V_m , $y = E_m$; and x being E_m , $e^x = W_m$. Because $V_m = 1 + \frac{2}{\ln 10}$ to 6 significant figures, while $\frac{10m}{E} = \frac{\pi^2 + \rho^2}{\rho^2}$ to the same degree of accuracy, ρ (which is 1.854105969) being the autoroot of π , such that $\rho^p = \pi$, the first four semimajor axes in A.U. can be obtained from π , the number 2, exponential operations, squaring, and point-shifting.

Kepler's problem may have been a valid one after all, and the Galilean units may play an essential role in its solution. If so, the final chapter in the history of fall has not yet been written by scientists.

For more information on such relations see my Galileo: Pioneer Scientist, University of Toronto Press (in press).

Bibliography of Works Cited

Albert of Saxony Subtilissimæ quæstiones super octos libros

Physicorum, Venice, 1504

Aristotle De cælo

Physica

Metaphysica

Aristotle (?) Quæstiones mechanicorum

Baliani, G. B. De motu gravium solidorum, Genoa, 1638, 2d ed.

Genoa, 1646

Benedetti, G. B. Demonstratio proportionum motuum, Venice 1554

Diversarum speculationum, Torino, 1585

Borro, G. De motu gravium et levium, Florence, 1578

Bradwardine, T. Tractatus de proportionibus velocitatem in motibus

[1328] ed. B. Politi, Venice, 1505

Buridan, J. Quæstione super octo physicorum libros Aristotelis, ed.

J. Dullaert, Paris, 1509

Cardano, G. De subilitate, Nuremberg, 1550

Cavalieri, B. Lo Specchio Ustorio, Bologna, 1632

Clagett, M. The Science of Mechanics in the Middle Ages, Madison,

1959

Crosby, H. L. Thomas of Bradwardine, his Tractatus de Proportionibus,

Madison, 1955

Drabkin, I. E. A Source Book in Greek Science (with M.R. Cohen),

New York, 1948

Galileo On Motion and On Mechanics (with S. Drake),

Madison, 1960

Drake, S. Mechanics in 16th-Century Italy (with I.E. Drabkin),

Madison, 1969

HISTORY OF FREE FALL

Galileo at Work, Chicago, 1978

Bradwardine's function, mediate denomination, and

multiple continua, Physis 12: 1, 1970

Galileo's experimental confirmation of horizontal

inertia, Isis 64 (1973), pp. 291 ff.

The Role of Music in Galileo's Experiments, Scientific American, June 1973

Euclid Elements, tr. B. Zamberti, Venice, 1505, tr. N. Tar-

taglia, Venice, 1543, tr. C. Clavius, Rome, 1578

Fabri, H. Tractatus physicus de motu locali, Lyons, 1646

Fermat, P. Oeuvres, ed. Tannery & Henry, Paris, 1891–1912

Galileo Dialogue Concerning the Two Chief World Systems, tr.

S. Drake, Berkeley, 1953, 1967

Opere, ed. A. Favaro, Florence, 1890-1909

Two New Sciences, tr. S. Drake, Madison, 1974, 2d ed.

Toronto, 1989

Heytesbury, W. Regule solvendi sophismata [Oxford, 1335]

Hipparchus Περι τον δια βαρυτητα κατο φερομενών las cited by

Simplicius]

Kepler, J. Prodromus Dissertationum Cosmigraphicarum continens

Mysterium Cosmographicum de admirabili Proportione Orbium Coelestium ... Tübingen, 1596, 2d ed. Frank-

fort, 1621; tr. A.M. Duncan, New York, 1981

Le Tenneur, J-A De motu accelerato, Paris, 1649

Mach, E. Die Mechanik in...Entwickelung, Leipzig, 1889

Marchia, F. Reportacio on Book 4 of Peter Lombard's "Sentences"

Monte, G. del Mechanicorum liber, Pesaro, 1577

Nieto, M. M. The Titius-Bode Law of Planetary Distances, Oxford,

1972

Oresme, N. De proportionibus proportionum, ed. E. Grant, Madi-

son, 1971

Pereira, B. De communibus omnium rerum, Venice, 1586

Settle, T. An experiment in the History of Science, Science 133

(1961), pp. 19-23

Galileo and early experimentation [in Springs of Scientific Creativity, ed. Aris, Davis, & Steuwer, Minneapolis, 1983]

Simplicius In Aristotelis de Cælo commentaria

Stevin, S. Works, ed. E. Dijksterhuis et al, Amsterdam, 1955-66

(Dutch and English)

Tartaglia, N. La Nova Scientia, Venice, 1537

Quesiti, et invwentioni diverse, Venice, 1546

Regola generale da sulevare...ogni affondata nave, Ven-

ice, 1551

Jordani opusculum de ponderositate, Venice, 1565

Varro, M. De motu tractatus, Geneva, 1584

Wallace, W. A. The concept of motion in the sixteenth century, Pro-

ceedings of the American Catholic Philosophical Associa-

tion, Washington, 1967

The enigma of Domingo de Soto, Isis 59: 4 (1968)

Wilson, C. William Heytesbury: Medieval Logic and the Rise of

Mathematical Physics, Madison, 1956

Index

Cazré, Pierre, 70, 73-75 Clagett, Marshall, 5 Clavius, Christopher, 25 continuity, 23-24, 53, 71-72, 76-77 Copernican system, 64
decimal fractions, 29, 46, 86 Descartes, René, 3, 71-73 Doni, G.B., 70 dynamics, 3, 83 E Ecclesiastes, 25 Einstein, Albert, 12 Euclid, 23-25, 27, 29, 43, 48, 72, 75, 82, 90 Campanus version, 23, 25 Elements, 23-24 Elements, Book I, 75 Elements, Book V, 42, 77 Tartaglia version, 25
Zamberti version, 24 Eudoxus of Cnidos, 23 experiment, 28, 32-33, 35, 41, 43, 51, 56, 58, 60-61, 68-71, 73-74, 78-79, 90
F Fabri, Honoré, 3, 70-71, 76-78 fall from the moon, 67

A HISTORY O	F FREE FALL 98
87, 89-92 working papers of, 43 Galle, J.G., 85 Gassendi, Pierre, 70, 73-75 gravitation acceleration of, 91 constant of, 90, 92 energy of, 61-63 terrestrial, 82 universal, 65, 83 H heaviness, 3, 8-9, 19, 21 Herschel, Sir William, 84 Heytesbury, William, 17-18, 21 See rule of Hipparchus, 7-12, 18, 30-31 Huygens, Christiaan, 3-4 I impetus, 12, 18-19, 21, 26, 30, 33, 71, 75- 77 and discontinuity, 77 impressed force, 3, 8, 18, 30, 54, 61 inclines, 36, 49, 55-56, 59-61, 64, 77-78 indeterminacy, 77 indivisibles, 72 inertia, 56 infinitude, 20, 76-77	Mach, Ernst, 73 magnitudes, ratios of, 23 Marchia, Francesco di, 12-13, 18, 30 mathematical physics, 5, 14, 16, 64, 77, 91 and quantum theory, 77 and symbolism, 15 matter, 10-11 measures, 58, 81-82, 89 accuracy of, 37, 91 and procedures, 81, 87 medium, 7, 27, 29, 31, 52, 78 Mersenne, Marin, 69-73, 76 Merton College, 13, 16-17 Merton rule, 17-18 Metaphysics, 10 middle-degree postulate, 17 Monte, Guidobaldo del, 35, 49, 53 motion cause of, 3, 8, 18, 30 circular and straight, 25, 65, 84 composition of, 53, 58 conservation of, 61 continuity, 76 instantaneous, 55, 73-74, 76 natural, 11, 19-20, 30, 37, 52, 61, 69 resistance to, 14-16, 18-19 speeds of, 13-14 tendencies to, 8-10, 18, 26, 52, 58, 61 uniformly difform, 17, 19, 21, 26 See uniformly difform motion motive force, 9
J Jordanus Nemorarius, 29	N
K Kepler, Johann, 64, 82-84, 89-90, 92 Kepler's problem, 3, 81-83, 85, 87, 89, 91-92 third planetary law of, 83 kinematics, 10, 12, 26, 72, 75-76 kinesis, 6, 11, 17	natural philosophy, 4-5, 12, 14, 18, 26, 28, 58, 65 net forces, 15 Newton, Isaac, 2-4, 12, 32, 65, 69, 83-84 numbers ratios of, 24-25 square, 21, 49 triangular, 21 numerologists, 84
L law of fall, 1-5, 7, 26, 35, 37, 39, 41-47, 49, 51-52, 54, 56, 64, 67-68, 70-71, 73- 75, 81, 83, 91	
Le Tenneur, Jacques-Alexandre, 71, 76, 78 Leaning Tower of Pisa, 31 Leverrier, Urbaine, 85 locomotion, 6, 11, 17	P parabolic trajectory, 49, 51, 56, 58 pendulums, 5, 35, 40-48, 70, 82, 90-91 law of, 1, 3, 5, 43-44, 46, 56, 70, 81, 90- 91

percussion, 54 Pereira, Benedict, 30 Philoponus, 9-10, 12, 30 Piazzi, G., 85 Pisan de Motu, 30, 53 Plato, 11, 84 Platonic cosmogony, 64 Platonic solids, 83-84 Platonism, 14 Timaeus, 84 power, motive, 11, 13-14 procedures, 58-59 projectiles, 8-9, 49, 52, 61 projectiles, 8-9, 49, 52, 61 projection, 8-9, 25, 30, 54, 56, 58-61, 63 oblique, 51, 61, 63 proportionality, 2, 7-8, 14-15, 39, 42, 65, 72 definition of, 2 medieval theory of, 14, 23 of speeds to time, 2 of speeds to time, 2 of speeds to weights, 7 roots of distances, 7, 54, 68 of speeds to weights, 7 roots of distances, 56, 83, 91 to distances, 7, 73, 76 to squares of times, 7	specific gravities, 27-28 speeds Aristotle on, 3, 7, 19 equal, 9, 12, 28-29 horizontal, 56 in water, 27-29 increase of, 20, 33, 37 instantaneous, 54 momenta of, 55, 74 of planets, 2, 64, 83-84 Stevin, Simon, 28-29, 32 T Taisnier, Jean, 28 Tartaglia, Niccolò, 24-27, 29, 32, 53 Theon of Alexandria, 25 time-intervals, 21 Titius, J.D., 84 U uniform speed, 21, 56, 76-77 universities, 23-25 University of Padua, 44
Pythagoreans, 11, 24	V Varro, Michael, 33, 68
R ratios, 14, 23, 25, 39, 46, 48-49, 64-65, 86-88, 90-91 compound, 48-49 Ricci, Ostilio, 25 Roberval, G.P. de, 72	vellum, 60 vis derelicta, 12-13, 19 Viviani, Vincenzio, 31 void space, 52
Kokival, O.I. de, 72	W
Sarpi, Paolo, 74 Scheiner, Christopher, 67-68	Wallace, William, 26 weight, 7, 10, 13-14, 31-32, 39-41, 43, 54, 60
Settle, Thomas, 32 ships, 27	Z
Simplicius, 8, 12, 30 Soto, Domingo de, 26	Zamberti, Bartolomeo, 24 Zeno's paradoxes, 55

Two New Sciences Galileo Galilei

This is the acclaimed translation by Stillman Drake of Discourses and Mathematical Demonstrations Concerning Two New Sciences Pertaining to Mechanics and Local Motions. It is the work written by Galileo in the last years of his life, while under house arrest by the Inquisition for suspected heresy. The two new sciences that comprise the subject of the book are the science of motion on earth and the study of the strength of materials. In presenting his findings, Galileo formulates a methodology for rigorous experimental study of natural phenomena that is the foundation for modern experimental science.

History of Free Fall Stillman Drake

Appended to Drake's translation and commentaries is his monograph *History of Free Fall: Aristotle to Galileo* on the history of the discovery of the law of falling bodies from its formulation by Aristotle to its clear statement by Galileo. Drake's painstaking research includes a close examination of Galileo's working papers which record his famous experiments with inclined planes and carefully controlled parabolic projectile paths.

The late Stillman Drake was Professor of the History of Science at the University of Toronto and the recognized world authority on the life and work of Galileo. He was awarded the 1988 Sarton Medal of the History of Science Society.

WE
Wall & Emerson, Inc.

ISBN 0-921332-50-5